
Mr. Raja Lodhi, 2024, 12:3

ISSN (Online): 2348-4098

ISSN (Print): 2395-4752

© 2024 Mr. Raja Lodhi. This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly credited.

International Journal of Science,
Engineering and Technology

An Open Access Journal

A Survey of Software Defect Prediction Using

Machine Learning Algorithms
Research Scholar Mr. Raja Lodhi, Assistant Professor Rajkumar Sharma

Department of Computer Science & Engg.

Lakshmi Narain College of Technology, Bhopal

I. INTRODUCTION

1. Software Defect Prediction

Software Defect

A software defect is an error, bug, flaw, fault,

malfunction or mistakes in software that causes it to

create an erroneous or unpredicted outcome. Faults

are essential properties of a system. They appear

from design or manufacture, or external

environment. Software flaws are programming

errors which cause different performance compared

with anticipation. The majorities of the faults are

from source code or deign, some of them are from

the incorrect code generating from compilers. For

software developers and clients, software faults are

a danger problem. Software defects not merely

decrease software quality, increase costing but also

delay the development schedule. Software fault

predicting is proposed to solve this sort of trouble.

SDP can efficiently progress the effectiveness of

software testing and direct the allocation of

resources. To develop quality software, software

flaws have to be detected and corrected at early

phase of SDLC.

Software Defect Management

The main aim of software defect management is to

amplify the quality of software by identifying and

fixing the defects in the early phase of SDLC. The

various phases of SDLC are requirements gathering

phase, analysis phase, designing phase, and coding

phase, testing phase, implementation and

maintenance phase. SDP plays a vital role in

developing high quality software. Identifying the

defects in a preliminary stage of a SDLC is a very

complicated job, hence efficient methods to be

applied in order to remove them.

Abstract- Software Defect Prediction [SDP] plays an important role in the active research areas of software

engineering. A software defect is an error, bug, flaw, fault, malfunction or mistake in software that causes it to

create a wrong or unexpected outcome. The major risk factors related with a software defect which is not

detected during the early phase of software development are time, quality, cost, effort and wastage of

resources. Defects may occur in any phase of software development. Booming software companies focus

concentration on software quality, particularly during the early phase of the software development .Thus the

key objective of any organization is to determine and correct the defects in an early phase of Software

Development Life Cycle [SDLC]. To improve the quality of software, data mining techniques have been applied

to build predictions regarding the failure of software components by exploiting past data of software

components and their defects. This paper reviewed the state of art in the field of software defect management

and prediction, and offered data mining techniques in brief.

Keywords- Software defect prediction, data mining, machine leaning.

 Mr. Raja Lodhi. International Journal of Science, Engineering and Technology,

 2024, 12:3

2

The main stages in defect handling include [1]:

 Identifying the defects

 Categorizing the defects

 Analyzing the defects

 Predicting the defects

 Removing the defects

The first step is to identify the occurrence of defects

in software. Code inspection, building a prototyping

model and testing are used to identify the defects

in software. After identifying the defects, the

defects should be categorized, analyzed, predicted

and detected.

Software Defect Prediction [SDP]

SDP identifies the module that are defective and it

requires wide range of testing. Early identification

of an error leads to effective allocation of resources,

reduces the time and cost of developing a software

and high quality software. Therefore, an SDP model

plays a vital role in understanding, evaluating and

improving the quality of a software system.

II. LITERATURE REVIEW

Peng He et al. conducted an empirical study on

software defect prediction with a simplified metric

set [2]. Research has been conducted on 34 releases

of 10 open source projects available at PROMISE

repository. The finding indicates the result of top-k

metrics or minimum metric subset provides

acceptable output compared with benchmark

predictors. The simplified or minimum mertic set

works well in case of minimum resources.

Grishma BR et al. investigated root cause for fault

prediction by applying clustering techniques and

identifies the defects occurs in various phases of

SDLC.

In this research they used COQUALMO prediction

model to predict the fault in a software and applied

various clustering algorithms like k-means,

agglomerative clustering, COBWEB, density based

scan, expectation maximization and farthest first.

Implementation was done using Weka tool. Finally

they conclude that k-means algorithm works better

when compared with other algorithms [1].

Anuradha Chug et al. used three supervised

[classification] learning algorithms and three

unsupervised [clustering] learning algorithms for

predicting defects in software. NASA MDP datasets

were run by using Weka tool. Several measures like

recall and f-measure are used to evaluate the

performance of both classification and clustering

algorithms. By analyzing different classification

algorithms Random Forest has the highest accuracy

of MC1 dataset and also yields highest value in

recall, f-measure and receiver operating

characteristic [ROC] curve and it indicates minimum

number of root mean square errors in all

circumstances. In an unsupervised algorithm k-

means has the lowest number of incorrect clustered

instances and it takes minimum time for predicting

faults [3].

Jaechang Name et al. applied Hetrogeneous Defect

Prediction [HDP] to predict defects in with-in and

across projects with different datasets. Metric

selection, metrics matching and building a

prediction model are the 3 methods used in this

work. In this research they used various datasets

from NASA, PROMISE, AEEEM, MORPH and

SOFTLAB. Source and target datasets are used with

different metric sets. For selecting metrics feature

selection techniques such as gain ratio, chi-square,

relief-F and significance attribute selection are

applied to the source. To match source and target

metrics various analyzers like Percentile based

Matching (PAnalyzer), Kolmogorov – Smirnov test

based matchiong (KSAnalyzer), Spearman’s

Correlation based Matching (SCOAnalyzer) are

used. Cutoff threshold value is applied to all pair

scores and poorly matched metrics are removed by

comparison. Area Under the Receiver Operator

Characteristic Curve [AUC] measure is used to

compare the performance between different

models. HDP is compared with 3 baselines – WPDP,

CPDP-CM, CPDP-IFS by applying win/loss/tie

evaluation. The experiments are repeated for 1000

times and Wilcoxon signed rank test (P<0.05) is

applied for all AUC values and baselines.

Performance is measured by counting the total

number of win/loss/tie. When a cutoff threshold

value gets increased in PAnalyzer and KSAnalyzer,

the results (win) also gets increased. Logistic

 Mr. Raja Lodhi. International Journal of Science, Engineering and Technology,

 2024, 12:3

3

Regression (LR) model works better when there is a

linear relationship between a predictor and bug-

prone [4].

Logan Perreault et al. applied classification

algorithm such as naïve bayes, neural networks,

support vector machine, linear regression, K-nearest

neighbor to detect and predict defects. The authors

used NASA and tera PROMISE datasets. To measure

the performance they used accuracy and f1

measure with clearly well defined metrics such as

McCabe Metrics and Halstead Metrics. 10-fold cross

validation is used in which 90% of data are used for

training and 10% of data are used for testing.

ANOVA and tukey test was done for 5 dataset and

5 response variables. 0.05 is set as significance level

for PC1, PC2, PC4 and PC5 dataset and 0.1 as PC3

dataset. Weka tool is used for implementation.

Implementations of these 5 algorithms are available

on Github repository. Finally the authors conclude

that all datasets are similar and they are written in C

or C++ and in future the work can be extended by

selecting the datasets that are written in Java and

instead of using weka tool for implementation

some other tool can also be used [5].

Ebubeogu et al. employed predictor variables like

defect density, defect velocity and defect

introduction time which are derived from defect

acceleration and used to predict the total number

of defects in a software. MAChine – Learning –

Inspired [MACLI] approach is used for predicting

defects. The proposed framework for defect

prediction has two phases. 1) Data pre- processing

phase. 2) Data analysis phase [6].

Rayleigh distribution curve is a proposed modeling

technique used to identify predictor variables and

indicates the number of defects involved in

developing SDLC. Simple linear regression model

and multiple linear regression models are used to

predict the number of defects in software. The

authors conclude that defect velocity performed

best in predicting the number of defects with the

strongest correlation co-efficient of 0.98.

Yongli et al. applied data filters to datasets in order

to increase the performance of CPDP. In this

research the authors proposed Hierarchical Select-

Based Filter [HSBF] strategy. HSBF is based on

hierarchical data selection from software project

level to software module level. Max value, min

value, mean value and standard deviation are the

four indicators which are merged together to

represent the distributional characteristic of a given

project. To correct the inconsistencies in software

metrics between projects, cosine distance is

applied. In this study, PROMISE datasets and

Confusion matrix are used to evaluate the

performance measure. Due to imbalanced dataset

probability of detection [pd], probability of false

alarm [pf] and AUC are also applied to measure the

performance. Therefore the authors conclude from

the experiments, Naïve Bayes [NB] algorithm

performs better than Support Vector Machine. For

smaller projects Target - Project Data Guided Filter

[TGF] is used and for larger projects Hierarchical

Select Based Filter [HSBF] is used for data selection

from multi-source projects [7].

Xiao Yu et al. build a prediction model for Cross

Company Defect Prediction [CCDP] by applying six

imbalance learning methods such as under

sampling techniques (random under sampling and

near miss), over sampling techniques [SMOTE and

ADASYN] and oversampling followed by under

sampling [SMOTE Limks, TOMEK, SMOTE ENN] [8].

PROMISE datasets and classification algorithms

such as NB, Random Forest [RF] and Linear

Regression [LR] are applied. Probability of

detection, probability of false alarm and g-measure

are used to measure the performance. The authors

conclude that NB performs better in predicting

defects and it has a high pf value. Under sampling

method works better with g-measure.

Shamsul Huda et al. [9] studied that developing a

defect prediction model by using more number of

metrics is a tedious process. So that a subset of

metrics can be determined and selected. In this

research two novel hybrid SDP models such as

wrappers and filters are used for identifying the

metrics. These two models combine the training of

metric selection and fault prediction as a single

process. In this research different datasets and

classification algorithms such as Support Vector

 Mr. Raja Lodhi. International Journal of Science, Engineering and Technology,

 2024, 12:3

4

Machine [SVM] and artificial neural network are

used. Performance was measured by using AUC and

MEWMA (Multivariate Exponentially Weighted

Moving Average), implementation was done by

using liblinear tool and mine tool.

Gopi Krishnan et al. applied regression models to

build a defect classifier. In this work tera- PROMISE

defect datasets and machine learning algorithms

such as Linear/Logistic Regression, RF, K-Nearest

Neighbour, SVM, CART and Neural Networks are

used to build a prediction model. Two defect

classifiers are developed namely discretized defect

classifier and regression based defect classifier. In

this work AUC is applied to evaluate the

performance of a model and the authors conclude

that there is a loss of information in discretized

classifier. Regression-based classifier uses

continuous defect counts as the target variable for

determining a defect module.

Xinli Yang et al. proposed TLEL [Two Layer

Ensemble Learning] to predict defects at change

level. The advantages of ensemble methods are:

 Better performance can be achieved compared

with single classifier.

 Combines bagging and stacking methods.

TLEL has two layers namely inner layer and outer

layer. In an inner layer, decision tress and bagging

are merged to develop a random forest model. In

an outer layer, random under sampling is used to

train various random forest models and stacking is

used to train ensemble techniques. TLEL is

compared with 3 baseline methods such as deeper,

DNC and MKEL. Performance is measured by using

cost effectiveness and F1-Score.

III. METHODOLOGY

Mostly three approaches are performed to evaluate

prediction models.

1. With-in Project Defect Prediction

A prediction model can be constructed by

collecting historical data from a software project

and predicts faults in the same project are known

as WPDP. WPDP performed best, if there is enough

quantity of historical data available to train models.

Turhan, Burak, et al. [15] suggested that software

defect prediction areas typically focus on

developing defect prediction models with existing

local data (i.e. within project defect prediction). To

apply these models, a company should have a data

warehouse, where project metrics and fault related

information from past projects are stored.

Zimmermann et al. [11] notify that defect prediction

performs better within projects as long as there is

an adequate data to train models. That is, to

construct defect predictors, we need access to

historical data. If the data is absent, Cross Company

Defect Prediction (CCDP) can be applied.

The drawbacks of with-in project defect prediction

are:

 It is not constantly possible for all projects to

collect such historical data

 Hence 100% accuracy cannot be achieved using

WPDP.

On the other hand, historical data is often not

presented for new projects and for many

organizations. In this case, successful defect

prediction is complicated to accomplish. To tackle

this problem, cross project defect prediction

strategy was applied.

2. Cross Project Defect Prediction [CPDP] for

Similar Dataset

CPDP is used in a mode such that a project does

not have sufficient historical data to train a model.

So that, a prediction model is developed for one

project and it has been applied for some other

project or across project. i.e., transferring prediction

models from one project to another project [10].

The drawbacks of applying CPDP is that it desires

projects that have similar metric set, implication

that the metric sets must be equal among projects.

As an outcome, present techniques for CPDP are

complicated to relate across projects with dissimilar

dataset.

 Mr. Raja Lodhi. International Journal of Science, Engineering and Technology,

 2024, 12:3

5

3. Cross Project Defect Prediction [CPDP] for

Hetrogeneous Dataset

To deal with the inadequacy of using only similar

dataset for CPDP, heterogeneous defect prediction

[HDP] technique was proposed to predict defects

across projects with imbalanced metric sets [4].

Defect Prediction Techniques

To improve the effectiveness and quality of

software development and to predict defects in

software, various data mining techniques can be

applied to different Software Engineering areas. The

broadly used SDP techniques are datamining

techniques and machine learning techniques are

depicted in Figure 1.

Figure 1: Machine learning algorithms

To predict a fault in software various data mining

techniques are applied. In data mining, learning can

be of two types:

 Supervised Learning

 UnSupervised Learning

Supervised Learning

Learning techniques are intended to determine

whether software module has a higher fault hazards

or not. In supervised learning data is extracted

using the target class.

If machine learning task is trained for each input

with consequent target, it is called supervised

learning, which will be able to provide target for

any new input after adequate training. Targets

expressed in some classes are called classification

problem.

If the target space is continuous, it is called

regression problem. All classification and regression

algorithms appear under supervised learning. Some

of the supervised learning algorithms are:

 Decision tree classification algorithm

 Support vector machine (SVM)

 k-Nearest Neighbors

 Naive Bayes

 Random forest

 Neural networks

 Polynomial regression

 SVM for regression

Logan Perreault et al. [5] applied classification

algorithm such as naive bayes, neural networks,

support vector machine, linear regression, K-

nearest neighbour to detect and predict defects.

Ebubeogu et al. employed [6] simple linear

regression model and multiple linear regression

model to predict the number of defects in a

software.

Regression Techniques

A variety of regression techniques have been

proposed in predicting amount of software defects

[15]. A regression technique is a predictive

modeling technique which examines the

association among a dependent (target) and

independent variable (s) (predictor). Commonly

used regression techniques are:

 Linear Regression

 Logistic Regression

 Polynomial Regression

 Lasso Regression

 Multivariate Regression

Unsupervised Learning

In an unsupervised learning, there is no previous

information and everything is done dynamically. If

the machine learning task is trained only with a set

of inputs, it is called unsupervised learning [3],

which will be able to find the structure or

relationships between different inputs. Most

important unsupervised learning is clustering,

 Mr. Raja Lodhi. International Journal of Science, Engineering and Technology,

 2024, 12:3

6

which will create different cluster of inputs and will

be able to place new input in an appropriate

cluster. All clustering algorithms come under

unsupervised learning algorithms.

 K – Means clustering

 Hierarchical clustering

 Make Density Based Clustering.

Software Metrics

Extensive investigation has also been carried out to

predict the number of defects in a component by

means of software metrics. Software metrics is a

quantitative measure which is used to assess the

progress of the software. Three parameters are

used and measured as depicted in Figure 2.

Figure 2: Various parameters of software metrics

Process metrics assess the efficacy and worth of

software process, determine maturity of the

process, effort required in the process, effectiveness

of defect deduction during development, and so

on. Product metrics is the measurement of work

product created during different phases from

requirements to deployment of a software

development. Project metrics are the measures of

software project and are used to monitor and

control the project execution.

Objectives of Research

 Quantitatively measuring the size of the

software

 Complexity level is assessed.

 Identifying the release date of the software

 Estimation is done on resources, cost and

schedule.

Software Metrics are used for Defect Prediction

 LOC metric

 Cyclomatic Complexity (McCabe’s Complexity)

 Halstead Metrics

 McCabe Essential Complexity(MEC) Metric

 The McCabe Module Design Complexity

(MMDC) metric

 Object oriented metrics.

IV. SOFTWARE DEFECT DATASET

The fault prediction dataset is a group of models

and metrics of software systems and their histories.

The aim of such a dataset is to permit people to

evaluate different fault prediction approaches and

to evaluate whether a new technique is an

enhancement over existing ones. PROMISE, AEEEM,

ReLink, MORPH, NASA, and SOFTLAB [4] are the

defect datasets which are publically available to the

user.

Anuradha Chug et al. [3] used numerous NASA

defect datasets for predicting defects using

supervised and unsupervised learning algorithms.

Jaechang Nam et al. [4] applied various defect

datasets includes NASA, PROMISE, AEEEM,

SOFTLAB and MORPH for predicting defects by

using machine learning algorithms..

Performance Measures

Performance measures are used to evaluate the

accuracy of a prediction model. A prediction model

can be constructed by using both classification and

clustering algorithms [3]. Separate performance

measures are available for both classification and

clustering techniques.

Xiao Yu et al. [8] applied probability of detection

(pd), probability of false alarm (pf) and g- measure

as measure to evaluate the performance of a defect

prediction model..

Gopi Krishnan et al. [13] used AUC to measure the

performance of a developed defect prediction

model.

Some of the classification evaluation measures are:

 Recall

 Precision

 F-measure

 G-measure

 AUC

 Mr. Raja Lodhi. International Journal of Science, Engineering and Technology,

 2024, 12:3

7

 ROC

 Mean absolute error(MAE)

 Root mean square error(RMSE)

 Relative absolute error and accuracy(RAE)

Some of the clustering evaluation measures are:

 Time taken

 Cluster instance

 Number of iterations

 Incorrectly clustered instance

 Log likelihood

V. CONCLUSION

At present the growth of software based system are

rising from the previous years due to its advantage.

On the other hand, the quality of the system is

essential prior it is delivered to end in order to

improve the efficiency and quality of software

development, software faults can be predicted at

early phase of life cycle itself. To predict the

software faults a variety of data mining techniques

can be used. The key objective of this study was to

assess the previous research works with respect to

software defect which applies data mining

techniques, datasets used, performance measures

used, tools they used, and we classified it in to

three such as based on classification, clustering and

regression methods.

REFERENCES

1. Grishma, B. R., and C. Anjali. "Software root

cause prediction using clustering techniques: A

review." Communication Technologies (GCCT),

2015 Global Conference on. IEEE, 2015.

2. He, Peng, et al. "An empirical study on software

defect prediction with a simplified metric set."

Information and Software Technology 59

(2015): 170-190.

3. Chug, Anuradha, and Shafali Dhall. "Software

defect prediction using supervised learning

algorithm and unsupervised learning

algorithm." (2013): 5-01.

4. Nam, Jaechang, et al. "Heterogeneous defect

prediction." IEEE Transactions on Software

Engineering (2017).

5. Perreault, Logan, et al. "Using Classifiers for

Software Defect Detection." 26th International

Conference on Software Engineering and Data

Engineering, SEDE. 2017.

6. Felix, Ebubeogu Amarachukwu, and Sai Peck

Lee. "Integrated Approach to Software Defect

Prediction." IEEE Access 5 (2017): 21524-21547.

7. Li, Yong, et al. "Evaluating Data Filter on Cross-

Project Defect Prediction: Comparison and

Improvements." IEEE Access 5 (2017): 25646-

25656.

8. Yu, Xiao, et al. "Using Class Imbalance Learning

for Cross-Company Defect Prediction." 29th

International Conference on Software

Engineering and Knowledge Engineering (SEKE

2017). KSI Research Inc. and Knowledge

Systems Institute, 2017.

9. Huda, Shamsul, et al. "A Framework for

Software Defect Prediction and Metric

Selection." IEEE Access (2017).

10. Ni, Chao, et al. "A Cluster Based Feature

Selection Method for Cross-Project Software

Defect Prediction." Journal of Computer Science

and Technology 32.6 (2017): 1090- 1107.

11. Zimmermann, Thomas, et al. "Cross-project

defect prediction: a large scale experiment on

data vs. domain vs. process." Proceedings of

the the 7th joint meeting of the European

software engineering conference and the ACM

SIGSOFT symposium on The foundations of

software engineering. ACM, 2009.

12. Laradji, Issam H., Mohammad Alshayeb, and

Lahouari Ghouti. "Software defect prediction

using ensemble learning on selected features."

Information and Software Technology 58

(2015): 388-402.

13. Rajbahadur, Gopi Krishnan, et al. "The impact of

using regression models to build defect

classifiers." Proceedings of the 14th

International Conference on Mining Software

Repositories. IEEE Press, 2017.

14. Yang, Xinli, et al. "TLEL: A two-layer ensemble

learning approach for just-in-time defect

prediction." Information and Software

Technology 87 (2017): 206-220.

15. Turhan, Burak, et al. "On the relative value of

cross-company and within-company data for

 Mr. Raja Lodhi. International Journal of Science, Engineering and Technology,

 2024, 12:3

8

defect prediction." Empirical Software

Engineering 14.5 (2009): 540-578.

