
Vaibhav, 2024, 12:3

ISSN (Online): 2348-4098

ISSN (Print): 2395-4752

© 2024 Vaibhav. This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly credited.

International Journal of Science,
Engineering and Technology

An Open Access Journal

Developing an End-to-End Secure Chat Application
Vaibhav, Bhaskar Chauhan

Department of Computer Science & Engineering,

Dronacharya Group of Institutions, Greater Noida, India

I. INTRODUCTION

With the rapid proliferation of mobile devices,

smartphones have seamlessly integrated into our

daily lives. Chat applications, in particular, have

undergone significant evolution, reshaping the

landscape of social media with their compelling

features [1]. These apps provide real-time

messaging capabilities and a plethora of services,

including text exchanges, media sharing, and file

transfers. Furthermore, they offer cross-platform

compatibility, catering to users across Web,

Android and IOS ecosystems. Currently, these chat

apps boast hundreds of millions of monthly active

users [2].

These applications typically adopt one of two

architectures: client-server or peer-to-peer

networks. In a peer-to-peer network, there's no

central server, and each user manages their data

storage independently. Conversely, client-server

networks rely on dedicated servers to facilitate

communication, with data centralized on these

servers [3].

However, despite their widespread adoption,

security and privacy in chat applications remain

critical yet often overlooked aspects. A study

conducted by the Electronic Frontier Foundation

revealed that many popular messaging apps fall

short in meeting basic security standards. This laxity

raises concerns about potential misuse of user

conversations for various purposes. The prospect of

private conversations being accessible to

unauthorized entities is particularly alarming from a

privacy standpoint.

While many applications rely solely on Transport

Layer Security (TLS) to secure communication

channels, this approach leaves messages vulnerable

to interception by service providers or attackers [4].

To uphold privacy and protection, messages should

be encrypted end-to-end, ensuring that only the

sender and receiver can access the content, thereby

safeguarding against third-party intrusion.

Additionally, ensuring the security of local storage

on devices adds another layer of protection [5].

In our research paper, we aim to address these

concerns by proposing an end-to-end security

framework. This framework not only guarantees

Abstract- Chat applications have emerged as indispensable tools on smartphones, offering users the ability to

exchange text messages, images, and files at no cost. However, ensuring the security of these communications is

paramount. This paper proposes a secure chat application that implements End-to-End encryption, safeguarding

private information exchanged between users and providing robust data protection. The application also

addresses storage security concerns. By outlining a set of requirements for a secure chat application, this paper

informs the design process. The proposed application is evaluated against these requirements and compared with

existing popular alternatives to assess its security features. Furthermore, the application undergoes rigorous

testing to validate its End-to-End security capabilities

Keywords- Secure chat application, Security End to end encryption, Data protection

 Vaibhav. International Journal of Science, Engineering and Technology,

 2024, 12:3

2

that only authorized parties can access messages

but also prioritizes storage protection and facilitates

fast message transfers between users. By

emphasizing security, privacy, and speed, our

proposed framework seeks to enhance the overall

user experience while mitigating risks associated

with communication in chat applications.

The main contributions of this paper are the

following:

 Propose client-server mobile chat application

which supports the status of the

communicating parties whether online or

offline.

 Provide a friendship request service.

 Secure key exchange, then calculate the session

key.

 Secure exchange of end-to-end messages.

 Analysis and Test the proposed chat.

II. CHAT APPLICATIONS

In this section, we provide a concise overview of

several widely-used chat applications available in

the market, focusing on their respective security

and privacy considerations. Regrettably, the lack of

public availability or open-source nature of certain

chat applications poses challenges for evaluation by

developer communities, security experts, or

academic researchers.

1. Viber

Viber is a popular instant messaging and Voice over

IP (VoIP) application designed for smartphones,

developed by Viber Media. It allows users to

exchange messages, images, videos, and audio

media messages. Recently, Viber introduced end-

to-end encryption for one-to-one and group

conversations, provided that all participants are

using the latest Viber version 6.0 for Android, iOS,

or Windows 10. However, there are some

limitations to this encryption, particularly regarding

attachments sent via the iOS Share Extension on

iPhone and iPad, which are not currently supported

[6].

Despite its encryption efforts, Viber has faced

criticism regarding privacy issues, such as adding

contacts without their explicit consent or adding

them to groups without permission. Additionally,

concerns have been raised about the security of

locally stored data. One significant challenge is that

Viber is not open source, making it difficult for

independent evaluation and scrutiny of its security

practices.

2. WhatsApp

WhatsApp is one of the most popular messaging

application, recently enabled end-to-end

encryption for its 1 billion users across all platforms.

WhatsApp uses part of a security protocol

developed by Open Whisper System, so provides a

security-verification code that can share with a

contact to ensure that the conversation is

encrypted [7]. It is difficult to trust in WhatsApp

application completely because the application is

not open source, making it difficult to verify the

functioning process and match them with the work

of the encryption protocol which was announced.

3. Telegram

Telegram is an open source instant messaging

service enables users to send messages, photos,

videos, stickers and files [8]. Telegram provides two

modes of messaging is regular chat and secret chat.

Regular chat is client- server based on cloud-based

messaging, it does not provide end-to-end

encryption, stores all messages on its servers and

synchronizes with all user devices [9]. More, local

storage is not encrypted by default. Secret chat is

client-client provides end-to-end encryption.

Contrary to regular chat messages, messages that

are sent in a secret chat can only be accessed on

the device that has been initiated a secret chat and

the device that has been accepted a secret chat

they cannot be accessed on other devices.

Messages sent within secret chats can be deleted at

any time and can optionally self-destruct [8].

Telegram uses its own cryptographic protocol

MTProto, and has been criticized by a significant

part of the cryptographic community about its

security[9].

The registration process of Telegram, Viber and

WhatsApp depend on SMS. SMS is transported via

 Vaibhav. International Journal of Science, Engineering and Technology,

 2024, 12:3

3

Signaling System 7 (SS7) protocol. The vulnerability

lies in SS7 [10]. Attackers exploited SS7 protocol to

login into victim's account by intercepting SMS

messages [11]. Because of Telegram cloud-based,

the attacker exploits it and makes full control of the

victim account and can prevent him to enter into

his account. To make the account more secure

should activate two-factor authentication [12].

4. Facebook Messenger

Facebook Messenger is a popular messaging

service available for Android and iOS. It provides

two modes of messaging is regular chat and secret

conversations. Regular chat does not provide end-

to-end encryption only secure communication by

using TLS, and it stores all messages on its servers.

Secret conversations have the same idea of

Telegram secret chat [13].

III. PROPOSED ARCHITECTURE

1. Secure Chat Requirements

In this section, we propose a set of requirements to

make secure chat application:

 Password stored on the chat server should be

encrypted.

 Providing either secure session or TLS. Secure

session is a unique key for each session.

Ensures that communication is with the right

person and no man-in- the-middle can read

the messages.

 Messages must be encrypted to maintain

security and privacy.

 Local storage must be protected by encryption.

 Messages are not stored on the chat server but

stored on the user's device.

 It is not allowed to exchange messages if they

are not friends.

2. Proposed Architecture

The proposed architecture is designed to be Client-

Server chat application. In client side, when a user

sets up the application, the user either selects

registration or log-in. In server side, the chat server

consists of users’ server and a message server.

User's server that manages user’s credentials.

Message server handles messages between users

by using Firebase Cloud Messaging (FCM).If the

recipient is offline, the messages will be stored

temporarily on the FCM queue for a specific period

of time, and when recipient becomes online these

messages are forwarded to him then deleted from

the queue. The generic architecture is shown in Fig.

1

Fig 1: Generic Architecture of Proposed Chat.

3. Registration an Account

Before starting the application, there must have a

lock screen to configure the Keystore that provides

a secure container to store the local storage key to

make more difficult for extraction it from the device

by unauthorized persons or other applications [14].

Each account has only one device and it is

distinguished by device id. In addition, Email and

username are unique. Name, email and password

are required to register a new account. After typing

the registration information, the password is

encrypted by using XSalsa20 algorithm [15]then the

user credentials are sent to the server. After

verification, the server generates a unique identifier

that acts as the user ID. After that, the

acknowledgement message is received for

successful registration to the client application and

the client information is stored in local storage.

The application generates a set of keys:

 Key for encrypting the password.

 A public key pair for calculating session key.

 Symmetric storage key for

encrypting/decrypting local storage contains

contact list, chat history and key store.

 Vaibhav. International Journal of Science, Engineering and Technology,

 2024, 12:3

4

4. Login

Email and password are required for user

authentication. After typing the authentication

information, the password is encrypted then the

user credentials are sent to the server. The server

checks if the email and password are valid. After

validation, JSON Web Token (JWT) [16] is created

and sends to the client to store it. When a client

makes a request at the later time, JWT is passed

with the request. The server verifies of the JWT, if it

is valid, the request is processed (Fig.2).

Fig 2: Login process

5. Firebase Cloud Messaging

Firebase Cloud Messaging (FCM) is a service that

facilitates messaging between mobile applications

and server applications. It’s built on Google Play

Services that supports cross-platform (iOS, Android

& Web). It is a free service that allows sending

lightweight messages from the server to the

devices whenever there is new data available[17].

This saves a lot of user’s battery by avoiding

requesting to the server for new messages. It

provides TLS for securing channel.

At the beginning of running the application for the

first time gets the following:

 The application connects to FCM server and

registers itself.

 When successful registration, FCM provides

registration token to the device. This

registration token uniquely identifies each

device.

 The application sends the registration token to

the server to store it in MongoDB database.

The above steps are shown in Fig. 3.

Fig 3: Firebase Cloud Messaging

When the server sends a push notification, it sends

a request to FCM sending the push message along

with the registration token. FCM identifies the

target device by using registration token then starts

to push data.

6. Session key Setup

To add users to contact list either by username or

by email address.

For sending a request to a friend on the

assumption that the first user knows the username

or email of the second user due to the username

and email are a unique for each user and the

second user should have already registered in the

server. Presumably, the first user is called Alice and

the second is called Bob.

When the send request, Bob name is typed by Alice

and her public key is fetched from the local storage

then the request is sent to the server.

When a request is received, it appears as a

notification (Fig. 4). If the friendship request is

accepted by Bob, his private key is fetched with

Alice's public key to calculate the session key by

using Elliptic Curve Diffie-Hellman (ECDH) over the

curve Curve25519 [18] and hashes the result with

HSalsa20 [15] then the session key is stored in local

storage (Fig. 5). In the end, the acceptance is sent

with his public key to the server to be delivered to

Alice. Upon receipt of the acceptance of the

request, the same steps on the above are taken.

The session key is calculated by using Alice private

key and Bob public key then it is stored in the local

storage for later use.

 Vaibhav. International Journal of Science, Engineering and Technology,

 2024, 12:3

5

The session key is the same for both parties and

this is the strength of the Elliptic Curve Diffie-

Hellman (ECDH) and thus it is difficult to attack by

the man-in-the-middle. In addition to, the

weakness of the traditional Diffie-Hellman has been

eliminated.

Fig. 4: Friend request notification

Fig. 5: Session key Setup.

7. Exchanging Messages

When a message is typed, the application encrypts

the message using XSalsa20 encryption algorithm

to encrypt the message body and Poly1305 to

compute a Message Authentication Code (MAC)

[19]. Each message has its own separate key and

nonce which brings better security for each single

message in such discovering one of the keys cannot

decrypt previous messages. After encrypting the

message, it is encrypted again using the recipient's

session key then it is sent to the server (Fig. 6).

After the message is received from FCM, the MAC

of the encrypted message is calculated and

compares it with the received MAC to verify the

integrity of the message. If the results are not the

same, it is rejected and does not show to the user

otherwise it is decrypted by the sender session key.

Next, the message body is verified in the same

steps above. Now the key and nonce to decrypt the

message are known. The message is then decrypted

and stored in the local storage and displayed to the

recipient.

If the application is in the background the message

will be displayed as a notification while if the

recipient uses the application it will be displayed in

the chat window.

Fig. 6: Procedure to encrypt a message

8. Local Storage

The data is stored locally in the application by using

Realm database. Realm is a lightweight mobile

database that supports cross-platform. It's easy to

use and fast. More, it has lots of modern features

such as JavaScript Object Notation (JSON) support,

a fluent API, data change notifications and

encryption support [20]. Encrypted data is

protected from unauthorized access and is

accessible only if have been a right encryption key.

Realm uses AES-256+SHA2 algorithm and 64-byte

key for encrypting storage [21]. To prepare Realm

storage passes through several steps that are:

 The application checks whether the lock screen

is present or not. If it exists, the following steps

are completed.

 Generate Realm Key that is used for encrypting

storage.

 Generate key from Keystore.

 Realm key is encrypted with the key generated

in step 3 by using AES in CBC mode.

 Save the encrypted key in shared preferences in

private mode so that other applications cannot

access this data directory.

 Three files are stored in the local storage. User

Info file that stores all information pertaining to

the user. While Friends file stores all

information pertaining to the friends. Finally,

Messages file stores all information pertaining

to messages.

 Vaibhav. International Journal of Science, Engineering and Technology,

 2024, 12:3

6

9. Server Side Implementation

Server-side has relied on Node JS[22] and

MongoDB database[23]. Node JS is fast, capable of

handling a large number of simultaneous

connections with high throughput, which is

equivalent to high scalability. MongoDB and Node

JS have often used together because of their

usingJSON so no need to spend time for

transforming the data between them making it easy

to deal with each other. In addition, MongoDB

provides TLS that makes a secure connection (Fig.

7).

To perform a client request passes through several

steps that are:

 Initially, must run the MongoDB connection

then run the Node JS from Command Prompt.

At this stage, the server is ready to receive the

client's request.

 When the client sends a request, the server

receives the HTTP request in JSON format. The

request then parsed.

 The HTTP request is compared with the base

path if it is matched, it is handed to Express

framework.

 The Express receives the HTTP request and

routes it to the specific endpoint that matched

it. In case of not matched with any of the routes

will display error in Command Prompt.

Otherwise, it will be forwarded to the controller

which handles the required function.

 Make a request to MongoDB database by

mongoose for processing function.

 When the data is fetched from MongoDB

database and the required operations are done,

Node JS receives the response then sends to

the client.

The above steps are shown in Fig. 8.

Fig. 7: The Specific Architecture of Proposed Chat.

Fig. 8: Implementation of a client request

IV. ANALYSIS THE PROPOSED CHAT

In section 3, we listed a set of requirements for

securing chat. To analyze and evaluate proposed

chat we have compared proposed chat with

popular applications discussed in section 2. The

comparison is based on the requirements listed in

Table 1.

Table 1: Comparison with Popular Chat Applications

C
ri

te
ri

a

W
h
a
ts

A
p

p

V
ib

e
r

T
e
le

g
ra

m

F
a
ce

b
o

o
k

M
e
ss

e
n
g

e
r

P
ro

p
o

se
d

C
h
a
t

Req1 N N N N Y

Req2 Y Y Y Y Y

Req3 Y Y P P Y

Req4 Y N N P Y

Req5 Y Y N N Y

Req6 N N N N Y

Note:”Y” it means that it meets the requirement.

”N“does not support the requirement. ”P”only the

secret part supports it.

V. CONCLUSION

In this manuscript, we outlined a framework aimed

at safeguarding the security and privacy of the chat

platform. We delineated a series of prerequisites

necessary for crafting a secure chat environment,

implementing contemporary methodologies, and

employing lightweight solutions to ensure swift

performance and robust protection for users. The

XSalsa20 encryption algorithm emerges as

 Vaibhav. International Journal of Science, Engineering and Technology,

 2024, 12:3

7

particularly well-suited for mobile devices due to its

robust security features, optimal performance, and

minimal impact on battery longevity. Users can rest

assured that their messages remain entirely

confidential, even in the event of unauthorized

access to the mobile device or attempts to breach

the application's local data storage.

REFERENCES

1. Ash Read, “How Messaging Apps Are Changing

Social Media,” 2016. [Online]. Available:

https://blog.bufferapp.com/messaging-apps.

2. Most popular messaging apps 2017 | Statista,”

2017. [Online]. Available:

https://www.statista.com/statistics/258749/mos

t-popular- global-mobile-messenger-apps/.

3. D. Moltchanov, “Client/server and peer-to-peer

models: basic concepts,” 2013.

4. Martin Kleppmann, “The Investigatory Powers

Bill would increase cybercrime — Martin

Kleppmann’s blog,” 2015. [Online]. Available:

https://martin.kleppmann.com/2015/11/10/inve

stigatory- powers-bill.html.

5. D. P. Roel Hartman, Christian Rokitta, Oracle

Application Express for Mobile Web

Applications - Roel Hartman, Christian Rokitta,

David Peake - Google Books. 2013.

6. Viber Encryption Overview.” [Online]. Available:

https://www.viber.com/security-overview/.

7. WhatsApp inc, “WhatsApp security whitepaper,”

p. 10, 2017.

