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Abstract  

Consecutive k-out-of-n systems have gained significant attention and found diverse applications across various domains. This 

research article introduces a Classical and Bayesian approach for reliability estimation in Consecutive linear/circular k-out-of-n: 

F systems using the Weighted Exponential-Lindley distribution. By employing this distribution to model component lifetimes, 

we obtained maximum likelihood and Bayesian estimates for reliability using squared error loss function. In cases where exact 

forms are unattainable, Lindley's approximation and the Markov chain Monte Carlo method are utilized to derive Bayes 

estimates. We also examined mean time to failure and constructed credible intervals to estimate Bayes reliability. To assess and 

compare the effectiveness of these estimators, we carried out a Monte Carlo simulation study. 

Keywords: Consecutive k-out-of-n system; Bayesian estimates; reliability, squared error loss function; Weighted Exponential-

Lindley distribution; credible intervals  

I.   Introduction  

Consecutive k-out-of-n systems have experienced remarkable progress and have found extensive applications across 

various domains, owing to their exceptional reliability and fault tolerance capabilities. The concept of the 

consecutive-k system was initially introduced by Kontoleon [1] and subsequently, Chiang and Niu [2] coined the 

term "consecutive-k-out-of-n: F (cons/k-n: F) system" to refer to a specific type within this framework. In a cons/k-

n: F system, failure occurs only when k or more components fail consecutively out of a total of n components. 

Consecutive-k-out-of-n systems are frequently encountered in various engineering applications, where assessing the 

system reliability becomes a crucial concern. These systems find relevance in diverse domains such as 

telecommunications, microwave relay stations, oil pipeline systems, vacuum systems in accelerators, computer ring 

networks, and spacecraft relay stations. Depending on the logical or physical connections among components, these 

systems can be categorized as either linear or circular, while their functioning principle is classified as either failed 

(F) or good (G). In the consecutive-k-out-of-n: F system, comprising a linear or circular arrangement of n 

components, failure occurs when k consecutive components experience failure. When the components of the cons/k-

n: F system are positioned in a linear configuration, it is referred to as a linear consecutive k-out-of-n: F (L(cons/k-n: 
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F)) system. Conversely, if the components are arranged in a circular fashion, it is known as a circular consecutive k-

out-of-n: F (C(cons/k-n: F)) system. In the L(cons/k-n: F) system, the first and last components are not adjacent to 

each other in terms of consecutiveness. However, in the C(cons/k-n: F) system, the first and last components form a 

consecutive pair. Extensive research has been conducted on consecutive-k-out-of-n systems in the existing literature, 

building upon the initial work by Kontoleon [1]. Notable references for further exploration include studies by Fu [3], 

Bollinger and Salvia [4], Zuo and Kuo [5], Chang et al. [6], Kuo and Zuo [7], Eryilmaz [8], Eryilmaz [9], Gokdere 

and Gurcan [10], Guan and Wu [11], Wang et al. [12], Yuan and Cui [13] and Hongda et al. [14]. Derman et al. [15] 

introduced a formula for calculating the reliability of an L(cons/k-n: F) system composed of i.i.d. components with 

reliability 𝑝 given by  

𝑅(𝑘, 𝑛, 𝑝) = ∑ 𝑁(𝑗, 𝑛 − 𝑗 + 1, 𝑘 − 1)𝑞௝௡
௝ୀ଴ 𝑝௡ି௝  

Lambiris and Papastavridis [16] derived an expression for the numbers 𝑁(𝑗, 𝑛 − 𝑗 + 1, 𝑘 − 1) in equation (2), with 

the condition 𝑛 − 𝑗 + 1 ≥ 0 as follows  

𝑁(𝑗, 𝑛 − 𝑗 + 1, 𝑘 − 1) = ෍ ቀ
𝑛 − 𝑗 + 1

𝜆
ቁ ൬

𝑛 − 𝜆𝑘
𝑗 − 𝜆𝑘

൰

௡ି௝ାଵ

ఒୀ଴

(−1)ఒ 

Consecutive k-out-of-n systems pose a significant challenge in reliability estimation due to their specific failure 

criterion. The requirement of consecutive failures introduces a new layer of complexity, as traditional methods may 

struggle to accurately assess the reliability of such systems. To address these challenges, we propose a Bayesian 

framework for reliability estimation in consecutive k-out-of-n systems. Bayesian methods offer several advantages 

over frequentist approaches, as they allow for the incorporation of prior knowledge, explicit modeling of 

uncertainties, and updating of beliefs based on observed data. By leveraging Bayesian techniques, we can obtain 

more accurate reliability estimates while quantifying the associated uncertainties. Unlike frequentist approaches that 

often provide point estimates without considering uncertainty, Bayesian methods enable the calculation of credible 

intervals or posterior distributions that provide a more comprehensive understanding of the reliability estimates. This 

additional information aids decision-making processes by considering the level of confidence or uncertainty 

associated with the reliability estimates. The construction of a Bayesian confidence interval involves determining the 

lower and upper bounds that enclose the specified credibility level. This can be done by computing the quantiles of 

the posterior distribution. For example, a 95% Bayesian confidence interval would correspond to the 2.5th and 

97.5th percentiles of the posterior distribution.  

       In recent years, there has been a notable surge of research interest in employing Bayesian methodology for the 

estimation of reliability in consecutive k-out-of-n systems. Notably, Madhumitha and Vijayalakshmi [17] undertook 

a comprehensive study focusing on Bayesian reliability estimates of consecutive k-out-of-n: F system, utilizing the 

Weibull distribution. Eryilmaz and Navarro [18] discussed the failure rates of consecutive k-out-of-n systems in 

(2) 

(1) 
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their study. Yin and Cui [19] investigated the concept of reliability in a consecutive- k -out-of- n: F system that 

incorporates shared components between adjacent subsystems. Further, Madhumitha and Vijayalakshmi [20] 

focused on estimating the Bayesian system reliability of a consecutive k-out-of-n: F system. They employed the 

negative binomial distribution for their analysis. Madhumitha and Vijayalakshmi [21] conducted a study on 

Bayesian Estimation of Linear/Circular Consecutive k-out-of-n: F System Reliability. Demiray and Kızılaslan [22] 

provided estimates of the reliability of a consecutive linear k-out-of-n system comprising non-identical strength 

components. They specifically applied their methodology to wind speed data analysis. Also, Demiray and Kızılaslan 

[23] provided estimate of stress strength reliability of a consecutive k-out-of-n system based on proportional hazard 

rate family respectively.  

This paper investigates the Classical and Bayesian approach for estimating reliability in a consecutive linear/circular 

k-out-of-n: F system. To achieve this, we propose the utilization of the Weighted Exponential-Lindley distribution 

(WXLD) which allows us to incorporate both partial data and previous experience into our reliability assessment. 

The adoption of Bayesian inference is motivated by its remarkable ability to handle uncertainties inherent in 

reliability estimation. To model the lifetime of components within the system accurately, we leverage the flexibility 

provided by the WXLD. This distribution enables us to capture various patterns of component failures, ensuring a 

comprehensive analysis of the system's reliability. By utilizing this distribution, we derive a maximum likelihood 

estimate and Bayesian estimate of the proposed system using SELF. Moreover, we present Bayesian estimators for 

additional performance measures, such as mean time to failure (MTTF) and Credible intervals. To illustrate the 

practical applicability of our developed model, we provide a numerical example that effectively demonstrates its 

effectiveness in estimating reliability and related performance measures. This paper is organized as follows: Model 

description is given in section 2. In section 3, background details including notations, assumption and system 

reliability are explained. Classical and Bayesian reliability estimation is provided in section 4, followed by 

simulation study in section 5. Finally, in section 6 the results are concluded.  

II.   Model Description  

Chouia and Zeghdoudi [24] introduced Exponential-Lindley distribution (XLD), which is a unique distribution 

formed by combining two separate distributions the Exponential and the Lindley distribution. In this study, we 

proposed a distribution, called Weighted Exponential-Lindley distribution (Sharma and Kumar [25]), which is a 

mixture of gamma (2, 1/θ) and one-parameter XLD and it is described as follows: Let a random variable 

𝑋~𝑊𝑋𝐿𝐷(𝜃) then the probability density function PDF and Cumulative distribution function (CDF) are 

𝑓(𝑥) =
ସఏయ௫(ଶାఏା௫)௘షమഇೣ

(ଵାఏ)మ  ;  𝑥 ≥ 0, 𝜃 > 0  

𝛷(𝑥) = 1 − 𝑒ିଶఏ௫ ቀ
ଶఏమ௫మ

(ଵାఏ)మ + 2𝜃𝑥 + 1ቁ  

(3) 

(4) 
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III.   Background  

3.1 Notations   

𝜃 Failure rate  

𝜃෠ MLE of 𝜃 

i.i.d.  independent an identically distributed 

cons/k-n: F consecutive k-out-of-n: F system 

L(cons/k-n: F) Linear cons/k-n: F 

C(cons/k-n: F) Circular cons/k-n: F 

𝑅௖(𝑡) Component reliability  

𝑅௦(𝑡) System reliability  

𝑅෠௖(𝑡) MLE of component reliability 

𝑅෠௦(𝑡) MLE of system reliability  

𝑅෠௦
௅(𝑡) MLE of Linear cons/k-n: F 

𝑅෠௦
஼(𝑡) MLE of Circular cons/k-n: F 

𝑅௦
௅(𝑡) Reliability of L(cons/k-n: F) 

𝑅௦
௅∗(𝑡) Bayes estimate for reliability of L(cons/k-n: F) 

𝑅௦
஼(𝑡) Reliability of C(cons/k-n: F) 

𝑅௦
஼∗(𝑡) Bayes estimate for reliability of C(cons/k-n: F) 

𝜇௅ MTTF of L(cons/k-n: F) 

𝜇௅
∗  Bayes estimate of MTTF for L(cons/k-n: F) 

𝜇஼  MTTF of C(cons/k-n: F) 

𝜇஼
∗  Bayes estimate of MTTF for C(cons/k-n: F) 

  

3.2 Assumptions  

1.  At time 𝑡 = 0, all components are in a good state and functioning properly. 

2.  There are n identical components that are functioning properly. 

3.  The component can be either operational or in a state of failure. 

4.  Perfect links and connections are assumed in the system. 

5.  The components exhibit mutual independence and identical distribution.  

6.  The failure time of the component follows WXLD.  

7.  The system experiences a failure when at least k consecutive components fail, where k is less than or equal to n. 
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3.3. System Reliability  

Consider a L(cons/k-n: F) system consists of n components that fail whenever k components fail consecutively, with 

k being less than or equal to n. In contrast, the C(cons/k-n: F) system arranges the components in a circle, where the 

first and last components are consecutive. The reliability of a L(cons/k-n: F) and C(cons/k-n: F) system is presented 

by Kuo and Zuo [7]. We obtained the following reliability function and the result derived by Griffith and 

Govindarajulu [26]. 

The reliability function of L(cons/k-n: F) system is given by 

𝑅௦
௅(𝑡) = ෍(−1)௟

ேଵ

௟ୀ଴

𝐶ேଷ
௟ 𝑅௖

௟ (1 − 𝑅௖)ேସ − ෍(−1)௟𝐶ேହ
௟

ேଵ

௟ୀ଴

𝑅௖
௟ (1 − 𝑅௖)ே଺ 

where, 𝑁1 = ቔ
௡

௞ାଵ
ቕ, 𝑁3 = 𝑛 − 𝑙𝑘, 𝑁4 = 𝑘𝑙, 𝑁5 = 𝑛 − 𝑙𝑘 − 𝑘, 𝑁6 = 𝑘𝑙 + 𝑘 

The reliability function of C(cons/k-n: F) system is given by 

𝑅௦
஼(𝑡) = ෍(−1)௟

ேଵ

௟ୀ଴

𝐶ேଷ
௟ 𝑅௖

௟ (1 − 𝑅௖)ேସ − ෍(−1)௟ାଵ𝐶ே଻
௟

ேଶ

௟ୀ଴

𝑅௖
௟ାଵ(1 − 𝑅௖)ே଺ − (1 − 𝑅௖)௡ 

where, 𝑁1 = ቔ
௡

௞ାଵ
ቕ, 𝑁2 = ቔ

௡

௞ାଵ
− 1ቕ, 𝑁3 = 𝑛 − 𝑙𝑘, 𝑁4 = 𝑘𝑙, 𝑁5 = 𝑛 − 𝑙𝑘 − 𝑘, 𝑁6 = 𝑘𝑙 + 𝑘, 𝑁7 = 𝑛 − 𝑙𝑘 − 𝑘 − 1 

Further, we assume that the lifetime of the component be WXLD with PDF given in equation (3). 

 and for a mission time 𝑡 the reliability of each component of the considered system is  

𝑅௖(𝑡) = 𝑒ିଶఏ௧ ቀ
ଶఏమ௧మ

(ଵାఏ)మ + 2𝜃𝑡 + 1ቁ, 𝑡 ≥ 0, 𝜃 ≥ 0 

IV.    Estimation of System Reliability  

In this section, we focus on estimating both 𝑅௦
௅ and 𝑅௦

஼ . We derive the Maximum likelihood estimates (MLE) and 

Bayes estimates for 𝑅௦
௅ and 𝑅௦

஼ .   

4.1 MLE of 𝑹𝒔
𝑳 and 𝑹𝒔

𝑪 

Suppose that n units are initially placed on test and terminating the test once all n units are failed. The failure times 

of these units, denoted by 𝑡ଵ, 𝑡ଶ, … . . , 𝑡௡ are assumed to be distributed with density function as given in equation (3) 

that depends on a single parameter 𝜃 

The Likelihood function of the data 𝑡ଵ, 𝑡ଶ, … . . , 𝑡௡ is expressed as, 

(5) 

(8) 

(6) 

(7) 
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𝐿 = 𝐿(𝜃 𝑡ଵ, 𝑡ଶ, … . . , 𝑡௡⁄ ) =  ∏
ସఏయ௧೔(ଶାఏା௧೔)௘షమഇ೟೔

(ଵାఏ)మ
௡
௜ୀଵ   

The log-likelihood function may be written as  

𝑙 = 𝑛𝑙𝑜𝑔4𝜃ଷ − 2𝑛𝑙𝑜𝑔(1 + 𝜃) + ෍ 𝑙𝑜𝑔𝑡௜

௡

௜ୀଵ

+  ෍ log(2 + 𝜃 + 𝑡௜) − 2𝜃 ෍ 𝑡௜                                         

௡

௜ୀଵ

௡

௜ୀଵ

 

For calculating the MLE of parameter 𝜃, we partially differentiate equation (9) with respect to 𝜃 and equating to 

zero as  

డ௟

డఏ
=

ଷ௡

ఏ
−

ଶ௡

(ଵାఏ)
+ ∑

ଵ

(ଶାఏା௧೔)
௡
௜ୀଵ − 2 ∑ 𝑡௜

௡
௜ୀଵ = 0  

The MLE, 𝜃෠ of parameter 𝜃 is the solution of equation (10). Due to the unavailability of a closed-form solution, a 

numerical iteration method has been employed to estimate the value of the parameter.  

Now, by using the well-known Invariance property of MLE, the ML estimates of reliability function of components 

and cons/k-n: F system are respectively obtained as,  

 𝑅෠௖(𝑡) = 𝑒ିଶఏ෡௧ ቀ
ଶఏ෡మ௧మ

(ଵାఏ෡)మ + 2𝜃෠𝑡 + 1ቁ 

𝑅෠௦
௅(𝑡) = ෍(−1)௟

ேଵ

௟ୀ଴

𝐶ேଷ
௟ 𝑅෠௖

௟ (1 − 𝑅෠௖)ேସ − ෍(−1)௟𝐶ேହ
௟

ேଵ

௟ୀ଴

𝑅෠௖
௟ (1 − 𝑅෠௖)ே଺ 

𝑅෠௦
஼(𝑡) = ෍(−1)௟

ேଵ

௟ୀ଴

𝐶ேଷ
௟ 𝑅෠௖

௟ (1 − 𝑅෠௖)ேସ − ෍(−1)௟ାଵ𝐶ே଻
௟

ேଶ

௟ୀ଴

𝑅෠௖
௟ାଵ൫1 − 𝑅෠௖൯

ே଺
− (1 − 𝑅෠௖)௡ 

4.2 Bayes Estimate of 𝑹𝒔
𝑳 and 𝑹𝒔

𝑪 

In this part of the proposed study, we discuss the Bayesian reliability estimate of the considered L (cons/k-n: F)/ C 

(cons/k-n: F) system under SELF. We assume that the parameter 𝜃 follows gamma (𝛼, 𝛽) prior distribution with 

PDF 

𝑔(𝜃) =
ఉഀ௘షഇഁఏഀషభ

୻ఈ
  

The likelihood function for the probability of 𝑡 given θ, where the component failure rate θ follows a WXLD, can be 

expressed as  

𝐿(𝑡 𝜃⁄ ) = ∏ 𝑓(𝑡௜ 𝜃⁄௡
௜ୀଵ ) =

൫ସఏయ൯
೙

∏ ௧೔
೙
೔సభ (ଶାఏା௧೔)௘

షమഇ ∑ ೟೔
೙
೔సభ

(ଵାఏ)మ೙    

(11) 

(12) 

(13) 

(15) 

(9) 

(10) 

(14) 
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Thus, the posterior distribution of 𝜃 under considered prior is found to be  

π(𝜃 𝑡) =⁄
௅(௧ ఏ)௚(ఏ)⁄

∫ ௅(௧ ఏ)௚(ఏ)⁄ ௗఏ
ಮ

బ

  

π(𝜃 𝑡)⁄ =

൫రഇయ൯
೙

∏ ೟೔
೙
೔సభ (మశഇశ೟೔)೐

షమഇ ∑ ೟೔
೙
೔సభ ഁഀ೐షഇഁഇഀషభ

౳ഀ
(భశഇ)మ೙

∫
൫రഇయ൯

೙
∏ ೟೔

೙
೔సభ (మశഇశ೟೔)೐

షమഇ ∑ ೟೔
೙
೔సభ

(భశഇ)మ೙
ಮ

బ
ഁഀ೐షഇഁഇഀషభ

౳ഀ
ௗఏ

  

   Under SELF, the Bayes estimator of the reliability function 𝑅௦
௅(𝑡) is given by: 

𝑅௦
௅∗(𝑡) = 𝐸൫𝑅௦

௅(𝑡)൯ = ∫ 𝑅௦
௅(𝑡)Π(𝜃 𝑢)⁄ 𝑑𝜃

ஶ

଴
 

 

where, π(𝜃 𝑡)⁄  is derived in equation (16).  

Further, the Bayes estimator of 𝑅௦
஼(𝑡) is expressed as  

𝑅௦
஼∗(𝑡) = 𝐸൫𝑅௦

஼(𝑡)൯ = ∫ 𝑅௦
஼(𝑡)Π(𝜃 𝑢)⁄ 𝑑𝜃

ஶ

଴
 

            = ∑ (−1)௟ேଵ
௟ୀ଴ 𝐶ேଷ

௟ 𝑅௖
௟ (1 − 𝑅௖)ேସ − ∑ (−1)௟ାଵ𝐶ே଻

௟ேଶ
௟ୀ଴ 𝑅௖

௟ାଵ(1 − 𝑅௖)ே଺ − (1 − 𝑅௖)௡Π(𝜃 𝑢)⁄ 𝑑𝜃  

To approximate the integral in equation (17) and (18), two alternative approaches are employed due to its lack of 

analytic computation. Lindley's approximation and the Markov Chain Monte Carlo (MCMC) method are utilized as 

alternative methods for approximating the integral. 

4.2.1 Lindley’s Approximation 

Lindley [27] proposed an approximation method for computing the ratio of two integrals. This technique can be 

applied to calculate the posterior expectation of any arbitrary function, also it can simplify the computation of 

complex integrals by expressing them as a ratio of simpler integrals. Let 𝑢(𝜃) be any arbitrary function, then it’s 

posterior expectation is expressed as, 

𝐸(𝑢(𝜃) 𝑡) =
∫ ௨(ఏ)௩(ఏ)௘೗(ഇ)ௗఏ

∫ ௩(ఏ)௘೗(ഇ)ௗఏ
ൗ   

where, 𝑢(𝜃) is the function of 𝜃 only, 𝑣(𝜃): prior density function and 𝑙(𝜃) = log likelihood function. 

Using the Lindley’s approximation, 𝐸(𝑢(𝜃) 𝑡)⁄  approximately estimated by  

(16) 

         =∫ ∑ (−1)௟ேଵ
௟ୀ଴ 𝐶ேଷ

௟ 𝑅௖
௟ (1 − 𝑅௖)ேସ − ∑ (−1)௟𝐶ேହ

௟ேଵ
௟ୀ଴ 𝑅௖

௟ (1 − 𝑅௖)ே଺Π(𝜃 𝑢)⁄
ஶ

଴
𝑑𝜃 (17) 

(18) 

(19) 
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𝐸(𝑢(𝜃) 𝑡) =⁄ [𝑢 +
1

2
෍ ෍൫𝑢௜௝ + 2𝑢௜𝜌௝൯𝜎௜௝ +

௝௜

1

2
෍ ෍ ෍ ෍ 𝐿௜௝௞𝜎௜௝𝜎௞௟𝑢௟

௟௞௝௜

] + 𝑜 ൬
1

𝑛ଶ
൰ 

Here 𝑖, 𝑗, 𝑘, 𝑙 = 1,2, … . , 𝑚 ;  𝜃 = (𝜃ଵ, 𝜃ଶ, … . , 𝜃௠);  𝑢௜ =
డ௨

డఏ೔
 ;  𝑢௜௝ =

డమ௨

డఏ೔డఏೕ
; 𝐿௜௝ =

డమ௟

డఏ೔ఏೕ
, 𝜌௜ =

డఘ

డఏ೔
 where 𝜌 is the 

logarithm of prior distribution.  

By considering the one-parameter WXLD, the following equation can be derived: 

𝐸(𝑢(𝜃) 𝑡⁄ ) = 𝑢 +
ଵ

ଶ
(𝑢ଵଵ𝜎ଵଵ) + 𝑢ଵ𝜌ଵ𝜎ଵଵ +

ଵ

ଶ
(𝐿ଵଵଵ𝑢ଵ𝜎ଵଵ

ଶ )  

In this case,  

𝜌ଵ =
(ఈିଵ)

ఏ
− 𝛽  

𝐿ଵଵ =
డమ௟

డఏమ =  
ିଷ௡

ఏమ +
ଶ௡

(ଵାఏ)మ − ∑
ଵ

(ଶାఏା௧೔)మ
௡
௜ୀଵ   

𝐿ଵଵଵ =
଺௡

ఏయ −
ସ௡

(ଵାఏ)య + 2 ∑
ଵ

(ଶାఏା௧೔)య
௡
௜ୀଵ   

𝜎௜௝ , 𝑖, 𝑗 = 1,2  are obtained by using 𝐿௜௝ , 𝑖, 𝑗 = 1, 2. 

𝜎ଵଵ =  [−𝐿ଵଵ]ିଵ = ቂ
ିଷ௡

ఏమ +
ଶ௡

(ଵାఏ)మ − ∑
ଵ

(ଶାఏା௧೔)మ
௡
௜ୀଵ ቃ

ିଵ

  

Now, to obtain the Bayes estimator of 𝑅௦
௅ and 𝑅௦

஼  using Lindley's approximation, denoted as  

[𝑅௦
௅∗(𝑡)]௅௜௡  and [𝑅௦

஼∗(𝑡)]௅௜௡ the following procedure is followed: 

[𝑅௦
௅∗(𝑡)]௅௜௡ = 𝑅௦

௅ +
1

2
(𝑅ଵଵ

௅ 𝜎ଵଵ) + 𝑅ଵ
௅𝜌ଵ𝜎ଵଵ +

1

2
(𝐿ଵଵଵ𝑅ଵ

௅𝜎ଵଵ
ଶ ) 

and, [𝑅௦
஼∗(𝑡)]௅௜௡ = 𝑅௦

஼ +
ଵ

ଶ
(𝑅ଵଵ

஼ 𝜎ଵଵ) + 𝑅ଵ
஼𝜌ଵ𝜎ଵଵ +

ଵ

ଶ
(𝐿ଵଵଵ𝑅ଵ

஼𝜎ଵଵ
ଶ ) 

Here, all the parameters are evaluated at 𝜃෠. Also, 𝑅ଵ
௅ =

డோೞ
ಽ

డఏభ
, 𝑅ଵଵ

௅ =
డమோೞ

ಽ

డఏభ
మ  and 𝑅ଵ

஼ =
డோೞ

಴

డఏభ
, 𝑅ଵଵ

஼ =
డమோೞ

಴

డఏభ
మ . 

4.2.2 MCMC Method  

The implementation of MCMC techniques typically requires the use of the Metropolis-Hastings sampler. The 

Metropolis-Hasting (MH) algorithm, originally introduced by Metropolis et al. [28], can be employed as a solution. 

The algorithm for incorporating Metropolis-Hastings (MH) within Gibbs sampling is as follows:  

1. Start with initial guess 𝜃(଴). 

(21) 

(22) 

(20) 

(23) 
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2. Set 𝑖 = 1. 

3. To generate 𝜃(௜) from π(𝜃(௜ିଵ) 𝑡)⁄  using the following MH algorithm, employ a normal proposal distribution 

𝑁(𝜃(௜ିଵ), 𝑣𝑎𝑟(𝜃)).  

4. Obtain a proposal 𝜃∗ from 𝑁(𝜃(௜ିଵ), 𝑣𝑎𝑟(𝜃)). 

(i) Compute the acceptance probabilities 𝜏ఏ = 𝑚𝑖𝑛 ቂ1,
గ(ఏ∗ ௧⁄ )

గ(ఏ(೔షభ) ௧)ൗ
ቃ. 

(ii) Generate a 𝑢ଵ from a Uniform (0,1) distribution.  

(iii) If 𝑢ଵ < 𝜏ఏ, accept the proposal and set 𝜃(௜) = 𝜃∗, else set 𝜃(௜) = 𝜃(௜ିଵ). 

5. Evaluate the (𝑅௦
௅)(௜) and (𝑅௦

஼)(௜) at 𝜃(௜).  

6. Set 𝑖 = 𝑖 + 1.  

7. To obtain the posterior sample (𝑅௦
௅)(௜)and (𝑅௦

஼)(௜),repeat Steps 3 to 5, N times; 𝑖 = 1, 2, … 𝑁. 

The given sample is utilized for computing the Bayes estimate and constructing the credible interval (CRI) for 𝑅௦
௅ 

and 𝑅௦
஼  respectively. To ensure convergence and mitigate the impact of initial value selection, the first M simulated 

varieties are discarded. Subsequently, the selected samples 𝜃(௜)  where 𝑖 = M + 1.…N, with N being sufficiently 

large, are utilized. Then, the Bayes estimate of 𝑅௦
௅ and 𝑅௦

஼  under a SELF is respectively given by  

 

[𝑅௦
௅∗(𝑡)]ெ஼ =

ଵ

ேିெ
∑ (𝑅௦

௅)(௜)ே
௜ୀெାଵ   

[𝑅௦
஼∗(𝑡)]ெ஼ =

ଵ

ேିெ
∑ (𝑅௦

஼)(௜)ே
௜ୀெାଵ   

Then, the 100(1 − 𝛿)% CRIs for 𝑅௦
௅∗ and 𝑅௦

஼∗ respectively are determined by the method of Chen and Shao [29].  

 

4.3 Bayesian Estimate of MTTF 

The Bayes estimate of MTTF for a considered L(cons/k-n: F) system is expressed as 

𝜇௅
∗ = ∫ 𝑅௦

௅∗(𝑡)𝑑𝑡
ஶ

଴
  

   

Similarly, the Bayes estimate of MTTF for a considered C(cons/k-n: F) system is given by 

𝑀஼
∗ = ∫ 𝑅௦

஼∗(𝑡)𝑑𝑡
ஶ

଴
  

where, π(𝜃 𝑡)⁄  is provided in equation (16).  

The analytical solution of the equation (26) and (27) is not feasible. Hence, we use numerical methods which 

provide an effective approach for approximating the integrals.  

 

(24) 

𝜇௅
∗ = ∫ ∫ ∑ (−1)௟ேଵ

௟ୀ଴ 𝐶ேଷ
௟ 𝑅௖

௟ (1 − 𝑅௖)ேସ − ∑ (−1)௟𝐶ேହ
௟ேଵ

௟ୀ଴ 𝑅௖
௟ (1 − 𝑅௖)ே଺π(𝜃 𝑡)⁄

ஶ

଴
𝑑𝜃𝑑𝑡

ஶ

଴
  (26) 

𝜇஼
∗ = ∫ ∫ ∑ (−1)௟ேଵ

௟ୀ଴ 𝐶ேଷ
௟ 𝑅௖

௟ (1 − 𝑅௖)ேସ − ∑ (−1)௟ାଵ𝐶ே଻
௟ேଶ

௟ୀ଴ 𝑅௖
௟ାଵ(1 − 𝑅௖)ே଺ − (1 − 𝑅௖)௡π(𝜃 𝑡)⁄

ஶ

଴
𝑑𝜃𝑑𝑡

ஶ

଴
  

(25) 

(27) 
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V.     Simulation Study 

In this part, Monte Carlo simulations are employed to compare the system reliability estimates between MLE and 

Bayesian estimation approaches. The estimates are accompanied by their respective mean square error (MSE) or 

estimated risks (ERs) values as well as biases. The performances of the point estimates are assessed by using MSE 

for MLE and ER for Bayesian estimates. The ER of 𝜃, when 𝜃 is estimated by 𝜃෠ is given by 

(𝐸𝑅)ఏ =
ଵ

ே
∑ ൫𝜃෠௜ − 𝜃௜൯

ଶே
௜ୀଵ   

under SELF. Also,  

𝐵𝑖𝑎𝑠 (𝑅௦
௅) =

ଵ

ே
∑ [൫𝑅෠௦

௅൯
(௜)

− 𝑅௦
௅  ]ଶே

௜ୀଵ   

The computations for all analyses were conducted using MATLAB and R software, with a total of 2500 replications. 

The results presented are derived from these computational runs. We calculate the MSE based-on replication (N) as 

follows: 

𝑀𝑆𝐸(𝑅௦
௅) =

ଵ

ே
∑ ቂ൫𝑅෠௦

௅൯
(௜)

− 𝑅௦
௅ ቃ

ଶ
ே
௜ୀଵ   

For 2500 replications, the MLE of 𝑅௦
௅ and 𝑅௦

஼  are computed for sample sizes of m =10, 15, 20, and 25. The 

parameter θ was assigned values of 0.5, 1.5, and 2.0. Table 1-6 provides ML and Bayes estimates of  𝑅௦
௅ and 𝑅௦

஼  for 

various sample sizes (m = 10, 15, 20, and 25) across different values of the parameter θ. The accompanying Table 7 

presents the corresponding credible intervals constructed for these estimates.  

     Table 1. Estimates of 𝑅௦
௅ when 𝜃 = 0.5 for Gamma prior in L(cons/k-n: F) system 

                           

    𝑅෠௦
௅   Bias  MSE [𝑅௦

௅∗]௅௜௡             Bias ER [𝑅௦
௅∗]ெ஼           Bias    ER 

(3, 10)  0.7224 10 0.7286 0.0062 0.0085 0.6974 -0.0250 0.0032 0.7102      -0.0122 0.00375 
   15 0.7277 0.0053 0.0061 0.7021 -0.0203 0.0029 0.7121 -0.0103 0.00321 
   20 0.7257 0.0033 0.0048 0.7123 -0.0101 0.0026 0.7145 -0.0079 0.00287 
   25 0.7268 0.0044 0.0035 0.7162 -0.0062 0.0023 0.7178 -0.0046 0.00245 

(4, 10)  0.5662 10 0.5882 0.0220 0.0106 0.5451 -0.0211 0.0041 0.5732 0.0070 0.00452 
   15 0.5827 0.0165 0.0075 0.5578 -0.0084 0.0031 0.5780 0.0118 0.00354 
   20 0.5769 0.0107 0.0051 0.5604 -0.0058 0.0028 0.5782 0.0120 0.00287 
   25 0.5754 0.0092 0.0042 0.5658 -0.0004 0.0021 0.5521 -0.0141 0.00371 

(7, 10)  0.3123 10 0.3254 0.0131 0.0063 0.2565 -0.0558 0.0045 0.2911 -0.0212 0.00201 
   15 0.3213 0.0090 0.0034 0.2851 -0.0272 0.0012 0.2927 -0.0196 0.00187 
   20 0.3178 0.0055 0.0025 0.3012 -0.0111 0.0010 0.2915 -0.0208 0.00145 
   25 0.3165 0.0042 0.0021 0.3005 -0.0118 0.0052 0.2912 -0.0211 0.00132 

(9, 10)  0.2062 10 0.2231 0.0169 0.0035 0.1789 -0.0273 0.0058 0.2132 0.0070 0.00123 
   15 0.2142 0.0080 0.0026 0.1825 -0.0237 0.0009 0.2013 -0.0049 0.00097 
   20 0.2117 0.0055 0.0015 0.1845 -0.0217 0.0005 0.2086 0.0024 0.00084 
   25 0.2132 0.0070 0.0012 0.1912 -0.0150 0.0004 0.2116 0.0054 0.00073 

(28) 

(29) 

(30) 

Bayes estimate MLE 

m (k, n)  𝑅௦
௅ 
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 Table 2. Estimates of 𝑅௦
௅ when 𝜃 = 1.5 for Gamma prior in L(cons/k-n: F) system 

 

Table 3. Estimates of 𝑅௦
௅ when 𝜃 = 2 for Gamma prior in L(cons/k-n: F) system 

Additionally, Table 8 discusses the Bayes estimates of MTTF. The Bayes estimates for 𝑅௦
௅ and 𝑅௦

஼   are obtained 

using Lindley's approximation and the MCMC method, with an informative Gamma (𝛼, 𝛽)prior distribution. 

Specifically, the prior distribution Gamma (𝛼, 𝛽) is set to Gamma (1,5). The MCMC Bayesian estimates are based 

                           

    𝑅෠௦
௅   Bias  MSE [𝑅௦

௅∗]௅௜௡             Bias ER [𝑅௦
௅∗]ெ஼           Bias    ER 

(3, 10)  0.5141 10 0.5291 0.0050 0.0125 0.5265 0.0124 0.0084 0.5271 0.0130 0.00861 
   15 0.5287 0.0046 0.0074 0.5245 0.0104 0.0060 0.5248 0.0107 0.00582 

   20 0.5273 0.0032 0.0062 0.5268 0.0124 0.0052 0.5266 0.0125 0.00503 
   25 0.5280 0.0039 0.0041 0.5275 0.0134 0.0031 0.5287 0.0146 0.00355 

(4, 10)  0.4928 10 0.5130 0.0202 0.0128 0.5088 0.0160 0.0041 0.5128 0.0200 0.00855 
   15 0.5024 0.0096 0.0076 0.5026 0.0098 0.0031 0.5074 0.0146 0.00621 
   20 0.5032 0.0104 0.0060 0.5012 0.0084 0.0028 0.5065 0.0137 0.00452 
   25 0.5002 0.0074 0.0038 0.5009 0.0081 0.0021 0.5121 0.0193 0.00326 

(7, 10)  0.2564 10 0.2654 0.0090 0.0028 0.2575 0.0011 0.0014 0.2589 0.0025 0.00198 
   15 0.2615 0.0051 0.0017 0.2610 0.0046 0.0011 0.2615 0.0051 0.00132 
   20 0.2605 0.0041 0.0012 0.2608 0.0044 0.0009 0.2610 0.0046 0.00102 
   25 0.2568 0.0004 0.0009 0.2559 -0.0005 0.0007 0.2565 0.0001 0.00084 

(9, 10)  0.1872 10 0.1965 0.0093 0.0016 0.1947 0.0075 0.0058 0.1975 0.0103 0.00145 
   15 0.1944 0.0072 0.0007 0.1925 0.0053 0.0009 0.1927 0.0055 0.00082 
   20 0.1938 0.0066 0.0006 0.1916 0.0044 0.0005 0.1920 0.0048 0.00053 
   25 0.1925 0.0053 0.0005 0.1902 0.0030 0.0004 0.1906 0.0034 0.00037 

                           

    𝑅෠௦
௅   Bias  MSE [𝑅௦

௅∗]௅௜௡             Bias ER [𝑅௦
௅∗]ெ஼           Bias    ER 

(3, 10)  0.4732 10 0.4936 0.0204 0.0123 0.4842 0.0110 0.0087 0.4879 0.0147 0.01096 
   15 0.4912 0.0180 0.0085 0.4816 0.0084 0.0065 0.4825 0.0093 0.00752 

   20 0.4865 0.0133 0.0061 0.4765 0.0033 0.0054 0.4772 0.0040 0.00568 
   25 0.4810 0.0078 0.0045 0.4772 0.0040 0.0012 0.4763 0.0031 0.00431 

(4, 10)  0.3719 10 0.3812 0.0093 0.0081 0.3847 0.0128 0.0045 0.3877 0.0158 0.00145 
   15 0.3735 0.0016 0.0054 0.3849 0.0130 0.0039 0.3851 0.0132 0.00136 
   20 0.3724 0.0005 0.0021 0.3863 0.0144 0.0036 0.3868 0.0149 0.00121 
   25 0.3720 0.0001 0.0014 0.3884 0.0165 0.0028 0.3880 0.0161 0.00092 

(7, 10)  0.2256 10 0.2346 0.0090 0.0023 0.2225 -0.0031 0.0014 0.2341 0.0085 0.00197 
   15 0.2338 0.0082 0.0017 0.2214 -0.0042 0.0011 0.2354 0.0098 0.00136 
   20 0.2329 0.0073 0.0012 0.2236 -0.0020 0.0009 0.2365 0.0109 0.00108 
   25 0.2314 0.0058 0.0009 0.2231 -0.0025 0.0007 0.2378 0.0122 0.00116 

(9, 10)  0.1523 10 0.1618 0.0095 0.0016 0.1517 -0.0006 0.0029 0.1621 0.0098 0.00156 
   15 0.1597 0.0074 0.0007 0.1526 0.0003 0.0016 0.1601 0.0078 0.00072 
   20 0.1574 0.0051 0.0006 0.1519 -0.0004 0.0012 0.1578 0.0055 0.00075 
   25 0.1550 0.0027 0.0002 0.1532 0.0009 0.0024 0.1563 0.0040 0.00059 

Bayes estimate MLE 

m (k, n)  𝑅௦
௅ 

Bayes estimate MLE 

m (k, n)  𝑅௦
௅ 
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on 10,000 sampling, namely, N = 10,000. In each case, the interval level for the credible intervals is 95%. To 

mitigate the influence of the initial distribution, we discarded the first 9000 iterations, commonly referred to as burn-

in. Using Gibbs sampling, we obtained Bayesian estimates along with credible intervals by employing 1,000 sample. 

Table 4. Estimates of 𝑅௦
஼  when 𝜃 = 0.5 for Gamma prior in C(cons/k-n: F) system 

 

Table 5. Estimates of 𝑅௦
஼  when 𝜃 = 1.5 for Gamma prior in C(cons/k-n: F) system 

                           

    𝑅෠௦
஼    Bias  MSE [𝑅௦

஼∗]௅௜௡             Bias ER [𝑅௦
஼∗]ெ஼           Bias    ER 

(3, 10)  0.8256 10 0.8125 -0.0131 0.0031 0.8115 -0.0141 0.0021 0.8262 0.0006 0.00329 
   15 0.8162 -0.0094 0.0023 0.8105 -0.0151 0.0017 0.8270 0.0014 0.00245 

   20 0.8245 -0.0011 0.0018 0.8232 -0.0024 0.0015 0.8259 0.0003 0.00193 
   25 0.8233 -0.0023 0.0015 0.8210 -0.0046 0.0012 0.8278 0.0022 0.00156 

(4, 10)  0.6521 10 0.6423 -0.0098 0.0019 0.6528 0.0007 0.0032 0.6535 0.0014 0.00089 
   15 0.6433 -0.0088 0.0006 0.6548 0.0027 0.0024 0.6559 0.0038 0.00062 
   20 0.6459 -0.0062 0.0005 0.6572 0.0051 0.0019 0.6583 0.0062 0.00054 
   25 0.6534 0.0013 0.0003 0.6581 0.0060 0.0015 0.6592 0.0071 0.00047 

(7, 10)  0.4025 10 0.4036 0.0011 0.0037 0.3958 -0.0067 0.0020 0.4042 0.0017 0.00043 
   15 0.4047 0.0022 0.0026 0.3974 -0.0051 0.0017 0.4065 0.0040 0.00033 
   20 0.4012 -0.0013 0.0018 0.3980 -0.0045 0.0013 0.4123 0.0098 0.00026 
   25 0.4005 -0.0020 0.0013 0.4021 -0.0004 0.0010 0.4132 0.0107 0.00022 

(9, 10)  0.2431 10 0.2321 -0.0110 0.0007 0.2319 -0.0112 0.0010 0.2435 0.0004 0.00253 
   15 0.2332 -0.0099 0.0005 0.2328 -0.0103 0.0012 0.2430 -0.0001 0.00216 
   20 0.2356 -0.0075 0.0004 0.2345 -0.0086 0.0004 0.2450 0.0019 0.00188 
   25 0.2415 -0.0016 0.0002 0.2410 -0.0021 0.0013 0.2448 0.0017 0.00208 

                           

    𝑅෠௦
஼    Bias  MSE [𝑅௦

஼∗]௅௜௡             Bias ER [𝑅௦
஼∗]ெ஼           Bias    ER 

(3, 10)  0.7254 10 0.7221 -0.0033 0.0039 0.7268 0.0014 0.0034 0.7271 0.0017 0.00375 
   15 0.7235 -0.0019 0.0025 0.7259 0.0005 0.0021 0.7266 0.0012 0.00261 

   20 0.7187 -0.0067 0.0014 0.7264 0.0010 0.0012 0.7268 0.0014 0.00192 
   25 0.7145 -0.0109 0.0009 0.7288 0.0034 0.0008 0.7289 0.0035 0.00223 

(4, 10)  0.5423 10 0.5438 0.0015 0.0023 0.5447 0.0024 0.0020 0.5450 0.0027 0.01096 
   15 0.5321 -0.0102 0.0018 0.5427 0.0004 0.0017 0.5429 0.0006 0.00699 
   20 0.5312 -0.0111 0.0014 0.5431 0.0008 0.0013 0.5440 0.0017 0.00541 
   25 0.5305 -0.0118 0.0011 0.5429 0.0006 0.0010 0.5445 0.0022 0.00432 

(7, 10)  0.2851 10 0.2811 -0.0040 0.0104 0.2809 -0.0042 0.0014 0.2856 0.0005 0.00304 
   15 0.2807 -0.0044 0.0078 0.2817 -0.0034 0.0013 0.2867 0.0016 0.00285 
   20 0.2745 -0.0106 0.0061 0.2754 -0.0097 0.0008 0.2874 0.0023 0.00197 
   25 0.2732 -0.0119 0.0036 0.2746 -0.0105 0.0006 0.2877 0.0026 0.00136 

(9, 10)  0.1879 10 0.1785 -0.0094 0.0016 0.1775 -0.0104 0.0008 0.1885 0.0006 0.00415 
   15 0.1774 -0.0105 0.0007 0.1765 -0.0114 0.0005 0.1891 0.0012 0.00374 
   20 0.1765 -0.0114 0.0006 0.1742 -0.0137 0.0004 0.1881 0.0002 0.00230 
   25 0.1816 -0.0063 0.0004 0.1810 -0.0069 0.0002 0.1895 0.0016 0.00078 

Bayes estimate MLE 

m (k, n)  𝑅௦
஼ 

Bayes estimate MLE 

m (k, n)  𝑅௦
஼ 
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Table 6. Estimates of 𝑅௦
஼  when 𝜃 = 2 for Gamma prior in C(cons/k-n: F) system 

 
By examining Tables 1- 6 we can observe a consistent pattern where the MSE, ERs, and biases of the estimates tend 

to decrease as the sample size increases in all the considered scenarios of L(cons/k-n: F) and C(cons/k-n: F) system. 

Also, it can be observed that with an increase in the value of the parameter θ, the estimates derived from both 

classical and Bayesian approaches exhibit a decreasing trend. Additionally, our observations reveal that in terms of 

ERs, the Bayes estimates obtained using Lindley's approximation generally yields comparatively better results than 

the MCMC method in both cases. In contrast, we find that the estimates obtained through the ML method are 

superior to the Bayes estimates based on Lindley's approximation in L(cons/k-n: F) system. However, when 

considering the C(cons/k-n: F) system, we observe that Lindley's approximation yields better results in terms of 

estimates. Nevertheless, there are certain points where the values are either similar or lower. This intriguing 

phenomenon is visually depicted in Figs. 1 to 5 and 7 to 9.  

                           

    𝑅෠௦
஼   Bias  MSE [𝑅௦

஼∗]௅௜௡             Bias ER [𝑅௦
஼∗]ெ஼           Bias    ER 

(3, 10)  0.6458 10 0.6427 -0.0031 0.0087 0.6321 -0.0137 0.0034 0.6465 0.0007 0.00041 

   15 0.6420 -0.0038 0.0060 0.6348 -0.0110 0.0028 0.6460 0.0002 0.00032 

   20 0.6358 -0.0100 0.0047 0.6351 -0.0107 0.0025 0.6471 0.0013 0.00287 

   25 0.6345 -0.0113 0.0037 0.6387 -0.0071 0.0023 0.6476 0.0018 0.00249 

(4, 10)  0.4825 10 0.4820 -0.0005 0.0164 0.4729 -0.0096 0.0040 0.4835 0.0010 0.00415 

   15 0.4812 -0.0013 0.0123 0.4716 -0.0109 0.0029 0.4841 0.0016 0.00367 

   20 0.4758 -0.0067 0.0088 0.4810 -0.0015 0.0025 0.4851 0.0026 0.00295 

   25 0.4769 -0.0056 0.0080 0.4821 -0.0004 0.0023 0.4859 0.0034 0.00203 

(7, 10)  0.2165 10 0.2143 -0.0022 0.0061 0.2158 -0.0007 0.0049 0.2187 0.0022 0.00168 

   15 0.2154 -0.0011 0.0038 0.2161 -0.0004 0.0019 0.2212 0.0047 0.00145 

   20 0.2137 -0.0028 0.0027 0.2078 -0.0087 0.0010 0.2215 0.0050 0.00131 

   25 0.2162 -0.0003 0.0021 0.2089 -0.0076 0.0009 0.2231 0.0066 0.00119 

(9, 10)  0.1639 10 0.1632 -0.0007 0.0039 0.1625 -0.0014 0.0053 0.1665 0.0026 0.00116 

   15 0.1575 -0.0064 0.0022 0.1609 -0.0030 0.0009 0.1671 0.0032 0.00099 

   20 0.1564 -0.0075 0.0017 0.1559 -0.0080 0.0006 0.1660 0.0021 0.00087 

   25 0.1592 -0.0047 0.0013 0.1588 -0.0051 0.0005 0.1675 0.0036 0.00075 

Bayes estimate MLE 

m (k, n)  𝑅௦
஼ 
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Table 7. Estimates of Credible intervals (CRIs) for 𝑅௦
௅ and 𝑅௦

஼  
(𝑘, 𝑛) 𝜃 𝑚 L (cons/k-n: F) C(cons/k-n: F) 

  10 (0.2945,0.3650) (0.2361,0.3241) 
 0.5 15 (0.2531,0.3364) (0.2105,0.3112) 

  20 (0.2351,0.3125) (0.2026,0.3071) 
  25 (0.2174,0.3046) (0.2012,0.3035) 

(3, 10)  10 (0.3066,0.3675) (0.2851,0.3544) 
 1.5 15 (0.2968,0.3459) (0.2729,0.3251) 
  20 (0.2645,0.3325) (0.2538,0.3168) 
  25 (0.2492,0.3057) (0.2415,0.3041) 
  10 (0.3265,0.3817) (0.3184,0.3742) 
 2.0 15 (0.3169,0.3772) (0.3028,0.3661) 
  20 (0.2991,0.3657) (0.2936,0.3604) 
  25 (0.2761,0.3550) (0.2632,0.3518) 
  10 (0.2133,0.2962) (0.1965,0.2877) 
 0.5 15 (0.2054,0.2810) (0.1844,0.2763) 
  20 (0.1884,0.2635) (0.1756,0.2542) 
  25 (0.1625,0.2485) (0.1526,0.2321) 
  10 (0.2832,0.3247) (0.2724,0.3136) 
(4, 10) 1.5 15 (0.2745,0.3084) (0.2710,0.3021) 
  20 (0.2658,0.2978) (0.2527,0.2963) 
  25 (0.2571,0.2866) (0.2463,0.2818) 
  10 (0.3049,0.3129) (0.2947,0.3028) 
 2.0 15 (0.2851,0.3023) (0.2793,0.2980) 
  20 (0.2337,0.2858) (0.2205,0.2775) 
  25 (0.2267,0.2785) (0.2245,0.2673) 
  10 (0.1956,0.2146) (0.1875,0.2033) 
 0.5 15 (0.1885,0.2024) (0.1765,0.1990) 
  20 (0.1773,0.2007) (0.1662,0.1986) 
(7, 10)  25 (0.1674,0.1965) (0.1557,0.1874) 
  10 (0.2257,0.2541) (0.2157,0.2441) 
 1.5 15 (0.2021,0.2461) (0.2036,0.2380) 
  20 (0.1968,0.2335) (0.1882,0.2242) 
  25 (0.1979,0.2310) (0.1812,0.2305) 
  10 (0.2129,0.2446) (0.2020,0.2418) 
 2.0 15 (0.2031,0.2416) (0.1977,0.2383) 
  20 (0.1975,0.2339) (0.1843,0.2240) 
  10 (0.1635,0.1974) (0.1563,0.1879) 
 0.5 15 (0.1542,0.1865) (0.1497,0.1760) 
  20 (0.1478,0.1810) (0.1365,0.1740) 
  25 (0.1336,0.1766) (0.1321,0.1712) 
(9, 10)  10 (0.1865,0.2033) (0.1782,0.1947) 
 1.5 15 (0.1765,0.1936) (0.1645,0.1821) 
  20 (0.1652,0.1866) (0.1552,0.1813) 
  25 (0.1449,0.1685) (0.1338,0.1576) 
  10 (0.2025,0.2267) (0.2014,0.2170) 
 2.0 15 (0.1997,0.2136) (0.1880,0.2026) 
  20 (0.1836,0.2019) (0.1779,0.2008) 
  25 (0.1747,0.1958) (0.1665,0.1864) 
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Table 8. Bayesian Estimates of mean time to failure (MTTF) 

(𝑘, 𝑛) 𝜃 𝑚 𝜇௅
∗  𝜇஼

∗  

  10 10215 11562 

 0.5 15 989 996 

  20 856 879 

  25 680 745 
(3, 10)  10 9026 10025 

 1.5 15 2341 3235 

  20 1128 1238 

  25 909 865 

  10 4518 5012 

 2.0 15 1326 1002 

  20 845 884 

  25 387 298 
  10 2712 3035 

 0.5 15 1002 1147 

  20 742 663 

(7, 10)  25 245 269 

  10 974 1010 

 1.5 15 810 878 

  20 315 341 

  25 224 316 
  10 696 702 

 2.0 15 340 510 

  20 238 360 

  25 187 198 
  10 552 789 

 0.5 15 502 663 

(9, 10)  20 445 386 

  25 299 348 
  10 325 345 

 1.5 15 274 256 

  20 225 204 

  25 187 196 
  10 268 314 

 2.0 15 156 165 

  20 148 152 

  25 139 141 



 

International Conference on Mathematical 
Models, Statistics and Applications  

20-21 October 2023 

 

37 
 

 

  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Fig. 3: Estimates of 𝑅௦
௅ when 

            𝜃 = 1.5 for L(cons/3-10) system 

Fig. 1: Estimates of 𝑅௦
௅ when  𝜃 =0.5 

for L(cons/3-10) system 
Fig. 2: MSEs and ERs of estimates of 𝑅௦

௅ 
when  𝜃 =0.5 for L(cons/3-10) system 

 

Fig. 4: MSEs and ERs of estimates of  
𝑅௦

௅ when  𝜃 =1.5 for L(cons/3-10) 
system 

 

Fig. 6: Bayes estimates of MTTF at various 
values of 𝜃 for L(cons/3-10) system 

Fig. 5: Estimates of 𝑅௦
஼ when 𝜃 = 0.5 for 

C(cons/3-10) system 
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According to the data in Table 7, the credible intervals tend to decrease as the sample size increases when using a 

Gamma prior distribution for different values of θ. This trend holds true for both L(cons/k-n: F) and C(cons/k-n: F) 

systems. Moreover, when comparing the CRIs obtained from L(cons/k-n: F) and C(cons/k-n: F), it is observed that 

the CRIs from L(cons/k-n: F) are generally shorter in length than those from C(cons/k-n: F). This suggests that 

Fig. 8: Estimates of 𝑅௦
஼ when 𝜃 = 1.5 for 

C(cons/3-10) system 
Fig. 7: MSEs and ERs of estimates of  

𝑅௦
஼ when  𝜃 =0.5 for C(cons/3-10) 

system 

Fig. 9: MSEs and ERs of estimates of  
𝑅௦

஼ when  𝜃 =1.5 for C(cons/3-
10) system 

Fig. 10: Bayes estimates of MTTF at various 
values of 𝜃 for C(cons/3-10) system 
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L(cons/k-n: F) provides more precise estimates or predictions with a smaller range of plausible values for the 

parameter of interest.  

        Table 8 presents the Bayes estimates of MTTF, and from the tabulated values, it is evident that the estimates 𝜇௅
∗  

and 𝜇஼
∗  decrease with increasing sample size across various values of θ. Additionally, it is observed that as the value 

of θ decreases, the estimates 𝜇௅
∗  and 𝜇஼

∗   tend to increase. In summary, the data suggests that larger sample sizes 

result in lower estimates of 𝜇௅
∗  and 𝜇஼

∗ , while smaller values of θ correspond to higher estimates of 𝜇௅
∗ and 𝜇஼

∗ .  These 

findings are visually presented in Figs. 6 and 10.  

 VI.    Conclusion  

In this research paper, we investigated the estimation of consecutive linear/circular k-out-of-n: F system reliability 

using classical and Bayesian approaches, considering the Weighted Exponential-Lindley distribution as the lifetime 

distribution. In the classical estimation framework, we employed the ML method to obtain the ML estimators for the 

L(cons/k-n: F) and C(cons/k-n: F) system reliabilities. For Bayesian estimation, we utilized Lindley's approximation 

along with MCMC methods. We compared the ML and Bayesian estimates of system reliability in terms of biases 

and ERs. Additionally, we constructed Bayesian credible intervals for both L(cons/k-n: F) and C(cons/k-n: F) 

systems, providing a measure of uncertainty around the estimated reliabilities. Furthermore, we derived the Bayesian 

estimate of MTTF for all the considered cases of L(cons/k-n: F) and C(cons/k-n: F) systems. To assess the 

effectiveness of the proposed estimation methods, we conducted a Monte Carlo simulation study. It is observed that 

in terms of ERs, the Bayes estimates based on Lindley’s approximation demonstrates better performance than the 

ML estimates and Bayes estimates based on MCMC method in all considered cases of both systems. However, The 

estimates based on ML method performs better in compare to Bayes estimates based on Lindley’s approximation 

and MCMC method in all cases of L (cons/k-n: F) system. In contrast, Lindley's approximation yields better results 

in terms of estimates compare to rest of the estimation methods in most of the cases of C(cons/k-n: F) system. 

Moreover, we observed that the credible intervals for the C(cons/k-n: F) systems were consistently wider compared 

to those for the L(cons/k-n: F) system.  
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