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I. INTRODUCTION 
 

 

1. Software Defect Prediction 

Software Defect 

A software defect is an error, bug, flaw, fault, 

malfunction or mistakes in software that causes it to 

create an erroneous or unpredicted outcome. Faults 

are essential properties of a system. They appear 

from design or manufacture, or external 

environment. Software flaws are programming 

errors which cause different performance compared 

with anticipation. The majorities of the faults are 

from source code or deign, some of them are from 

the incorrect code generating from compilers. For 

software developers and clients, software faults are 

a danger problem. Software defects not merely 

decrease software quality, increase costing but also 

delay the development schedule. Software fault  

 

 

predicting is proposed to solve this sort of trouble. 

SDP can efficiently progress the effectiveness of 

software testing and direct the allocation of 

resources. To develop quality software, software 

flaws have to be detected and corrected at early 

phase of SDLC. 

 

Software Defect Management 

The main aim of software defect management is to 

amplify the quality of software by identifying and 

fixing the defects in the early phase of SDLC. The 

various phases of SDLC are requirements gathering 

phase, analysis phase, designing phase, and coding 

phase, testing phase, implementation and 

maintenance phase. SDP plays a vital role in 

developing high quality software. Identifying the 

defects in a preliminary stage of a SDLC is a very 

complicated job, hence efficient methods to be 

applied in order to remove them. 

 

Abstract- Software Defect Prediction [SDP] plays an important role in the active research areas of software 

engineering. A software defect is an error, bug, flaw, fault, malfunction or mistake in software that causes it to 

create a wrong or unexpected outcome. The major risk factors related with a software defect which is not 

detected during the early phase of software development are time, quality, cost, effort and wastage of 

resources. Defects may occur in any phase of software development. Booming software companies focus 

concentration on software quality, particularly during the early phase of the software development .Thus the 

key objective of any organization is to determine and correct the defects in an early phase of Software 

Development Life Cycle [SDLC]. To improve the quality of software, data mining techniques have been applied 

to build predictions regarding the failure of software components by exploiting past data of software 

components and their defects. This paper reviewed the state of art in the field of software defect management 

and prediction, and offered data mining techniques in brief. 
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The main stages in defect handling include [1]: 

 Identifying the defects 

 Categorizing the defects 

 Analyzing the defects 

 Predicting the defects 

 Removing the defects 

 

The first step is to identify the occurrence of defects 

in software. Code inspection, building a prototyping 

model and testing are used to identify the defects 

in software. After identifying the defects, the 

defects should be categorized, analyzed, predicted 

and detected. 

 

Software Defect Prediction [SDP] 

SDP identifies the module that are defective and it 

requires wide range of testing. Early identification 

of an error leads to effective allocation of resources, 

reduces the time and cost of developing a software 

and high quality software. Therefore, an SDP model 

plays a vital role in understanding, evaluating and 

improving the quality of a software system. 

 

II. LITERATURE REVIEW 
 

Peng He et al. conducted an empirical study on 

software defect prediction with a simplified metric 

set [2]. Research has been conducted on 34 releases 

of 10 open source projects available at PROMISE 

repository. The finding indicates the result of top-k 

metrics or minimum metric subset provides 

acceptable output compared with benchmark 

predictors. The simplified or minimum mertic set 

works well in case of minimum resources. 

 

Grishma BR et al. investigated root cause for fault 

prediction by applying clustering techniques and 

identifies the defects occurs in various phases of 

SDLC.  

 

In this research they used COQUALMO prediction 

model to predict the fault in a software and applied 

various clustering algorithms like k-means, 

agglomerative clustering, COBWEB, density based 

scan, expectation maximization and farthest first. 

Implementation was done using Weka tool. Finally 

they conclude that k-means algorithm works better 

when compared with other algorithms [1]. 

Anuradha Chug et al. used three supervised 

[classification] learning algorithms and three 

unsupervised [clustering] learning algorithms for 

predicting defects in software. NASA MDP datasets 

were run by using Weka tool. Several measures like 

recall and f-measure are used to evaluate the 

performance of both classification and clustering 

algorithms. By analyzing different classification 

algorithms Random Forest has the highest accuracy 

of MC1 dataset and also yields highest value in 

recall, f-measure and receiver operating 

characteristic [ROC] curve and it indicates minimum 

number of root mean square errors in all 

circumstances. In an unsupervised algorithm k-

means has the lowest number of incorrect clustered 

instances and it takes minimum time for predicting 

faults [3]. 

 

Jaechang Name et al. applied Hetrogeneous Defect 

Prediction [HDP] to predict defects in with-in and 

across projects with different datasets. Metric 

selection, metrics matching and building a 

prediction model are the 3 methods used in this 

work. In this research they used various datasets 

from NASA, PROMISE, AEEEM, MORPH and 

SOFTLAB. Source and target datasets are used with 

different metric sets. For selecting metrics feature 

selection techniques such as gain ratio, chi-square, 

relief-F and significance attribute selection are 

applied to the source. To match source and target 

metrics various analyzers like Percentile based 

Matching (PAnalyzer), Kolmogorov – Smirnov test 

based matchiong (KSAnalyzer), Spearman’s 

Correlation based Matching (SCOAnalyzer) are 

used. Cutoff threshold value is applied to all pair 

scores and poorly matched metrics are removed by 

comparison. Area Under the Receiver Operator 

Characteristic Curve [AUC] measure is used to 

compare the performance between different 

models. HDP is compared with 3 baselines – WPDP, 

CPDP-CM, CPDP-IFS by applying win/loss/tie 

evaluation. The experiments are repeated for 1000 

times and Wilcoxon signed rank test (P<0.05) is 

applied for all AUC values and baselines. 

Performance is measured by counting the total 

number of win/loss/tie. When a cutoff threshold 

value gets increased in PAnalyzer and KSAnalyzer, 

the results (win) also gets increased. Logistic 
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Regression (LR) model works better when there is a 

linear relationship between a predictor and bug-

prone [4]. 

 

Logan Perreault et al. applied classification 

algorithm such as naïve bayes, neural networks, 

support vector machine, linear regression, K-nearest 

neighbor to detect and predict defects. The authors 

used NASA and tera PROMISE datasets. To measure 

the performance they used accuracy and f1 

measure with clearly well defined metrics such as 

McCabe Metrics and Halstead Metrics. 10-fold cross 

validation is used in which 90% of data are used for 

training and 10% of data are used for testing. 

ANOVA and tukey test was done for 5 dataset and 

5 response variables. 0.05 is set as significance level 

for PC1, PC2, PC4 and PC5 dataset and 0.1 as PC3 

dataset. Weka tool is used for implementation. 

Implementations of these 5 algorithms are available 

on Github repository. Finally the authors conclude 

that all datasets are similar and they are written in C 

or C++ and in future the work can be extended by 

selecting the datasets that are written in Java and 

instead of using weka tool for implementation 

some other tool can also be used [5]. 

 

Ebubeogu et al. employed predictor variables like 

defect density, defect velocity and defect 

introduction time which are derived from defect 

acceleration and used to predict the total number 

of defects in a software. MAChine – Learning – 

Inspired [MACLI] approach is used for predicting 

defects. The proposed framework for defect 

prediction has two phases. 1) Data pre- processing 

phase. 2) Data analysis phase [6]. 

 

Rayleigh distribution curve is a proposed modeling 

technique used to identify predictor variables and 

indicates the number of defects involved in 

developing SDLC. Simple linear regression model 

and multiple linear regression models are used to 

predict the number of defects in software. The 

authors conclude that defect velocity performed 

best in predicting the number of defects with the 

strongest correlation co-efficient of 0.98. 

 

Yongli et al. applied data filters to datasets in order 

to increase the performance of CPDP. In this 

research the authors proposed Hierarchical Select-

Based Filter [HSBF] strategy. HSBF is based on 

hierarchical data selection from software project 

level to software module level. Max value, min 

value, mean value and standard deviation are the 

four indicators which are merged together to 

represent the distributional characteristic of a given 

project. To correct the inconsistencies in software 

metrics between projects, cosine distance is 

applied. In this study, PROMISE datasets and 

Confusion matrix are used to evaluate the 

performance measure. Due to imbalanced dataset 

probability of detection [pd], probability of false 

alarm [pf] and AUC are also applied to measure the 

performance. Therefore the authors conclude from 

the experiments, Naïve Bayes [NB] algorithm 

performs better than Support Vector Machine. For 

smaller projects Target - Project Data Guided Filter 

[TGF] is used and for larger projects Hierarchical 

Select Based Filter [HSBF] is used for data selection 

from multi-source projects [7]. 

 

Xiao Yu et al. build a prediction model for Cross 

Company Defect Prediction [CCDP] by applying six 

imbalance learning methods such as under 

sampling techniques (random under sampling and 

near miss), over sampling techniques [SMOTE and 

ADASYN] and oversampling followed by under 

sampling [SMOTE Limks, TOMEK, SMOTE ENN] [8]. 

PROMISE datasets and classification algorithms 

such as NB, Random Forest [RF] and Linear 

Regression [LR] are applied. Probability of 

detection, probability of false alarm and g-measure 

are used to measure the performance. The authors 

conclude that NB performs better in predicting 

defects and it has a high pf value. Under sampling 

method works better with g-measure. 

 

Shamsul Huda et al. [9] studied that developing a 

defect prediction model by using more number of 

metrics is a tedious process. So that a subset of 

metrics can be determined and selected. In this 

research two novel hybrid SDP models such as 

wrappers and filters are used for identifying the 

metrics. These two models combine the training of 

metric selection and fault prediction as a single 

process. In this research different datasets and 

classification algorithms such as Support Vector 
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Machine [SVM] and artificial neural network are 

used. Performance was measured by using AUC and 

MEWMA (Multivariate Exponentially Weighted 

Moving Average), implementation was done by 

using liblinear tool and mine tool. 

 

Gopi Krishnan et al. applied regression models to 

build a defect classifier. In this work tera- PROMISE 

defect datasets and machine learning algorithms 

such as Linear/Logistic Regression, RF, K-Nearest 

Neighbour, SVM, CART and Neural Networks are 

used to build a prediction model. Two defect 

classifiers are developed namely discretized defect 

classifier and regression based defect classifier. In 

this work AUC is applied to evaluate the 

performance of a model and the authors conclude 

that there is a loss of information in discretized 

classifier. Regression-based classifier uses 

continuous defect counts as the target variable for 

determining a defect module. 

 

Xinli Yang et al. proposed TLEL [Two Layer 

Ensemble Learning] to predict defects at change 

level. The advantages of ensemble methods are: 

 Better performance can be achieved compared 

with single classifier. 

 Combines bagging and stacking methods. 

 

TLEL has two layers namely inner layer and outer 

layer. In an inner layer, decision tress and bagging 

are merged to develop a random forest model. In 

an outer layer, random under sampling is used to 

train various random forest models and stacking is 

used to train ensemble techniques. TLEL is 

compared with 3 baseline methods such as deeper, 

DNC and MKEL. Performance is measured by using 

cost effectiveness and F1-Score. 

 

III. METHODOLOGY 
 

Mostly three approaches are performed to evaluate 

prediction models. 

 

1. With-in Project Defect Prediction 

A prediction model can be constructed by 

collecting historical data from a software project 

and predicts faults in the same project are known 

as WPDP. WPDP performed best, if there is enough 

quantity of historical data available to train models. 

 

Turhan, Burak, et al. [15] suggested that software 

defect prediction areas typically focus on 

developing defect prediction models with existing 

local data (i.e. within project defect prediction). To 

apply these models, a company should have a data 

warehouse, where project metrics and fault related 

information from past projects are stored. 

 

Zimmermann et al. [11] notify that defect prediction 

performs better within projects as long as there is 

an adequate data to train models. That is, to 

construct defect predictors, we need access to 

historical data. If the data is absent, Cross Company 

Defect Prediction (CCDP) can be applied. 

 

The drawbacks of with-in project defect prediction 

are: 

 It is not constantly possible for all projects to 

collect such historical data 

 Hence 100% accuracy cannot be achieved using 

WPDP. 

 

On the other hand, historical data is often not 

presented for new projects and for many 

organizations. In this case, successful defect 

prediction is complicated to accomplish. To tackle 

this problem, cross project defect prediction 

strategy was applied. 

 

2. Cross Project Defect Prediction [CPDP] for 

Similar Dataset 

CPDP is used in a mode such that a project does 

not have sufficient historical data to train a model. 

So that, a prediction model is developed for one 

project and it has been applied for some other 

project or across project. i.e., transferring prediction 

models from one project to another project [10]. 

The drawbacks of applying CPDP is that it desires 

projects that have similar metric set, implication 

that the metric sets must be equal among projects. 

As an outcome, present techniques for CPDP are 

complicated to relate across projects with dissimilar 

dataset. 
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3. Cross Project Defect Prediction [CPDP] for 

Hetrogeneous Dataset 

To deal with the inadequacy of using only similar 

dataset for CPDP, heterogeneous defect prediction 

[HDP] technique was proposed to predict defects 

across projects with imbalanced metric sets [4]. 

 

Defect Prediction Techniques 

To improve the effectiveness and quality of 

software development and to predict defects in 

software, various data mining techniques can be 

applied to different Software Engineering areas. The 

broadly used SDP techniques are datamining 

techniques and machine learning techniques are 

depicted in Figure 1. 

 

 
Figure 1: Machine learning algorithms 

 

To predict a fault in software various data mining 

techniques are applied. In data mining, learning can 

be of two types: 

 Supervised Learning 

 UnSupervised Learning 

 

Supervised Learning 

Learning techniques are intended to determine 

whether software module has a higher fault hazards 

or not. In supervised learning data is extracted 

using the target class. 

 

If machine learning task is trained for each input 

with consequent target, it is called supervised 

learning, which will be able to provide target for 

any new input after adequate training. Targets 

expressed in some classes are called classification 

problem. 

 

If the target space is continuous, it is called 

regression problem. All classification and regression 

algorithms appear under supervised learning. Some 

of the supervised learning algorithms are: 

 Decision tree classification algorithm 

 Support vector machine (SVM) 

 k-Nearest Neighbors 

 Naive Bayes 

 Random forest 

 Neural networks 

 Polynomial regression 

 SVM for regression 

 

Logan Perreault et al. [5] applied classification 

algorithm such as naive bayes, neural networks, 

support vector machine, linear regression, K-

nearest neighbour to detect and predict defects. 

 

Ebubeogu et al. employed [6] simple linear 

regression model and multiple linear regression 

model to predict the number of defects in a 

software. 

 

Regression Techniques 

A variety of regression techniques have been 

proposed in predicting amount of software defects 

[15]. A regression technique is a predictive 

modeling technique which examines the 

association among a dependent (target) and 

independent variable (s) (predictor). Commonly 

used regression techniques are: 

 Linear Regression 

 Logistic Regression 

 Polynomial Regression 

 Lasso Regression 

 Multivariate Regression 

 

Unsupervised Learning 

In an unsupervised learning, there is no previous 

information and everything is done dynamically. If 

the machine learning task is trained only with a set 

of inputs, it is called unsupervised learning [3], 

which will be able to find the structure or 

relationships between different inputs. Most 

important unsupervised learning is clustering, 
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which will create different cluster of inputs and will 

be able to place new input in an appropriate 

cluster. All clustering algorithms come under 

unsupervised learning algorithms. 

 

 K – Means clustering 

 Hierarchical clustering 

 Make Density Based Clustering. 

 

Software Metrics 

Extensive investigation has also been carried out to 

predict the number of defects in a component by 

means of software metrics. Software metrics is a 

quantitative measure which is used to assess the 

progress of the software. Three parameters are 

used and measured as depicted in Figure 2. 

 

 
Figure 2: Various parameters of software metrics 

 

Process metrics assess the efficacy and worth of 

software process, determine maturity of the 

process, effort required in the process, effectiveness 

of defect deduction during development, and so 

on. Product metrics is the measurement of work 

product created during different phases from 

requirements to deployment of a software 

development. Project metrics are the measures of 

software project and are used to monitor and 

control the project execution. 

 

Objectives of Research 

 Quantitatively measuring the size of the 

software 

 Complexity level is assessed. 

 Identifying the release date of the software 

 Estimation is done on resources, cost and 

schedule. 

 

Software Metrics are used for Defect Prediction 

 LOC metric 

 Cyclomatic Complexity (McCabe’s Complexity) 

 Halstead Metrics 

 McCabe Essential Complexity(MEC) Metric 

 The McCabe Module Design Complexity 

(MMDC) metric 

 Object oriented metrics. 

IV. SOFTWARE DEFECT DATASET 
 

The fault prediction dataset is a group of models 

and metrics of software systems and their histories. 

The aim of such a dataset is to permit people to 

evaluate different fault prediction approaches and 

to evaluate whether a new technique is an 

enhancement over existing ones. PROMISE, AEEEM, 

ReLink, MORPH, NASA, and SOFTLAB [4] are the 

defect datasets which are publically available to the 

user. 

 

Anuradha Chug et al. [3] used numerous NASA 

defect datasets for predicting defects using 

supervised and unsupervised learning algorithms.  

Jaechang Nam et al. [4] applied various defect 

datasets includes NASA, PROMISE, AEEEM, 

SOFTLAB and MORPH for predicting defects by 

using machine learning algorithms.. 

 

Performance Measures 

Performance measures are used to evaluate the 

accuracy of a prediction model. A prediction model 

can be constructed by using both classification and 

clustering algorithms [3]. Separate performance 

measures are available for both classification and 

clustering techniques. 

 

Xiao Yu et al. [8] applied probability of detection 

(pd), probability of false alarm (pf) and g- measure 

as measure to evaluate the performance of a defect 

prediction model.. 

 

Gopi Krishnan et al. [13] used AUC to measure the 

performance of a developed defect prediction 

model. 

 

Some of the classification evaluation measures are: 

 Recall 

 Precision 

 F-measure 

 G-measure 

 AUC 
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 ROC 

 Mean absolute error(MAE) 

 Root mean square error(RMSE) 

 Relative absolute error and accuracy(RAE) 

 

Some of the clustering evaluation measures are: 

 Time taken 

 Cluster instance 

 Number of iterations 

 Incorrectly clustered instance 

 Log likelihood 

 

V. CONCLUSION  
 

At present the growth of software based system are 

rising from the previous years due to its advantage. 

On the other hand, the quality of the system is 

essential prior it is delivered to end in order to 

improve the efficiency and quality of software 

development, software faults can be predicted at 

early phase of life cycle itself. To predict the 

software faults a variety of data mining techniques 

can be used. The key objective of this study was to 

assess the previous research works with respect to 

software defect which applies data mining 

techniques, datasets used, performance measures 

used, tools they used, and we classified it in to 

three such as based on classification, clustering and 

regression methods.  
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