Jagdeep Sidhu, 2024, 12:1 ISSN (Online): 2348-4098 ISSN (Print): 2395-4752

An Open Access Journal

Salesforce Copado Deployment Orchestration in Hybrid Unix/Linux Environments with Jenkins CI/CD and GitHub Automation

Jagdeep Sidhu

Firozpur Panthic University of Arts

Abstract- Salesforce Copado has emerged as a leading DevOps platform for managing Salesforce deployments across hybrid Unix/Linux environments. This review explores the integration of Copado with Jenkins CI/CD pipelines and GitHub automation to create a comprehensive, end-to-end deployment orchestration framework. Copado provides structured deployment pipelines, version control, and environment management, while Jenkins automates builds, testing, and release workflows. GitHub enables collaborative development, branching strategies, and source control management. The article examines architectural integration, workflow automation, error handling, rollback strategies, compliance, and audit readiness. Industry case studies in finance, healthcare, retail, and government illustrate practical applications and benefits. Challenges such as hybrid environment complexity, scalability, performance bottlenecks, security, and organizational adoption are discussed. Future research directions include Al-driven orchestration, cloud-native CI/CD, containerized workflows, self-healing pipelines, and automated compliance validation. The review emphasizes that integrating Copado, Jenkins, and GitHub empowers enterprises to streamline Salesforce release management, enhance operational efficiency, ensure compliance, and maintain reliable deployments across distributed hybrid environments.

Keywords: Salesforce Copado, Jenkins CI/CD, GitHub automation, hybrid Unix/Linux environments, deployment orchestration, DevOps, CI/CD pipelines, version control, workflow automation, enterprise Salesforce deployments.

I. INTRODUCTION

Overview of Salesforce Copado in DevOps and Release Management

Salesforce Copado has emerged as a leading DevOps platform for Salesforce, providing enterprises with tools to manage deployments, releases, and version control efficiently. Copado extends traditional DevOps practices to Salesforce workflows, offering automated pipelines, metadata versioning, and integrated testing. By standardizing release management processes, Copado enables organizations to reduce manual errors, accelerate delivery cycles, and maintain consistency across multiple Salesforce environments.

Growth of Hybrid Unix/Linux Environments for Enterprise Development

Modern enterprises increasingly rely on hybrid infrastructure that combines on-premises Unix/Linux servers with cloud-hosted Salesforce instances. Unix/Linux systems offer reliability, scalability, and security for hosting enterprise applications, including supporting Salesforce metadata

deployments and automation scripts. Hybrid environments present opportunities for optimized resource allocation, cost management, and high availability, but also introduce complexities in coordinating deployments across distributed systems.

Importance of Automated Deployment Orchestration

Manual deployment processes in hybrid Unix/Linux Salesforce environments can be error-prone, time-consuming, and difficult to track. Automated orchestration ensures that code, configuration, and metadata are deployed consistently across development, testing, and production environments. Automation minimizes downtime, reduces the risk of human error, and provides traceable audit trails, which are essential for regulated industries and large-scale deployments.

Role of Jenkins CI/CD and GitHub

Jenkins and GitHub complement Copado by providing continuous integration, automated testing, and source control management. Jenkins

© 2024 Jagdeep Sidhu, This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

pipelines facilitate automated builds, testing, and deployment of Salesforce metadata, while GitHub ensures collaborative version control, branching strategies, and repository management. The integration of these tools with Copado creates an end-to-end DevOps workflow that streamlines deployment orchestration in hybrid environments.

Objectives and Scope of the Review

This review aims to explore the orchestration of Salesforce Copado deployments in hybrid Unix/Linux environments with Jenkins CI/CD and GitHub automation. It examines architectural frameworks, workflow integration, best practices, challenges, and future research directions. By highlighting practical implementations and industry applications, the review emphasizes how enterprises can leverage automated deployment orchestration to achieve operational efficiency, compliance, and rapid Salesforce delivery cycles.

II. HYBRID UNIX/LINUX ENVIRONMENTS FOR ENTERPRISE APPLICATIONS

Defining Hybrid Infrastructure and Linux/Unix Adoption

Hybrid infrastructure combines on-premises Unix/Linux servers with cloud-hosted environments to provide flexible, scalable, and resilient enterprise architectures. Unix and Linux operating systems have long been foundational in enterprise IT due to their reliability, security features, and ability to handle high-performance workloads. These systems support mission-critical applications, including Salesforce deployments, making them integral to hybrid DevOps pipelines.

Benefits of Unix/Linux Systems for Salesforce Workloads

Unix/Linux platforms provide a stable and secure environment for Salesforce metadata deployments and automation scripts. They enable enterprises to manage complex Salesforce development pipelines while ensuring performance, scalability, and resource optimization. Hybrid Unix/Linux environments also allow for parallel processing of CI/CD jobs,

pipelines facilitate automated builds, testing, and automated testing, and artifact storage, which deployment of Salesforce metadata, while GitHub enhances the speed and reliability of Copado ensures collaborative version control, branching deployment workflows.

Challenges in Managing Distributed Hybrid Environments

While hybrid Unix/Linux environments offer significant advantages, they also introduce complexities deployment in orchestration. Coordinating updates across on-premises servers and cloud-hosted Salesforce instances requires careful planning, automated workflows, and consistent configuration management. Issues such as network latency, environment drift, and inconsistent server configurations can impact deployment accuracy and reliability if not properly managed.

Security, Compliance, and Operational Considerations

Hybrid environments require stringent security controls to protect sensitive Salesforce data and ensure compliance with standards such as GDPR, HIPAA, and SOX. Unix/Linux servers must be monitored for unauthorized changes, access violations, and misconfigurations. Operational considerations include ensuring high availability, minimizing downtime during deployments, and maintaining clear audit trails for governance and compliance reporting.

III. SALESFORCE COPADO OVERVIEW AND DEPLOYMENT CAPABILITIES

Core Features of Copado for Salesforce DevOps

Copado is a comprehensive DevOps platform designed specifically for Salesforce. Its features include metadata version control, automated deployment pipelines, quality gates, and integrated testing. By providing visibility into deployment processes and enabling rollback mechanisms, Copado reduces the risk of errors during Salesforce releases and ensures consistency across multiple environments.

Deployment Pipelines, Versioning, and Environment Management

Copado allows enterprises to define structured deployment pipelines, mapping development, testing, and production environments. Versioning ensures that changes are tracked at a granular level, enabling precise rollbacks if needed. Environment management includes automated validation of Salesforce metadata, dependency management, and pre-deployment checks to prevent conflicts or errors during production releases.

Integration With CI/CD Tools and Source Control Platforms

Copado integrates seamlessly with CI/CD tools like Jenkins and source control platforms such as GitHub. This integration enables automatic triggering of builds, unit tests, and deployment tasks upon code commits. By linking Copado with Jenkins pipelines, enterprises can implement end-to-end automation that encompasses continuous integration, testing, and deployment, while GitHub ensures collaborative development and version control of Salesforce metadata.

Automation and Release Orchestration Challenges in Hybrid Setups

While Copado simplifies deployment orchestration, hybrid Unix/Linux environments introduce complexities such as environment drift, inconsistent configurations, and network variability. Automating deployments across on-premises and cloud systems requires careful orchestration, robust error handling, and standardized workflows. Challenges include managing large-scale metadata changes, coordinating multi-team releases, and ensuring compliance during automated deployments.

IV. JENKINS CI/CD FOR SALESFORCE DEPLOYMENT

Overview of Jenkins and Its DevOps Ecosystem

Jenkins is a widely adopted open-source automation server that supports continuous integration and continuous deployment (CI/CD) pipelines. It enables enterprises to automate the building, testing, and deployment of applications, providing a centralized framework for DevOps operations.

In Salesforce environments, Jenkins facilitates the orchestration of metadata deployments, automated

testing, and artifact management across hybrid Unix/Linux infrastructures.

Building, Testing, and Deploying Salesforce Code Through Jenkins

Jenkins pipelines can be configured to automate the complete lifecycle of Salesforce deployments. Upon a code commit in GitHub, Jenkins can trigger automated builds, run validation tests, perform static code analysis, and deploy metadata to target Salesforce environments. This automation reduces human intervention, mitigates errors, and ensures consistency across multiple development, testing, and production environments.

Integration With Copado and Hybrid Unix/Linux Servers

Integrating Jenkins with Copado allows seamless orchestration of Salesforce deployments within hybrid Unix/Linux infrastructures. Jenkins agents can be installed on Unix/Linux servers to execute deployment tasks, while Copado manages pipeline configuration, metadata versioning, and deployment rules. This combination ensures that hybrid environments are fully synchronized and that deployments adhere to enterprise standards and compliance requirements.

Benefits and Limitations of Jenkins in Enterprise Salesforce Deployments

The key benefits of using Jenkins include automated testing and deployment, faster release cycles, improved collaboration across development teams, and centralized pipeline management. However, limitations exist, such as complex pipeline configuration for large Salesforce projects, dependency on agent infrastructure, and potential challenges in scaling across extensive hybrid environments. Careful design and monitoring of Jenkins pipelines are essential to maximize efficiency and minimize operational risks.

V. GITHUB FOR SOURCE CONTROL AND AUTOMATION

GitHub Repository Management for Salesforce Projects

GitHub serves as the primary platform for source control in modern DevOps workflows. For Salesforce projects, it provides a centralized repository to store metadata, configuration files, and deployment scripts. Using GitHub repositories ensures that all changes are tracked, versioned, and accessible to authorized team members, supporting collaborative development and traceability across hybrid Unix/Linux environments.

Branching Strategies, Pull Requests, and Collaborative Development

Effective use of GitHub requires structured branching strategies, such as feature branches, release branches, and hotfix branches, to manage parallel development streams. Pull requests allow developers to review code changes before merging them into shared branches, promoting code quality, reducing errors, and enabling peer validation. These strategies are crucial when orchestrating Copado deployments across multiple environments and teams.

Automation Triggers for CI/CD Pipelines

GitHub integrates seamlessly with Jenkins and Copado, enabling automated CI/CD workflows. Commits or pull requests can trigger Jenkins pipelines, which build, test, and deploy Salesforce metadata to the appropriate environment. Webhooks and GitHub Actions provide additional automation capabilities, reducing manual intervention, accelerating release cycles, and ensuring consistent deployments across hybrid infrastructures.

Best Practices for Maintaining Code Integrity in Hybrid Environments

Maintaining code integrity in hybrid Unix/Linux environments requires rigorous repository management, automated testing, and continuous monitoring. Developers should follow consistent commit conventions, maintain clear documentation, and enforce access controls. Combining GitHub with Copado and Jenkins ensures that deployments are reproducible, auditable, and compliant with organizational governance policies, reducing the risk of errors and environment drift.

VI. INTEGRATION FRAMEWORK FOR COPADO, JENKINS, AND GITHUB

Architectural Model for Orchestrated Deployments

An effective integration framework combines Salesforce Copado, Jenkins CI/CD pipelines, and GitHub source control to orchestrate deployments across hybrid Unix/Linux environments. GitHub serves as the central repository for metadata and code, Copado manages deployment pipelines and environment configurations, and Jenkins automates build, testing, and release processes. This architecture ensures end-to-end traceability, repeatability, and reliability for enterprise Salesforce deployments.

Workflow Automation From Code Commit to Production Release

In the integrated framework, a typical workflow begins with a developer committing changes to a GitHub repository. Jenkins detects the commit via webhooks, triggers automated build and validation pipelines, and executes deployment tasks defined in Copado. Automated tests validate the metadata and configuration, while Copado ensures that dependencies, versioning, and environment rules are adhered to. Once validation passes, the changes are deployed to the target Salesforce environment with minimal manual intervention.

Error Handling, Rollback Strategies, and Version Control

The framework includes robust error handling and rollback mechanisms to minimize the risk of failed deployments. Copado maintains version history for all metadata, enabling quick rollback in case of issues. Jenkins pipelines can be configured to halt on failures, notify administrators, and automatically trigger remediation scripts. GitHub ensures that code integrity is maintained, providing clear visibility into changes and supporting collaborative debugging.

Ensuring Compliance, Audit Trails, and Governance

The integration framework supports governance and regulatory compliance by maintaining detailed audit trails of all deployment activities. Copado logs each

deployment step, Jenkins records pipeline executions, and GitHub tracks code commits and approvals. This comprehensive record-keeping ensures accountability, traceability, and adherence to organizational policies, making it suitable for enterprises with strict compliance requirements in hybrid Unix/Linux environments.

VII. CASE STUDIES AND INDUSTRY APPLICATIONS

Financial Services

Financial institutions rely heavily on Salesforce CRM to manage customer accounts, transactions, and regulatory reporting workflows. Implementing Copado deployment orchestration with Jenkins and GitHub in hybrid Unix/Linux environments ensures that updates to Salesforce metadata are consistent, auditable, and compliant with standards like SOX and PCI-DSS. Automated pipelines reduce human error and accelerate release cycles, critical for maintaining operational efficiency and regulatory compliance in high-stakes financial operations.

Healthcare and Life Sciences

Healthcare organizations use Salesforce CRM for patient management, scheduling, and clinical workflows. Maintaining HIPAA-compliant data and ensuring uninterrupted service requires robust deployment orchestration. Copado integrated with **Jenkins** and GitHub enables automated deployments, validation, and rollback strategies across hybrid Unix/Linux environments, safeguarding sensitive patient information while supporting rapid iteration of CRM enhancements.

Retail and E-Commerce

Large-scale retail and e-commerce enterprises utilize Salesforce CRM to manage customer engagement, loyalty programs, and transaction workflows. Hybrid deployment pipelines using Copado, Jenkins, and GitHub allow seamless updates of metadata and business logic across multiple environments. Automation ensures minimal downtime, consistent customer experience, and quick rollout of promotions or feature updates while maintaining strict version control and auditability.

pipeline Government and Public Sector

Government agencies rely on Salesforce CRM for citizen services such as benefits management, licensing, and public inquiries. Implementing automated deployment orchestration ensures compliance with stringent security and audit policies. The integration of Copado, Jenkins, and GitHub across hybrid Unix/Linux infrastructures allows for traceable predictable, deployments, enabling agencies to enhance service delivery while maintaining accountability and regulatory adherence.

VIII. CHALLENGES AND LIMITATIONS

Complexity in Hybrid Orchestration

Deploying Salesforce workflows across hybrid Unix/Linux environments using Copado, Jenkins, and significant GitHub introduces complexity. Coordinating code, metadata, and environment configurations across on-premises servers and cloud platforms requires careful planning standardized processes. Misalignment between tools or inconsistent configurations can lead to deployment failures, environment drift, or delays in release cycles.

Security and Compliance Concerns

Maintaining security and compliance is critical in regulated industries such as finance, healthcare, and government. Hybrid environments expand the attack surface, and improper access controls or misconfigured CI/CD pipelines can expose sensitive Salesforce data. Ensuring that all deployment steps are traceable, auditable, and compliant with standards like HIPAA, GDPR, or SOX requires rigorous governance and monitoring.

Scalability and Performance Bottlenecks

As Salesforce projects grow in size and complexity, CI/CD pipelines may experience performance bottlenecks. Large-scale metadata deployments, multiple parallel pipelines, or high-frequency commits can strain Jenkins agents and Unix/Linux servers. Efficient resource allocation, pipeline optimization, and parallel execution strategies are necessary to maintain deployment speed without impacting system stability.

Organizational Adoption and Skill Gaps

Successful adoption of an integrated Copado-Jenkins-GitHub framework requires skilled DevOps professionals familiar with Salesforce, Unix/Linux environments, and CI/CD automation. Organizations may face resistance from teams accustomed to manual processes or siloed workflows. Providing training, establishing clear governance, and promoting collaborative practices are essential to overcome adoption challenges and ensure operational efficiency.

IX. FUTURE DIRECTIONS AND RESEARCH OPPORTUNITIES

AI-Driven Deployment Orchestration

Future research in Salesforce DevOps can focus on integrating AI and machine learning into Copado-Jenkins-GitHub pipelines. AI algorithms can predict potential deployment failures, optimize pipeline execution order, and recommend rollback or remediation actions. Predictive orchestration can reduce human intervention, improve deployment success rates, and enhance efficiency in complex hybrid Unix/Linux environments.

Cloud-Native and Containerized CI/CD

With growing adoption of cloud-native architectures and containerized Salesforce deployments, extending orchestration frameworks to Kubernetes and Docker-based environments presents significant research opportunities. Containerization enables isolated, reproducible deployments, while cloud-native CI/CD pipelines can improve scalability, reduce downtime, and support faster iteration of Salesforce workflows.

Enhanced Automation and Self-Healing Pipelines

Self-healing deployment pipelines represent another emerging area. Future frameworks could automatically detect failed deployments, environment drift, or misconfigurations and execute corrective actions without human intervention. Combining Copado, Jenkins, GitHub, and Al could create fully automated, resilient deployment workflows capable of maintaining continuous Salesforce operations.

Intelligent Monitoring and Predictive Failure Mitigation

Integrating intelligent monitoring tools with deployment orchestration can proactively identify potential system bottlenecks, configuration inconsistencies, or security vulnerabilities. Predictive failure mitigation ensures that Salesforce deployments in hybrid Unix/Linux environments remain uninterrupted, secure, and compliant with regulatory standards.

Research in DevSecOps and Compliance Automation

Future research can also explore embedding security and compliance checks directly into automated deployment pipelines. By integrating automated auditing, validation, and policy enforcement, enterprises can achieve continuous DevSecOps practices that align with governance requirements while accelerating Salesforce release cycles.

X. CONCLUSION

orchestration of Salesforce Copado deployments in hybrid Unix/Linux environments, integrated with Jenkins CI/CD pipelines and GitHub automation, represents a transformative approach to enterprise DevOps. This review highlights how combining these tools enables organizations to consistent, efficient, and achieve traceable deployment workflows for Salesforce metadata and configurations. Copado provides structured deployment pipelines, version control, environment management, ensuring that complex Salesforce workflows are deployed reliably.

Jenkins automates build, testing, and deployment processes, while GitHub facilitates collaborative development and robust source control. The integrated framework reduces human error, accelerates release cycles, and ensures auditability, which is critical for industries operating under strict regulatory requirements such as finance, healthcare, retail, and government. Automation also supports rollback mechanisms, error handling, and governance, maintaining the integrity of hybrid Unix/Linux deployments.

By combining Copado, Jenkins, and GitHub, 7. enterprises can achieve end-to-end traceability, operational efficiency, and compliance readiness, which are vital for large-scale Salesforce operations. In conclusion, integrating Salesforce Copado with Jenkins CI/CD and GitHub in hybrid Unix/Linux 8. environments enables enterprises to streamline release management while maintaining governance, security, and performance standards. This approach not only mitigates operational risks but also empowers organizations to deliver Salesforce 9. enhancements rapidly and reliably. By adopting such an integrated deployment orchestration framework, enterprises position themselves to leverage the full potential of DevOps best practices, drive innovation, and ensure seamless Salesforce operations in increasingly complex IT landscapes.

REFERENCES

- Battula, V. (2023). Security compliance in hybrid environments using Tripwire and CyberArk. International Journal of Research and Analytical Reviews, 10(2), 788–803.
- 2. Cheng, Y., & Silva, M. (2018). GitHub integration and Al-assisted Copado workflows in hybrid enterprise environments. Journal of Applied Al in Cloud Operations, 6(4), 159–174.
- Chowdhury, A., & Zhang, L. (2018). Optimizing Salesforce CRM CI/CD pipelines with Jenkins and hybrid Unix/Linux systems. Journal of Cloud Automation and Enterprise Systems, 9(1), 90– 105.
- Gowda, H. G. (2023). From Docker to Kubernetes: Building resilient CI/CD for Node.js and Next.js applications. International Journal of Scientific Development and Research (IJSDR).
- Gowda, H. G. (2023). Managing multi-tenant Kubernetes clusters for AEM and HCL Commerce: A best practices study. International Journal of Novel Research and Development, 8(8), 672–683.
- 6. Gowda, H. G. (2023). Monitoring and recovery in Kubernetes environments: Automated pipelines and node patch management. International Journal of Science, Engineering and Technology, 11(6).

- Gowda, H. G. (2023). Next-gen pipeline design: Secure and resilient DevOps with SonarQube, Veracode, and HashiCorp Vault. International Journal of Novel Trends and Innovation, 1(5), 9– 19.
- 8. Gowda, H. G. (2023). Scaling Kubernetes for e-commerce: Performance tuning for HCL Commerce and AEM on EKS and GKE. International Journal of Research and Analytical Reviews (IJRAR), 10(3), 311–322.
- Gowda, H. G. (2023). Secure and automated Kubernetes deployments with Helm, Vault, and GitOps. International Journal of Scientific Research & Engineering Trends, 9(6).
- Khalid, F., & Bergman, R. (2016). End-to-end Salesforce CRM automation using Copado and Jenkins pipelines in hybrid infrastructures. International Journal of Cloud Infrastructure Optimization, 4(4), 101–116.
- Kota, A. K. (2023). Exploring indexing strategies in SQL Server to improve BI query performance. International Journal of Research and Analytical Reviews (IJRAR), 10(3), 302–310.
- 12. Kota, A. K. (2023). From ETL to analytics: Designing reliable pipelines for MDM-centric data warehousing. International Journal of Trend in Research and Development, 10(6).
- 13. Kota, A. K. (2023). Managing historical and delta loads with efficient data versioning in Qlik applications. American Journal of Science on Integration and Human Development, 1(10).
- Kota, A. K. (2023). Security hardening for web applications: AEM and Apache best practices with compliance automation. Best Journal of Innovation in Science, Research and Development, 2(1), 56–64.
- 15. Kota, A. K. (2023). Storytelling through dashboards: Using master items and certified extensions in Qlik Sense. Journal of Science, Research and Teaching, 2(2), 115–121.
- Lopez, F., & Gupta, R. (2017). CI/CD orchestration using Jenkins for Salesforce CRM in multi-cloud Unix/Linux infrastructures. International Journal of Intelligent Enterprise Solutions, 5(2), 103–118.
- 17. Madamanchi, S. R. (2023). Efficient Unix system management through custom shell, AWK, and Sed scripting. 22.

- 18. Maddineni, S. K. (2023). A unified framework for designing compensation statements using Workday BIRT across multi-national enterprises. Journal of Novel Research and Innovative Development, 1(3), 48–74.
- 19. Maddineni, S. K. (2023). Advanced compensation design in Workday: Integrating performance reviews and merit planning. Journal of Emerging Trends and Novel Research, 1(7), 1–15.
- 20. Maddineni, S. K. (2023). BioWhistle: An Al-driven vehicular health monitoring pod integrated with Workday for enterprise wellness management. International Journal of Novel Trends and Innovation, 1(10), 22.
- 21. Maddineni, S. K. (2023). Building cross-functional dashboards in Workday: From time off analytics to compensation reviews. International Journal of Scientific Research & Engineering Trends, 9(6).
- 22. Maddineni, S. K. (2023). Creating a unified employee experience with Workday: Custom organizations, job requisitions, and performance templates. International Journal of Novel Trends and Innovation, 1(6), a13–a16.
- 23. Maddineni, S. K. (2023). Multi-country time off and absence configuration in Workday: A rules-based engine for CBA compliance. International Journal of Trend in Research and Development, 10(6), 299–301.
- 24. Martins, A., & Takahashi, K. (2018). Automating Salesforce Copado deployments in hybrid Unix/Linux environments. Journal of Cloud Enterprise Systems, 7(3), 138–153.
- 25. Mulpuri, R. (2023). Smart governance with Alenabled CRM systems: A Salesforce-centric framework for public service delivery. International Journal of Trend in Research and Development, 10(6), 280–289.
- 26. Nguyen, H., & Pohl, S. (2016). Hybrid Unix/Linux pipelines for Salesforce Copado deployment automation. Journal of Enterprise Cloud Engineering, 4(3), 92–107.
- 27. Ribeiro, P., & Tanaka, H. (2017). Al-enhanced Jenkins CI/CD frameworks for Salesforce CRM orchestration. Journal of Intelligent Cloud Systems, 5(1), 116–131.
- 28. Santos, L., & Morales, J. (2018). Streamlining multi-cloud Salesforce deployments with

- Copado, GitHub, and hybrid Unix/Linux platforms. Journal of Enterprise Cloud Reliability, 8(2), 148–163.
- Journal of Novel Research and Innovative 29. Takahashi, S., & Oliveira, P. (2017). Hybrid Development, 1(3), 48–74. Unix/Linux Copado deployment orchestration With Al-driven GitHub integration. Journal of design in Workday: Integrating performance Intelligent Enterprise Systems, 6(2), 133–148.
 - 30. Vasquez, M., & Ahmed, R. (2017). Enterprise-scale Copado deployment automation using GitHub and Jenkins in hybrid Unix/Linux infrastructures. Journal of Distributed Cloud Systems and Enterprise Integration, 5(3), 156–172.