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I. INTRODUCTION 
 

The advent of Deepfake technology has sparked 

widespread concern due to its potential for 

manipulating visual media, particularly images and 

videos. This technology holds significant 

implications across various domains, including 

politics, entertainment, and the criminal justice 

system. Public figures, such as celebrities, athletes, 

and politicians, are particularly vulnerable to the 

proliferation of Deepfakes, given the abundance of 

their images and videos on the internet. 

 

While Deepfake techniques are frequently exploited 

for creating adult content, they can also be misused 

for purposes such as mocking individuals, 

exacerbating cyberbullying, and spreading false 

information. Consequently, young people are 

among the most affected by the negative impacts 

of Deepfakes. 

 

In response to these challenges, researchers have 

explored the use of Convolutional Neural Networks 

(CNNs) for detecting Deepfake images. By 

evaluating previous research and approaches,  

 

identifying potential pitfalls, and outlining future 

directions, studies in this field aim to develop 

robust methods for Deepfake detection. 

Encouragingly, researchers have demonstrated 

promising results in accurately identifying deeply 

faked photos using CNN-based techniques. 

 

 
Fig 1: Sample Image 

 

II. RELATED WORK 
 

In this study, a combination of CNN and LSTM is 

utilized for frame feature extraction and temporal 

sequence analysis. The network architecture 

consists of two fully-connected layers followed by a 

dropout layer. The dataset comprises 600 deepfake 
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videos collected from various video-hosting 

websites and the HOHA dataset, achieving an 

accuracy of 97.1% with 80 frames. 

  

This research introduces a variant of the VGG 

network named NA-VGG, incorporating a noise and 

image augmentation layer prior to the VGG16 

network. The Celeb-DF dataset is employed for 

training and evaluation, with images extracted from 

Deepfake videos. The model achieves an accuracy 

of 85.7%. 

 

The proposed architecture transforms RGB images 

into residuals and processes them through three-

layer groups containing a convolutional layer, LReLu 

activation, and max pooling layer. The output is 

then fed into two fully- connected layers followed 

by a SoftMax layer. The dataset is prepared from 

the CELEBAHQ dataset. 

 

This study utilizes optical flow to distinguish 

between authentic and Deepfake images. A pre-

trained CNN model with VGG-16/ResNet50 is fed 

optical flows, followed by sigmoid activation to 

classify frames. The FaceForensics++ dataset yields 

an accuracy of 81.61% with VGG16 and 75.46% with 

ResNet50. 

 

The proposed CFFN architecture comprises three 

dense units with a transition layer of 0.5 and a 

growth rate of 24.  

 

A convolutional layer with 128 channels and a 3x3 

kernel size is concatenated to the output layer of 

the last dense unit. The dataset used includes 

10,177 identities and 202,599 aligned face images 

extracted from CelebA. This method achieves a 

recall value of 0.900. 

 

In this work, CNN basic architecture is employed, 

and the model is pre-trained using DenseNet and 

ResNet iterations.  

 

The dataset consists of 70,000 genuine faces and 

one million fake faces from the Flickr dataset, 

resized to 256 pixels and combined. The 

architecture achieves an accuracy of 81.6% with 

ResNet50, the highest among the tested models. 

III. MATERIALS AND METHODS 
 

1. Dataset 

To improve model generalization, a comprehensive 

dataset of 140,000 Kaggle images (70,000 real, 

70,000 fake) was randomly sampled. 20,000 images 

were selected for training, ensuring diversity and 

balanced representation. This approach enabled 

robustness and accurate classification of real and 

fake images, forming a foundational step in our 

research. 

 

2. Data Pre-processing 

Data augmentation serves as a pre-processing 

technique aimed at artificially expanding the 

training dataset by introducing various alterations 

to the original images. Initially, pixel values are 

normalized within the range of 0 to 1 by dividing 

them by 255. Subsequently, a range of 

transformations is applied, including random 

rotations between -10 and +10 degrees, horizontal 

and vertical movements up to 10% of the image's 

width and height, shear transformations up to 20% 

of the image's width, and random zoom within a 

10% interval. Additionally, horizontal reversal is 

applied with a 50% probability. To handle newly 

created pixels, padding space is utilized to replicate 

the values of the nearest pixels. These 

augmentation techniques are employed to expand 

the training dataset, promote diversity, and 

enhance the generalizability of the model, all of 

which are essential aspects of our image 

classification research. 

 

IV. PROPOSED MODEL 
 

The proposed model is a Convolutional Neural 

Network (CNN) architecture specifically tailored for 

classifying images as either deep fakes or non-deep 

fakes. It leverages the Xception model, a pre-

trained CNN with weights obtained from extensive 

training on the ImageNet dataset. By utilizing the 

Xception model as a foundation, the proposed 

architecture benefits from its advanced feature 

separation capabilities. Initially, the model 

incorporates the top layers of the Xception model 

for initial feature extraction. Subsequently, a series 

of fully connected layers are added to further refine 
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the extracted features.The first fully connected layer 

comprises 512 units and employs the Rectified 

Linear Unit (ReLU) activation function, facilitating 

the capture of complex nonlinear relationships in 

the data. To mitigate the risk of overfitting, a 

dropout layer with a rate of 0.5 is introduced after 

the initial fully connected layer. Dropout randomly 

deactivates some input units during training, 

encouraging the network to develop stronger and 

more generalized representations while reducing 

reliance on specific features.Following this, another 

fully connected layer with 128 units and ReLU 

activation is added, followed by another dropout 

layer with a rate of 0.5 to further regularize the 

model.  

 

 
Fig 2: Visual representation of proposed CNN 

model 

 

 
Fig 3: Model summary 

This additional layer aids in further smoothing the 

model's predictions. Finally, a fully connected layer 

with 64 units and ReLU activation is incorporated 

into the architecture. The output layer consists of a 

single unit with sigmoid activation, providing a 

probability score indicating the likelihood that the 

image is classified as a deep fake. The sigmoid 

activation function bounds the output between 0 

and 1, facilitating an interpretable probabilistic 

interpretation. 

 

V. EXPERIMENTAL SETUP 
 

The model undergoes evaluation on both the 

training and validation datasets. Assessment of the 

training set reveals a low loss value of 0.0458, 

suggesting minimal disparities between predicted 

and actual values. Achieving a high accuracy of 

98.56%, the model demonstrates its proficiency in 

correctly classifying deep and non-deep fake 

images during training. Moving to the validation 

set, a slightly higher loss value of 0.1232 is 

observed. Nonetheless, with an accuracy score of 

95.11%, the model exhibits robust generalization 

capabilities, maintaining a high level of accuracy 

even on unseen data. 

 

 
Fig 4: Accuracy and loss graph 

 

VI. RESULTS AND DISCUSSIONS 
  

The evaluation results validate the proposed 

model's effectiveness in accurately classifying 

deepfake images. The model achieved notable 

precision, recall, and F1-scores for both the "real" 

and "fake" classes, with values ranging from 0.94 to 

0.95. Moreover, the model exhibited an overall 

accuracy of 95% on the test dataset, affirming its 

robustness in distinguishing between deepfake and 

non-deepfake images. These findings substantiate 

the model's potential for practical implementation 
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in real-world scenarios, contributing to the 

advancement of deepfake detection techniques. 

 

 
Fig 5: Confusion Matrix 

 

 
Fig 6: Obtain Results 

 

VII. CONCLUSION  
 

This research paper presents a deep learning 

approach utilizing Convolutional Neural Networks 

(CNN) for deep fake prediction. The model is 

trained on a dataset containing both real and fake 

images, and transfer learning is employed using an 

Xception model pre-trained on the ImageNet 

dataset. By leveraging transfer learning, the model 

aims to discern patterns and features unique to 

each class. The study's findings indicate that the 

CNN-based approach demonstrates promising 

performance in identifying fake images. 

Nevertheless, there is room for further 

enhancement to achieve even better results. 

Additionally, exploring the utilization of alternative 

pre-trained models besides Xception and 

conducting a comparative analysis of the results 

could provide valuable insights into the most 

effective model. Furthermore, to enhance the 

model's generalization capabilities, collecting 

samples from diverse sources can be pursued. 
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