
 Deepika Singh, 2022, 10:2

ISSN (Online): 2348-4098

ISSN (Print): 2395-4752

© 2022 Deepika Singh, This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly credited.

International Journal of Science,
Engineering and Technology

An Open Access Journal

A Intelligent VM Health Scoring Using Nagios Logs

and AI Models
Deepika Singh, Raghavendra Joshi, Nandhini Prabhu, Ravi Kiran

Osmania University, Hyderabad, India

I. INTRODUCTION

Evolution of VM Monitoring in Enterprise IT

As virtualization technologies have become

foundational in modern enterprise infrastructure,

monitoring virtual machines (VMs) has transitioned

from a reactive to a proactive discipline. Legacy

monitoring tools like Nagios have long provided

critical alerting capabilities based on defined

thresholds. However, with increased VM density,

multi-tenant environments, and dynamic scaling,

these static methods are no longer sufficient.

Administrators require a more intelligent, context-

aware view of system health to ensure availability,

performance, and service-level adherence.

Challenges of Manual and Static Threshold

Monitoring

Threshold-based monitoring suffers from inherent

limitations—false positives, lack of contextual

understanding, and difficulty in adapting to

workload variability. A single spike in CPU might be

benign in one VM but critical in another. Static alert

definitions also fail to capture cumulative health

degradation or intermittent anomalies. These

shortcomings often lead to alert fatigue, missed

incidents, and suboptimal root cause analysis.

There’s a pressing need for adaptive mechanisms

that understand infrastructure behavior patterns in

real time.

Why AI-Augmented Health Scoring Matters

AI-enhanced systems offer an opportunity to model

VM health using patterns learned from historical

data. By applying machine learning (ML) to telemetry

from Nagios logs, systems can generate dynamic

health scores that reflect true operational risk. These

scores act as early warning systems, highlighting

performance drift or degradation before critical

failures occur. Beyond alerting, health scores can be

integrated with ITSM platforms, resource scaling

engines, or auto-remediation scripts to drive

intelligent operations (AIOps).

Objectives and Scope of the Review

This review focuses on combining log-based

monitoring from Nagios with machine learning

models to build a real-time, intelligent VM health

scoring framework. It covers: telemetry collection,

data preprocessing, feature engineering, ML model

selection, scoring pipelines, visualization

dashboards, and integration with incident response

workflows. The article also explores practical use

cases and discusses challenges such as data quality,

explainability, and system scalability.

Abstract- This study investigates the role of symbolism in driving cultural transformations, focusing on the interplay

between traditional and modern symbols, and the significant influences of media, technology, art, literature, and

economic factors. Through a comprehensive methodological approach that includes literature review, case studies,

and symbolic analysis, the research uncovers the dynamic processes through which symbols evolve and impact

societal norms, identities, and collective consciousness. The findings demonstrate that symbols act as catalysts for

societal change, facilitating shifts in cultural narratives and social attitudes. This paper provides valuable insights

into the psychological impacts of symbolic transformations and underscores the importance of symbols in

understanding cultural evolution and societal development.

Keywords: Symbolic Transformation, Cultural Evolution, Media Influence, Psychological Impact, Traditional and

Modern Symbols.

 Deepika Singh, International Journal of Science, Engineering and Technology,

 202, 10:2

2

II. OVERVIEW OF NAGIOS AND VM

TELEMETRY

Architecture and Plugins of Nagios Monitoring

Nagios employs a modular architecture centered

around a core daemon (nagios) that handles

scheduling, event processing, and alerting. The

extensibility of Nagios comes primarily from its

plugin framework, where custom scripts and binaries

can be used to monitor specific services, system

metrics, and application behavior. For virtual

machines, plugins such as check_cpu, check_mem,

and check_disk are commonly employed to assess

host health. These plugins can be executed either

locally or remotely through NRPE (Nagios Remote

Plugin Executor) or SSH, enabling monitoring across

distributed infrastructures. The Nagios configuration

model, which includes host and service definitions,

contact groups, and escalation policies, allows for

fine-grained control over alerting and monitoring

policies. In virtualized environments, Nagios plugins

are also tailored to interact with hypervisors,

containers, and cloud APIs to extract contextual

health data. This plugin-driven architecture ensures

that Nagios remains relevant in complex, hybrid

infrastructures.

Types of Logs and Events Generated

Nagios generates several log files, the most critical

of which include nagios.log, status.dat, and

performance data logs. These files contain a

chronological record of all host and service checks,

state transitions, notifications, acknowledgments,

and passive checks. Each log entry typically includes

a timestamp, host/service name, status (e.g., OK,

WARNING, CRITICAL), and a plugin output message.

These logs serve as an invaluable source of ground

truth when analyzing VM behavior and system

health over time. In clustered Nagios deployments,

logs are synchronized across nodes to maintain

consistency. For long-term storage and analysis, logs

can be forwarded to external systems such as a

centralized ELK (Elasticsearch, Logstash, Kibana)

stack or Splunk. Importantly, these logs are raw and

unstructured, requiring significant preprocessing

before being used as features in machine learning

pipelines. Nonetheless, they provide essential

visibility into resource trends, anomaly occurrences,

and historical baselines.

Typical VM Health Metrics Tracked (CPU, I/O,

Memory, Network)

Virtual machine health is typically evaluated using a

standard set of telemetry metrics: CPU utilization,

memory consumption, disk I/O, and network

throughput. Nagios, through its plugins, periodically

collects and evaluates these metrics to determine the

operational state of a VM. CPU metrics help identify

overutilization or idle wastage, while memory data

captures swap usage, caching behavior, and memory

leaks. Disk I/O metrics reveal latency, saturation, and

read/write errors, which are often precursors to

performance degradation. Network metrics,

including packet loss, interface errors, and

bandwidth usage, can indicate bottlenecks or service

disruptions.

 While each metric is individually useful, true health

scoring requires contextual correlation—for

example, high CPU usage might be normal during

backups, but problematic during idle hours.

Moreover, anomalies in these metrics can be

transient or persistent, and distinguishing between

the two is key to minimizing false alerts. Health

scoring models must account for these complexities

to produce reliable outcomes.

Limitations of Rule-Based Alerting and False

Positives

Traditional Nagios alerting relies on static threshold

configurations, such as CPU usage > 80% for more

than five minutes. While straightforward to

implement, this approach is inherently brittle in

dynamic environments. Static rules fail to

accommodate seasonal patterns, workload spikes, or

maintenance windows, leading to frequent false

positives. Additionally, they cannot differentiate

between transient issues and sustained degradation.

As infrastructure complexity grows—with multi-

tenant VMs, containers, and variable workloads—

rule tuning becomes a manual, error-prone process.

These limitations result in "alert fatigue," where

administrators either ignore alerts or become

overwhelmed, potentially missing critical failures.

 Deepika Singh, International Journal of Science, Engineering and Technology,

 202, 10:2

3

Moreover, rule-based alerts operate in isolation and

cannot perform pattern recognition across time or

multiple metrics. AI-enhanced health scoring

addresses these gaps by learning from historical

patterns and contextual data, significantly reducing

noise while improving precision and recall in fault

detection.

III. FROM LOGS TO FEATURES: DATA

PREPROCESSING PIPELINE

Parsing Nagios Logs (Host Logs, Service Logs,

Alert Histories)

Parsing Nagios logs is the first and most critical step

in transforming raw monitoring data into actionable

inputs for machine learning models. Nagios logs are

plain-text and semi-structured, which poses

challenges for automated parsing. Scripts must

extract relevant fields such as timestamps,

hostnames, service names, state transitions, plugin

output, and duration. Host logs document uptime

and availability, while service logs focus on

application-level metrics like response times or disk

usage. Alert history, on the other hand, captures the

lifecycle of an event when it occurred, how it was

acknowledged, and when it was resolved. Log

parsing tools like Logstash, Fluentd, or custom

Python scripts using regular expressions or log

parsing libraries are typically used to extract

structured records. Each parsed event becomes a

candidate feature for training models, enabling

temporal analysis of fault progression and systemic

correlation of events across services and hosts.

Event Correlation and Timeline Reconstruction

Once logs are parsed, the next step involves

reconstructing sequences of events that occurred

within the same VM or service context. This

correlation is essential to understanding causality

and identifying patterns that lead to failures. For

instance, high disk I/O followed by memory

saturation and then a service crash can indicate a

workload spike or memory leak. Timeline

reconstruction involves aligning events on a

common clock, usually based on synchronized

timestamps (e.g., UTC). It also includes linking

dependent services (e.g., Apache and MySQL) and

categorizing alerts by severity, frequency, and

recurrence. Event correlation tools such as ELK with

Graph plugin, or even purpose-built correlation

engines, are used to automate these workflows. The

resulting correlated sequences form the basis for

temporal features used in models such as LSTMs or

time-based classifiers.

Feature Engineering Techniques (Rolling

Averages, Histograms, Temporal Flags)

Raw telemetry is rarely suitable for direct use in

machine learning. Feature engineering techniques

such as rolling averages smooth out noise and

capture sustained trends in VM metrics. For example,

a rolling average of CPU over 10-minute intervals can

highlight consistent overutilization. Histograms are

used to capture distributional properties of metrics,

such as variance in memory usage or spike

frequency. Temporal flags binary or categorical

variables indicating time of day, day of the week, or

holiday periods help models account for periodicity

in workloads. Additionally, features such as "number

of alerts per hour" or "duration in critical state" give

a quantified sense of alert density and system

distress. These engineered features make AI models

more robust and capable of generalizing across VMs

with different usage profiles.

Labeling Health States for Supervised Learning

To train supervised models, data must be labeled

with known health states—e.g., "healthy,"

"degraded," or "failed." Labeling can be done

manually by analyzing postmortem reports, system

tickets, or change logs, or automatically using

heuristics (e.g., a critical alert followed by downtime

equals failure). One challenge is that failures are

relatively rare, leading to imbalanced datasets.

Techniques like SMOTE (Synthetic Minority Over-

sampling Technique) or class-weighted learning are

used to address this. Labeling is also complicated by

partial failures (e.g., degraded performance without

a complete crash) and false positives in Nagios alerts.

Thus, labels must be validated using cross-functional

inputs from monitoring teams, application owners,

and infrastructure logs. Accurate labels are the

foundation of trustworthy machine learning models.

 Deepika Singh, International Journal of Science, Engineering and Technology,

 202, 10:2

4

IV. AI AND ML MODELS FOR HEALTH

SCORING

Regression-Based Scoring Models (e.g., Random

Forest Regression)

Regression models are well-suited for computing a

continuous health score rather than simple

classifications. Random Forest Regression, for

example, aggregates multiple decision trees to

predict a health index based on input features like

CPU load, memory use, and alert density. This

approach captures non-linear interactions and

handles missing data effectively. Other models like

Gradient Boosting Regression and Support Vector

Regression can also be used, depending on data

characteristics. Regression models output a score

typically between 0 and 100, representing system

health, where 100 is fully healthy. These scores are

intuitive for dashboards and can trigger alerts based

on dynamic thresholds. Model interpretability tools

like SHAP or feature importance plots help explain

how different metrics influence the score, aiding

operational trust.

Anomaly Detection Models (Isolation Forest,

Autoencoders)

In scenarios where labeled failure data is limited or

absent, unsupervised anomaly detection models are

invaluable. Isolation Forests detect anomalies by

randomly partitioning data and identifying instances

that are isolated with few splits. Autoencoders,

neural networks trained to reconstruct their input,

flag anomalies based on reconstruction error. These

models are ideal for identifying unusual behavior in

Nagios logs, such as rare event combinations or

unseen metric spikes. Anomaly scores from these

models can be mapped to health scores or directly

used to trigger alerts. They are particularly effective

in capturing silent failures or gradual degradation

that static rules often miss. When integrated into

real-time pipelines, these models help detect novel

threats in dynamic VM environments.

Ensemble Models and Voting Systems

Combining multiple models through ensemble

learning often yields better performance and

resilience. For example, a weighted average of a

regression model and an anomaly detector can

provide a more nuanced score—balancing known

issues with pattern deviation. Voting classifiers or

score aggregators allow incorporation of different

perspectives (e.g., short-term vs long-term metrics).

This reduces the risk of overfitting and ensures

robust behavior across diverse workloads.

Ensembles are especially useful in hybrid VM setups

where Linux, Windows, and containerized systems

may behave differently. Moreover, ensemble outputs

can be tuned using business rules for example,

elevating scores during patient admission hours in

healthcare systems.

Explainability in AI-Driven Scoring (LIME, SHAP)

Explainability is crucial for operational trust,

especially in regulated industries. LIME (Local

Interpretable Model-agnostic Explanations) and

SHAP (SHapley Additive exPlanations) provide

interpretable insights into why a model produced a

certain score. For example, SHAP can show that high

memory usage and repeated disk alerts were primary

contributors to a low health score. These tools help

SREs and system admins validate model decisions

and adjust configurations accordingly. In enterprise

environments, explainability also aids in compliance

with standards like ISO/IEC 27001 or HIPAA, which

require traceability of automated decisions. When

visualized in dashboards, explanation metrics

become educational feedback loops that enhance

human-AI collaboration in system monitoring.

V. REAL-TIME HEALTH SCORE PIPELINES

Stream Processing for Live Metric Ingestion

To generate health scores in real-time, it's essential

to build a data ingestion pipeline capable of

handling continuous streams of VM metrics and

Nagios log entries. Tools like Fluentd, Logstash, or

Apache Kafka are commonly used to collect and

route logs from multiple sources. These systems

allow structured data from Nagios (like check results

or state transitions) to be streamed directly into a

processing engine like Apache Spark or Flink. Stream

processing frameworks can apply transformations,

parse metrics, and compute intermediate statistics

such as moving averages or alert frequencies on the

fly. This enables near-instantaneous feedback on a

VM’s operational state. Integration with monitoring

 Deepika Singh, International Journal of Science, Engineering and Technology,

 202, 10:2

5

agents ensures that logs from /var/log, status.dat,

and plugin outputs are captured promptly.

Ultimately, this streaming infrastructure feeds real-

time data into the AI models trained earlier, allowing

them to continuously produce and update VM

health scores, with latency typically measured in

seconds to minutes.

Inference Engines and Score Output

Once the pre-trained models are in place, a

dedicated inference engine is used to apply them to

incoming data. This engine can be a lightweight

Python microservice running Flask or FastAPI,

deployed either on centralized servers or directly on

VM clusters. As new telemetry arrives, the engine

loads the relevant model (regression, anomaly

detector, etc.) and computes a health score, which is

then emitted via REST API or pushed into a metrics

database like Prometheus or InfluxDB. These scores

can be aggregated or visualized on Grafana

dashboards, color-coded by severity. By assigning

each VM a dynamic, real-time score, system

operators gain a continuous view of system health

without being flooded by raw alerts. Moreover,

thresholds can be set to trigger proactive

interventions—like scaling a cluster, restarting a

process, or flagging a ticket. This approach shifts

monitoring from reactive alerts to intelligent,

predictive analytics.

Feedback Loops for Model Refinement

The effectiveness of AI-driven health scoring

improves over time when feedback loops are

implemented. These loops capture operator

responses to alerts, postmortem root causes, and

system behaviors that occurred after score dips. For

instance, if a VM scored “critical” but remained

stable, this instance becomes a valuable

counterexample for model retraining. Feedback is

collected via helpdesk ticket closures, incident

comments, or structured admin annotations in

dashboards. This feedback can be stored in a

metadata layer associated with telemetry records. In

weekly or monthly retraining cycles, this enriched

dataset helps improve model precision, reduce false

positives, and align scoring closer to real-world

behavior. Incorporating feedback also makes the

scoring system adaptive to infrastructure changes

such as new services, updated plugins, or workload

migrations without needing constant manual

intervention.

VI. INTEGRATION WITH OPERATIONS

AND DECISION SYSTEMS

Alert Thresholding Based on Score Dynamics

In contrast to binary thresholds used in traditional

monitoring, AI-based health scoring supports

dynamic thresholding. This means alerts can be

triggered not only when scores fall below a fixed

value but also based on the rate of decline or

deviation from historical baselines. For example, a

20-point drop in score over an hour may warrant

investigation even if the final score remains above

60. Dynamic thresholding reduces alert fatigue and

ensures alerts are meaningful in context.

Administrators can configure policies such as “alert

only if the score drops by 30% within 15 minutes” or

“escalate if the score remains below 50 for more than

10 minutes.” These conditions are highly

customizable and can be aligned with SLAs or SLOs

for critical systems. This approach enables more

nuanced alerting strategies and better prioritization

of incident response in operational workflows.

Dashboard and Visualization Interfaces

Health scores are most effective when visualized

intuitively. Dashboards built on platforms like

Grafana, Kibana, or Splunk offer real-time heatmaps,

historical trends, and correlation graphs. These

visualizations enable system administrators to

quickly pinpoint distressed VMs, identify clusters

with recurring problems, and drill into component-

level issues. For example, a Grafana dashboard can

display a grid of VMs color-coded by score, along

with line graphs of score evolution over time and

metrics contributing to score drops. Some

dashboards integrate with LIME or SHAP

visualizations to show “why” a score changed.

Admins can interactively adjust thresholds or overlay

annotations (like planned maintenance) for added

context. By combining raw metrics with AI-derived

scores and their explanations, these dashboards

serve as a powerful tool for both real-time

monitoring and retrospective analysis.

 Deepika Singh, International Journal of Science, Engineering and Technology,

 202, 10:2

6

Integration with Incident Management Platforms

To close the loop between detection and resolution,

health scoring systems must integrate with ITSM

platforms like ServiceNow, Jira Service Management,

or PagerDuty. When scores cross alert thresholds or

exhibit significant drops, automated tickets can be

generated with contextual information such as the

score value, top contributing metrics, and suggested

remediations.

Using webhooks or APIs, these systems ensure that

predictive alerts reach the right teams with minimal

manual effort. Integration with CMDBs helps

correlate scores with asset metadata such as VM role,

owner, or business criticality—so incidents can be

prioritized intelligently. Moreover, updates to the

ticket (like resolution status or comments) can be fed

back into the scoring model for training. This bi-

directional flow enables a self-improving,

operationally embedded AI monitoring ecosystem.

VII. CASE STUDIES AND REAL-WORLD

DEPLOYMENTS

Academic Hospital Using Nagios and

Autoencoders

An academic hospital IT department deployed

Nagios to monitor approximately 500 VMs

supporting critical applications such as PACS, EHR,

and billing systems. They augmented their Nagios

setup with Autoencoder-based anomaly detection,

feeding it parsed logs and VM metrics like CPU,

memory, and disk I/O. By training Autoencoders on

months of “healthy” data, the team established

baseline behaviors for each VM type.

When reconstruction errors exceeded predefined

thresholds, early alerts were generated. Over six

months, the hospital saw a 35% reduction in

unplanned downtime and nearly eliminated false-

positive alerts for transient spikes. Integration with a

Grafana dashboard provided real-time visibility into

score fluctuations. Medical IT teams appreciated the

model’s ability to catch performance degradation

before service interruptions, allowing for proactive

scaling or failover.

Telecom Cloud Provider with Regression-Based

Scores

A telecom cloud provider managing over 2000 Linux

VMs across multiple regions used Random Forest

regression to assign health scores to VMs hosting

VoIP, OSS/BSS, and streaming services. Nagios was

already used for basic monitoring, but alerts were

too noisy and missed context. The regression model

incorporated 20+ engineered features—such as alert

density, resource utilization trends, and historical

uptime—to generate scores from 0 to 100 every 5

minutes. These scores were pushed to Prometheus

and visualized in a custom Grafana dashboard. The

system allowed SREs to detect gradual degradation

in underutilized nodes and automate rolling restarts

or workload balancing. The health scores also helped

triage incidents, reducing mean time to resolution

(MTTR) by 40%. Over time, the model was tuned to

prioritize high-traffic or customer-facing nodes,

adding value to their NOC operations.

Government Data Center with Explainable AI

Models

A government-run data center adopted a SHAP-

explained Gradient Boosting model to score VMs

supporting citizen services and backend systems.

Given the regulatory environment, explainability was

crucial. Each health score was accompanied by a

SHAP-based breakdown showing which features—

e.g., disk errors, swap usage, alert density—

contributed to risk. These were embedded in

ServiceNow incident tickets to justify preemptive

interventions. The team also used LIME for real-time

score explanations during live war room meetings.

The approach improved cross-team communication

and confidence in AI-driven decisions. The model

was retrained quarterly with labeled ticket data and

system feedback. This explainable AI system enabled

the center to remain compliant with government IT

mandates while improving uptime and response

agility.

VIII. CHALLENGES AND RISKS

Data Quality and Noise in Nagios Logs

One of the most critical challenges in building

intelligent health scoring models using Nagios data

is poor data quality. Nagios logs, while detailed, are

 Deepika Singh, International Journal of Science, Engineering and Technology,

 202, 10:2

7

often inconsistent in formatting across custom

plugins or legacy implementations. Timestamp gaps,

duplicate events, or missing severity labels can

complicate parsing and make downstream feature

extraction error-prone. Moreover, Nagios doesn't

normalize plugin outputs—some may emit

structured text, while others produce free-form error

messages. This variability injects noise that can

mislead AI models, resulting in poor generalization

or false anomaly detection. Additionally, transient

metrics such as CPU spikes during backups—are

often misinterpreted as genuine issues unless

temporal smoothing or contextual filtering is

applied. Addressing this requires robust log

sanitization pipelines, intelligent outlier filtering, and

well-curated plugin configurations. Without this

preprocessing hygiene, AI predictions may be

skewed or outright incorrect, undermining trust in

the health score system.

False Positives and Alert Fatigue in AI Scores

Even with machine learning, false positives remain a

major issue. Overly sensitive models may flag routine

performance fluctuations as health risks, flooding

dashboards with red alerts and undermining user

confidence. This problem is especially acute in

healthcare or financial sectors where system

volatility is natural—like during nightly data syncs or

end-of-month processing. If AI-driven health scores

consistently trigger alerts during these known

patterns, admins begin to ignore them,

reintroducing the same fatigue associated with

traditional rule-based systems. Balancing sensitivity

with specificity is critical. Techniques like threshold

learning, alert suppression during maintenance

windows, and post-processing with temporal filters

can mitigate this. Incorporating human-in-the-loop

feedback, where operators label false alerts, helps

refine future predictions. Ultimately, AI must

augment—not replace—operator intuition, and

scoring models should be transparent and adaptable

to operational realities.

Model Drift and Infrastructure Evolution

AI models degrade over time—a phenomenon

known as model drift. As underlying infrastructure

changes (e.g., new VM templates, kernel versions,

workload shifts), the statistical patterns captured

during model training may no longer hold. For

example, introducing a new backup agent might

increase CPU usage during specific hours,

misleading a static model into interpreting it as a

fault. Similarly, replacing hardware or migrating

services to containers can invalidate existing

telemetry patterns. Model drift leads to inaccurate

scoring and increased false negatives or positives.

Addressing this requires periodic retraining using

fresh data, incorporating change logs from CMDBs,

and maintaining a robust monitoring loop to detect

scoring anomalies. Automation can help identify

when models deviate significantly from expected

prediction accuracy, triggering retraining workflows.

Failing to manage drift risks eroding the credibility

of the health scoring platform and increasing

operational risk.

IX. FUTURE TRENDS

Transfer Learning Across Similar VM Types

As organizations grow and diversify their

infrastructure, retraining models for each VM or

cluster becomes resource-intensive. Transfer

learning offers a solution by allowing pre-trained

models from one environment (e.g., Apache web

servers) to be adapted to similar VMs (e.g., NGINX

servers). This involves freezing base layers of the

model and fine-tuning only a subset using limited

labeled data from the target system. Transfer

learning reduces training time, improves

convergence, and allows rapid onboarding of new

applications or regions. For instance, a regression

model trained on Nagios data from Europe-based

web servers can be adjusted for US-based servers

without needing months of logs. This approach is

especially useful in multi-tenant cloud environments

where templates are cloned across clients. By

reducing dependency on local training data, transfer

learning accelerates model deployment and health

scoring scalability.

Federated Learning for Privacy-Conscious

Environments

In sectors like healthcare and finance, raw telemetry

and logs often contain sensitive metadata, making

centralized model training a compliance risk.

Federated learning solves this by allowing each site

 Deepika Singh, International Journal of Science, Engineering and Technology,

 202, 10:2

8

or data center to train models locally and share only

anonymized model updates (gradients or weights)

with a central server. The central model aggregates

these updates and redistributes the refined model to

all participants. This decentralized training preserves

data privacy while enabling collaborative

intelligence. Hospitals across a region, for example,

could improve VM health prediction accuracy

without sharing sensitive logs. Implementing

federated learning requires careful synchronization,

differential privacy mechanisms, and robust version

control. As adoption grows, this approach will

become critical for large enterprises seeking to

harness AI without violating data sovereignty or

exposing operational telemetry.

Multimodal Models Combining Logs, Metrics,

and Topology

Most current health scoring models rely solely on

numerical metrics or log sequences. However, richer

insights emerge when multiple data modalities are

fused—logs, structured metrics, topology maps, and

even change tickets. Multimodal models can

understand not just “what” is failing, but “why,”

“where,” and “what’s impacted.” For example,

integrating service dependency graphs from CMDBs

with metric anomalies can help isolate fault domains

and prioritize critical assets. Combining workload

schedules with metric drift can distinguish false

alerts from real degradation. These models, typically

built on transformer-based architectures or graph

neural networks, provide a holistic view of VM health.

Though still an emerging field, multimodal fusion is

poised to become the next frontier in intelligent

infrastructure analytics.

X. CONCLUSION

The evolution of virtual machine monitoring from

static thresholding to intelligent, AI-driven health

scoring represents a paradigm shift in infrastructure

operations. By leveraging Nagios logs, system

metrics, and modern machine learning models,

organizations can gain real-time visibility into system

health with unprecedented granularity and foresight.

Unlike traditional alert systems, health scoring offers

continuous risk assessment, actionable insights, and

contextual awareness significantly reducing

downtime and improving service reliability. As

shown through real-world deployments, from

academic hospitals to government data centers,

these systems not only enhance technical resilience

but also align with regulatory, privacy, and

operational goals.

However, challenges remain data quality, model

drift, false positives, and integration complexity must

be actively managed. The future lies in decentralized

learning, multimodal intelligence, and explainable

scoring interfaces. Ultimately, AI-augmented health

scoring empowers IT teams to shift from reactive

firefighting to proactive, predictive operations

ushering in a new era of intelligent infrastructure

management.

REFERENCE
1. Gan, T., Kumar, A., Ehiwario, M., Zhang, B.,

Sembroski, C., Jesus, O.D., Hoffmann, O.J., &

Metwally, Y. (2019). Artificial Intelligent Logs for

Formation Evaluation Using Case Studies in Gulf

of Mexico and Trinidad & Tobago. Day 3 Wed,

October 02, 2019.

2. Umamaheswari, K., & Sujatha, S. (2018).

INSPECT- An Intelligent and Reliable Forensic

Investigation through Virtual Machine

Snapshots. International Journal of Modern

Education and Computer Science, 10, 17-28.

3. Massaro, A., Gargaro, M., Dipierro, G., Galiano,

A.M., & Buonopane, S. (2020). Prototype Cross

Platform Oriented on Cybersecurity, Virtual

Connectivity, Big Data and Artificial Intelligence

Control. IEEE Access, 8, 197939-197954.

4. Abdullah, M., Lu, K., Wieder, P., & Yahyapour, R.

(2017). A Heuristic-Based Approach for Dynamic

VMs Consolidation in Cloud Data Centers.

Arabian Journal for Science and Engineering, 42,

3535 - 3549.

5. Lu, Y., Liu, L., Panneerselvam, J., Yuan, B., Gu, J., &

Antonopoulos, N. (2020). A GRU-Based

Prediction Framework for Intelligent Resource

Management at Cloud Data Centres in the Age

of 5G. IEEE Transactions on Cognitive

Communications and Networking, 6, 486-498.

6. Vijayendren, M.R., Thanuja, M., Sathishkumar,

M.P., Kumar, M.S., & Vadivel, M. (2018).

International Journal of Intellectual

 Deepika Singh, International Journal of Science, Engineering and Technology,

 202, 10:2

9

Advancements and Research in Engineering

Computations An Integrated Resource and

Service Consolidation Approach using History

Logs under Cloud Environment.

7. Battula, V. (2021). Dynamic resource allocation in

Solaris/Linux hybrid environments using real-

time monitoring and AI-based load balancing.

International Journal of Engineering Technology

Research & Management, 5(11), 81–89.

https://ijetrm.com

8. Madamanchi, S. R. (2021). Disaster recovery

planning for hybrid Solaris and Linux

infrastructures. International Journal of Scientific

Research & Engineering Trends, 7(6), 01–08.

9. Madamanchi, S. R. (2021). Linux server

monitoring and uptime optimization in

healthcare IT: Review of Nagios, Zabbix, and

custom scripts. International Journal of Science,

Engineering and Technology, 9(6), 01–08.

10. Madamanchi, S. R. (2021). Mastering enterprise

Unix/Linux systems: Architecture, automation,

and migration for modern IT infrastructures.

Ambisphere Publications.

11. Mulpuri, R. (2021). Command-line and scripting

approaches to monitor bioinformatics pipelines:

A systems administration perspective.

International Journal of Trend in Research and

Development, 8(6), 466–470.

12. Mulpuri, R. (2021). Securing electronic health

records: A review of Unix-based server

hardening and compliance strategies.

International Journal of Research and Analytical

Reviews, 8(1), 308–315.

13. Tariq, Z., Mahmoud, M.A., & Abdulraheem, A.

(2019). Core log integration: a hybrid intelligent

data-driven solution to improve elastic

parameter prediction. Neural Computing and

Applications, 31, 8561 - 8581.

14. Lyu, M.R. (2018). AI Techniques in Software

Engineering Paradigm. Proceedings of the 2018

ACM/SPEC International Conference on

Performance Engineering.

15. Lashari, S.E., & Lashari, Z. (2020). Applications of

Artificial Intelligence (AI) in Petroleum

Engineering Problems.

16. Castineira, D., Zhai, X., Darabi, H., Valle, M.,

Maqui, A., Shahvali, M., & Yunuskhojayev, A.

(2018). Augmented AI Solutions for Heavy Oil

Reservoirs: Innovative Workflows That Build

from Smart Analytics, Machine Learning And

Expert-Based Systems. Day 2 Tue, December 11,

2018.

17. Rahaman, M.S., Vasant, D.P., Jufar, D.S., &

Watada, J. (2020). Feature Selection-Based

Artificial Intelligence Techniques for Estimating

Total Organic Carbon from Well Logs. Journal of

Physics: Conference Series, 1529.

18. Anifowose, F.A. (2009). Hybrid AI Models for the

Characterization of Oil and Gas Reservoirs:

Concept, Design and Implementation.

19. Sanquetta, C.R., Piva, L.R., Wojciechowski, J.,

Corte, A.P., & Schikowski, A.B. (2017). Volume

estimation of Cryptomeria japonica logs in

southern Brazil using artificial intelligence

models. Southern Forests: a Journal of Forest

Science, 80, 29 - 36.

20. Khazaeni, Y., & Gaskari, R. (2009). Top-Down

Intelligent Reservoir Modeling (TDIRM).

21. Porwol, L., Pereira, A.G., & Ojo, A.K. (2019). From

VR-Participation Back to Reality - an AI&VR-

driven Approach for Building Models for

Effective Communication in e-Participation. Irish

Conference on Artificial Intelligence and

Cognitive Science.,

