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Introduction 

Urbanization in India is taking place at fast rate. The 
proportion of urban population increased from 20% 
in 1982 to more than 50% in 2015. Large-scale 
urbanization has had a dramatic impact on the 
environment. Studies that assess this process and its 
impacts are important for taking remedial actions 
and designing better urbanization strategies for the 
future. To achieve these goals, detailed urban land 
cover/use maps are required. 

Currently, land cover information with resolutions 
ranging from low to high is the primary data source 
used in studies such as urban growth simulation, 
evaluation of urban public health, and assessment of 
urban ecosystem services .However, to study issues 
such as housing provision, urban transportation, job 
accessibility and residential relocation ,and land use 
patterns, detailed information on urban land use is 
needed due to the difference between the two 
concepts: land use is a cultural concept that 
describes human activities and their use of land, 
whereas land cover is a physical description of land 
surface. Land cover can be used to infer land use, but 
the two concepts are not entirely interchangeable. 

Nevertheless, high-resolution urban land use maps 

covering large spatial extents are relatively rare 
because local knowledge and the techniques 
necessary for developing these types of maps are 
often not available, particularly for developing 
regions. Moreover, urban land use maps are normally 
produced by interpreting aerial photographs, field 
survey results, and auxiliary materials, such as 
appraisal records or statistical data.. 

Satellite-based remote sensing holds certain 
advantages in monitoring the dynamics of urban 
land use because of the large spatial coverage, high 
time resolution, and wide availability. Pixel-based 
image classification methods using spectral and/or 
textural properties are frequently applied to extract 
urban land use information. Recently, per-field and 
object-based classification methods have gained 
popularity in deriving land uses from the satellite 
images because per-field classification methods can 
better describe the function of urban areas and serve 
the needs of urban planning . Although significant 
progress has been achieved, deriving high-resolution 
urban land use maps from satellite images is still a 
difficult task. The medium-resolution satellite images 
(e.g., Landsat images) allow for mapping urban areas 
at the large spatial scale, but it is still difficult to 
extract socioeconomic features of urban areas from 
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these images. Land cover information derived from 
medium-resolution satellite images cannot provide 
sufficient separation among urban functional zones. 

Satellite images with high spatial and spectral 
resolution provide more detailed information on 
urban structures and thus facilitate the assignment of 
socioeconomic functions to different zones. 
Nevertheless, these images are prohibitively 
expensive in general. 

Data Collection 

The administrative boundary of Haryana falls over 
two sets of Landsat images (path/row: 123/32 and 
123/33). Totally 14 Landsat 8 Operational Land 
Imager (OLI) images of 2013 were procured as our 
primary data source from the U.S. Geological Survey 
(http://earthexplorer.usgs.gov/).These images were 
selected because of the low cloud proportions 
(<10%). Multiple available Landsat images with good 
quality in 2013 were used to remove the impact of 
cloud contamination, phenology of vegetation and 
cropland rotation. In addition, a seasonal dynamic of 
land cover series,  

Data on the road networks of Haryana were collected 
from Open Street Map (OSM) 
(https://www.openstreetmap.org), a provider of free 
open geographical data. The data are in vector 
format and contain different classes of streets 
organized using street levels and sizes. Street levels, 
in descending order, correspond to primary 
highways, primary roads, secondary roads, and small 
roads (i.e., local, neighborhood and rural streets). 
Each point contains the functional and locational 
properties of a site, The initial twenty types of POI 
were aggregated into 10 general categories, 
including residential, marketing and recreation, 
service building, hotel and restaurant, industrial, 
medical, educational, institutional infrastructure, 
government and social organization, and 
transportation land .POIs that did not belong to the 
aforementioned groups were removed. The quality 
of the POI data were verified by checking 100 
randomly sampled sites manually and the resulting 
accuracy level was 97%. Although spurious social 
data may occur, the overall pattern (or distribution) 
can be accurately reflected by using a huge amount 
of points. 

Method 

The overall structure of the protocol is shown in 
Figure. First, the entire study area was segmented 
into parcels based on road networks following. 
Parcels are basic units used in this classification 
scheme with the assumption that they are 
homogeneous in terms of urban functions . The 
parcels were then separated into built-up areas and 
non-built-up areas based on classified impervious 
surface areas and defined our classification system 
based on these two regions. The function of each 
parcel was inferred using the normalized feature 
distance (or similarity) to the pre-collected training 
sample units. The similarity of the built-up parcels 
was based on 10 socioeconomic features (i.e., 
residential, marketing and recreation, service 
building, hotel and restaurant, industrial, medical, 
educational, institutional infrastructure, government 
and social organization and transportation land) that 
were derived from the normalized kernel densities of 
the different functions of POI data and two physical 
indices derived from multi-temporal Landsat images. 

Processing POIs 

Within the spatial extent of a parcel, there may be a 
variety of POIs of different types, which can be 
regarded as having compound functions instead of a 
single function. In addition, the qualities of POIs vary 
among different categories, i.e., the number of POIs 
associated with the commercial type is greater than 
the other types. This results in an unbalanced 
distribution of the numbers of points among 
different POI types. To cope with these issues, we 
normalized the functional intensity of the different 
POI types using kernel density estimation. Kernel 
density analysis was implemented using the 
quadratic kernel function with a search radius of 500 
m. The output is a smooth surface indicating the 
densities, and regions with relatively higher density 
values indicate that there are more POI points. This 
processing can mitigate possible errors caused by 
unbalanced quantity gaps among different POI types. 



 

 

Figure: Training samples for nine subclasses of land 
use in the built up regions: (a) cottage; (b) 
community; (c)retail place; (d) service building; (e) 
industrial lands; (f) medical places; (g) education 
/research places; (h) administrative office. 

Determination of Parcel-Based Land Use 

Using the training parcels that were collected based 
on the definition of the land use classification, a 
normalized feature distance (similarity) in built-up 
regions was computed on a parcel-by-parcel basis. 
The features used for calculating the similarity index 
include 10 POI density images, one NDVI band and 
one NDBI band. Two statistical parameters (i.e., the 
mean value and standard deviation) were previously 
estimated using the collected training samples. Then, 
the similarity index of a given parcel was compared. 
xi and si are the mean and standard deviation of the 
pre-defined land use type i acquired from the 
training parcel; m is the total number of land use 
classes; and xj is the parcel value (i.e., the mean of all 
pixels within the parcel) for feature j in either 
normalized POI density images, NDVI or NDBI. The 
smaller feature distance means higher similarity to a 
corresponding land use type. The urban land use 
type of a parcel was determined by calculating 
similarity Si of the parcel to training samples, and the 
pre-defined land use type of training samples which 
has the minimum value of Si was assigned to this 
parcel. 

In addition, the land cover map was adopted to 
determine the land use of parcels in non-built-up 
lands. A land parcel commonly has multiple land 
cover types. The dominant land cover type was 
identified and the land use function of this land 
cover type was assigned to the corresponding parcel. 
Finally, the classified built-up and non-built-up areas 
were combined to form the detailed land use map 
for the entire city. 

Accuracy Assessment and Uncertainty 

To assess the performances of land use classification, 
a random sampling scheme was adopted to collect a 
testing sample set over the study area. All testing 
parcels were surveyed by a field crew with a relatively 
high level of confidence. The total number of 
collected testing parcels was 269, among which 180 
were located in built-up regions, and 89 were in non-
built-up areas. Thereafter, confusion matrixes for 
Level I and Level II were built. 

To assess the uncertainty of the obtained urban land 
use map, the standard deviation of similarities 
among all land use types for each parcel was used as 
an approximate indicator. Low standard deviation 
values suggested that there was a relatively little 
similarity difference among the different types of 
land use, which meant that the identified land use 
was more uncertain. High standard deviation values 
indicated considerable variance of similarities among 
different land use types, which would tend to result 
in a more credible assigned type of land use to a 
parcel because the minimum similarity was 
considerably different. This approach qualitatively 
captured the overall pattern of the uncertainty 
distribution. 

Discussion  

In This study, we utilized both medium resolutions. 
Satellite remote sensing data and open social data 
describe the biophysical elements of urban areas. 
The open social data indicate human activities of a 
place, especially inside the built-up area. The use of 
both data sources is beneficial for urban land use 
type identification in urban areas. In addition, the 
sensitivity of features adopted in the similarity 
assessment was tested. If we used only the POI or 
two biophysical features derived from the Landsat 
images (i.e., NDVI, NDBI), the obtained accuracies of 
the urban land parcels (Level I) in the built-up region 
are 41% and 31%, respectively. However, when 
combined, the accuracy reaches 75%. Moreover, 
some function types that were not identified in 
previous studies have been classified in our result, 
such as service buildings, medical and public places. 
Hence, the use of both features at the parcel level 
produced more detailed and accurate land use maps 
than studies using single source data. 

Conclusions 



 

High-resolution land use maps are needed for 
academic research and urban management. 
However, complex and heterogeneous urban 
landscapes pose challenges to land use mapping. 
The use of both physical features (i.e., spectral 
information) derived from remotely sensed data and 
social attributes (e.g., socio-economic function) 
derived from open social data can help to delineate 
the detailed land use patterns in urban areas. We 
developed an approach to combine the strength of 
these two types of data to identify land use types 
quickly over a large area. The use of both biophysical 
features and socioeconomic features resulted in a 
land use map with higher accuracy and more detail. 
The overall accuracy of the land use map for this 
extremely heterogeneous urban area reached 81.04% 
and 69.89% for the Level I and Level II categories, 
respectively. This approach can be applied to derive 
land use maps of a large area in a relatively short 
time wherever satellite data and open social data are 
available, especially for fast-growing urban areas in 
developing countries. 

More efforts can be undertaken for further 
improvement. First, incorporating both road 
networks derived from open social data and 
segmentation derived from biophysical features (e.g., 
bands in Landsat images) may be helpful to generate 
more detailed parcels, especially for suburban areas 
in which road networks are relatively sparse. Second, 
the shapes and sizes of parcels can be considered 
when assigning possible land use types (e.g., parcels 
in industrial areas are relatively large, but parcels in 
residential areas are small). Third, non-linear 
approaches, such as neural networks, can be 
considered when building the relationships between 
physical and socioeconomic features, if the number 
of pre-collected training parcels is adequate. 
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