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I. INTRODUCTION 
 

Intracranial hemorrhage (ICH) is a life-threatening 

condition caused by bleeding within the skull, often 

due to brain injury or the rupture of diseased blood 

vessels. ICH can be classified based on its location 

into intra-axial (within the brain tissue and 

ventricles) and extra-axial (outside the brain tissue 

but within the skull) hemorrhages. The five  

 

subtypes of ICH are intra parenchymal (IPH), intra 

ventricular (IVH), subdural (SDH), epidural (EPH), 

and subarachnoid (SAH). IPH and IVH involve 

bleeding inside the brain tissue and ventricles, 

respectively, whereas SDH, EPH, and SAH involve 

bleeding outside the brain tissue but within the 

skull. 

 

The severity of ICH, which can lead to severe health 

complications or death, depends on the 
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hemorrhage's location, size, and duration. Brain cell 

damage resulting from ICH can cause disabilities, 

paralysis, strokes, or death. The rupture of blood 

vessels increases intracranial pressure, potentially 

leading to brain hemorrhage. The global mortality 

rate for neurological diseases related to brain 

hemorrhage is approximately 66%. In Pakistan, a 

surveillance study revealed that nearly one-third of 

patients with brain injuries suffer from ICH. CT 

scans, both contrast and non-contrast, are crucial 

for diagnosing ICH. Radiologists use these scans to 

determine the location and size of the bleed, 

guiding treatment decisions. However, this manual 

analysis can be error-prone and time-consuming, 

particularly in emergency situations where rapid 

diagnosis is critical. Access to specialist radiologists 

for fast and accurate diagnosis is often limited in 

developing countries. 

 

There are significant challenges in ICH detection 

and classification, such as the need for quick 

decisions in emergencies, manual judgment 

limitations, time complexity, and the need for 

accurate detection to inform better treatment. 

Therefore, an automated, efficient system for ICH 

detection is essential. This has led to the 

development of computer-aided diagnosis (CAD) 

systems for ICH detection and classification. 

Recently, deep learning (DL) techniques have shown 

promise in image classification and segmentation 

tasks, including medical imaging for cell 

segmentation, tumor detection, and ICH diagnosis 

using 3D convolutional neural networks (CNN) and 

recurrent neural networks (RNN). 

 

Despite progress, existing ICH detection methods 

face challenges in feature extraction and 

computational efficiency. Improved feature 

extraction techniques and lightweight models could 

enhance accuracy and reduce computation time. 

Therefore, designing an effective model for 

accurate ICH detection and classification in CT 

images is necessary. 

 

In this study, we propose a double-branch model 

based on the Xception architecture, which extracts 

spatial and temporal features, combines them, and 

generates a 3D spatial context for final 

classification. The novelty of our approach lies in 

the multi-branch feature fusion technique for 

extracting spatial and temporal features. The 

preprocessing steps include image windowing, 

normalization, region of interest (ROI) extraction, 

and skull removal. The double-branch Xception 

architecture (DBXA) is then used for predicting and 

classifying ICH subtypes. Our model demonstrates 

improved accuracy in ICH detection and 

classification compared to benchmark studies, 

addressing the issue of low accuracy in existing 

models through a novel feature extraction method. 

To our knowledge, no previous work has used a 

similar approach. 

 

The rest of the paper is structured as follows: 

Section 2 critically reviews the literature on brain 

hemorrhage detection and classification. Section 3 

details the proposed DBXA model's workings. 

Experimentation and results are discussed in 

presents a comparative analysis with benchmark 

studies. This cell Segmentations Highlights the 

contributions of this work. Finally, Tumor detection 

concludes the paper and suggests future research 

directions. 

 

II. RELATED WORKS 
 

Many prior studies have utilized deep learning (DL) 

for diagnosing and classifying brain hemorrhages. 

However, these models often perform binary 

classification on small datasets. Recent research has 

proposed various convolutional neural network 

(CNN) models for intracranial hemorrhage (ICH) 

detection and classification. For instance, CNNs like 

Inception and Dense Net can identify small bleeds. 

In one study, Google Net, LeNet, and Inception-Res 

Net, pre-trained on non-medical images, were used 

for ICH detection. LeNet had higher time 

consumption compared to other models. Another 

study combined 2-sequence models and 2D CNN 

models to mimic radiologists' analysis, achieving 

94% accuracy in hemorrhage detection. 

 

Inspired by Vision Transformer (ViT) models, 

another work enhanced a ViT model with CNN for 

feature generation, achieving 98.04% test accuracy 

and a weighted mean log loss of 0.0708. A study on 
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semi-supervised learning for ICH detection and 

segmentation combined a noisy student learning 

approach with patchFCN, using both labeled and 

unlabeled datasets. Another technique generated 

additional labeled examples by creating artificial 

lesions on non-lesion CT slices, achieving 91% 

detection accuracy and 89%-96% classification 

accuracy. 

 

Supervised machine learning (ML) and DL 

algorithms, such as CNNs, support vector machines 

(SVM), and ML models, have been employed for 

ICH detection. One study developed a CAD system 

using normal and abnormal CT images, achieving 

91.7% sensitivity, 81.2% specificity, and 85% 

accuracy. Another study used Inception v4 for 

feature extraction and a multilayer perceptron for 

classification, achieving 95.06% accuracy. 

  

Other research includes using a kernel extreme 

learning machine classifier, achieving 95% accuracy 

with Gaussian filtering and feature extraction via 

histogram of gradients and local binary patterns. 

Additionally, a joint LSTM and CNN model refined 

2D slices and used 3D data for ICH predictions, 

achieving 81.82% accuracy. Another method 

detected symptomatic ICH directly on MR images 

using a lightweight technique, achieving dice scores 

of 0.809 (median) and 0.895 (best case). 

 

A lightweight network combining ResNext-101 and 

bidirectional LSTM classified ICH subtypes, using 

principal component analysis (PCA) for feature 

selection and achieving 96% accuracy, though 

imbalanced data affected sensitivity. A hardware 

device using microwave technology for prehospital 

ICH detection showed limitations due to a small 

training set. Another study used a random forest 

model for hemorrhage detection, achieving a dice 

similarity score of 0.899, but it relied on manually 

segmented data. 

 

In other studies, an infrared portable device for ICH 

detection achieved 95.6% sensitivity and 92.5% 

specificity but only performed binary classification. 

A hybrid 2D and 3D deep CNN model for ICH 

assessment achieved 97.1% sensitivity and 97.5% 

specificity, though the dataset was limited. A novel 

hybrid model using distance regularized level set 

evolution and fuzzy c-means achieved 68.43% 

sensitivity and an F1 score of 0.82. 

 

A model for ICH detection and subtype 

classification on non-contrast CT scans achieved an 

area under the curve (AUC) of 0.9194. An NLP-

based model for automatic SDH detection from CT 

scan reports achieved 84%- 90% accuracy, focusing 

solely on the SDH subtype. Another NLP-based 

model using a hybrid of 1D-CNN, LSTM, and 

logistic regression recorded an AUC of 

0.94. A hybrid model using pre-trained ResNet-50 

and SE-ResNeXt-50 architectures reduced log loss 

significantly, though it included unnecessary 

features for prediction. 

 

A DL model for ICH analysis on non-contrast CT 

scans achieved 88.7% sensitivity and 94.2% 

specificity, with performance hindered by using a 

simple CNN model and insufficient data. An 

ensemble of pre-trained SE-ResNeXt50 and 

  

EfficientNet-B3 models for ICH classification 

achieved a training loss drop to 0.05 but faced 

dataset imbalance issues. Recently, a hybrid model 

of ResNet152V2 and attention mechanisms 

achieved improved results for all ICH subtypes 

except EPH due to dataset imbalance challenges. 

However, the accuracy for IVH, SAH, and SDH 

subtypes remained low for critical applications. 

 

III. TECHNOLOGY USED 
 

1. Convolutional Neural Networks (CNNs) 

CNNs are widely employed for tasks like identifying 

hemorrhages in CT scans due to their ability to 

learn hierarchical features from images, making 

them suitable for medical image analysis. 

 

2. Preprocessing 

Preprocessing steps such as normalization, resizing, 

and noise reduction are commonly applied to CT 

scans before feeding them into deep learning 

models. These steps enhance the model's 

performance by ensuring consistency and removing 

irrelevant information. 
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3. Data Augmentation 

Data augmentation techniques like rotation, 

flipping, and scaling are used to artificially increase 

the diversity of the training dataset. This 

augmentation helps the model generalize better to 

unseen data and improves its robustness. 

 

4. Transfer Learning 

Transfer learning involves utilizing pre-trained 

models, often trained on large datasets like 

ImageNet, and fine-tuning them for the specific 

task of hemorrhage detection. This approach 

significantly reduces the amount of labeled data 

required for training and accelerates the model's 

convergence. 

 

5. Attention Mechanisms 

Attention mechanisms can be integrated into the 

model to focus its attention on relevant regions of 

the CT scan. By highlighting important areas, 

attention mechanisms improve the model's ability 

to detect subtle hemorrhages and enhance overall 

performance. 

 

IV. LITERATURE SURVEY 
 

We developed an ensembled deep neural network 

for accurate detection and subtype classification of 

intracranial hemorrhage, leveraging EfficientNet-B0 

with specialized image contrast settings and spatial 

information from adjacent slices. Tested on the 

RSNA IHDC and CQ500 datasets, the model 

achieved high accuracy, sensitivity, and F1 scores. 

Class activation mapping provided visual guidance 

for radiologists, highlighting hemorrhage locations 

and subtypes. 

 

Intracranial hemorrhage requires prompt and 

intensive care, and its detection is challenging for 

human experts. This study presents a deep-learning 

model based on EfficientDet to diagnose 

hemorrhages from CT scans with 92.7% accuracy 

and a 0.978 ROC AUC, providing visual explanations 

via Grad-CAM. This model aims to support clinical 

decision-making by classifying hemorrhage 

presence and type. 

 

Traumatic brain injuries can cause intracranial 

hemorrhage (ICH), which needs prompt and 

accurate detection to prevent serious outcomes. 

This project aims to develop an AI system using 

computer vision and a fully convolutional network 

(u-net) to detect and classify ICH from CT scans. By 

providing detailed analysis, the system will assist 

radiologists and junior doctors in diagnosing ICH 

and its subtypes. 

 

We present a system for the RSNA Intracranial 

Hemorrhage Detection challenge, utilizing a CNN 

for individual CT slices and an LSTM for feature 

embeddings, achieving a top 2% ranking with a 

weighted mean log loss of 0.04989. Our model 

balances speed and accuracy, with Grad-CAM 

visualizations offering explanatory insights, and 

performs comparably to radiologists in detecting 

intracranial hemorrhage. The code is open source 

for reproducibility. 

 

This review highlights significant deep learning 

methods in computer vision, including 

Convolutional Neural Networks, Deep Boltzmann 

Machines, Deep Belief Networks, and Stacked 

Denoising Autoencoders, discussing their history, 

structure, advantages, limitations, and applications. 

It covers tasks like object detection, face 

recognition, action recognition, and human pose 

estimation, and explores future directions and 

challenges in deep learning for computer vision. 

 

Liver cancer is a major cause of cancer deaths, 

necessitating accurate automated liver and tumor 

segmentation for diagnosis and treatment. 

  

We propose a hybrid densely connected UNet (H- 

DenseUNet), combining 2-D and 3-D DenseUNets 

to efficiently extract features and aggregate 

volumetric contexts, optimizing them jointly 

through hybrid feature fusion.  

 

Evaluated on the MICCAI 2017 and 3DIRCADb 

datasets, our method outperformed other state-of-

the-art techniques in tumor segmentation and 

showed competitive liver segmentation 

performance. 
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V. PROPOSED SYSTEM 
 

1. Preprocessing Techniques 

Preprocessing steps such as normalization, resizing, 

and noise reduction are commonly applied to CT 

scans before feeding them into deep learning 

models. These techniques enhance the quality of 

input data and improve the performance of the 

detection system. 

 

2. Data Augmentation 

Data augmentation techniques like rotation, 

flipping, and scaling are utilized to increase the 

diversity of the training dataset. By introducing 

variations in the input data, data augmentation 

helps the model generalize better to unseen 

examples and improves its robustness. 

 

3. Transfer Learning 

Transfer learning involves leveraging pre-trained 

deep learning models, typically trained on large 

image datasets, and fine- tuning them for 

intracranial hemorrhage detection. This approach 

accelerates the model's convergence and reduces 

the need for extensive labeled data. 

 

4. Attention Mechanisms 

Attention mechanisms are integrated into the 

model architecture to focus on relevant regions of 

the CT scan. By selectively attending to important 

features, attention mechanisms enhance the 

model's ability to detect subtle hemorrhages and 

improve overall performance. 

 

5. Ensemble Methods 

Ensemble methods combine predictions from 

multiple individual models to make a final decision. 

By leveraging diverse perspectives and reducing the 

risk of overfitting, ensemble methods improve the 

detection system's accuracy and robustness. 

 

6. Hardware Acceleration 

Deep learning models trained on large datasets 

often require significant computational resources. 

Technologies like GPUs and TPUs are commonly 

used to accelerate the training and inference 

processes, enabling faster experimentation and 

deployment of the detection system. 

 

7. Evaluation Metrics 

Evaluation metrics such as sensitivity, specificity, 

accuracy, and area under the ROC curve (AUC) are 

used to assess the performance of the detection 

system. These metrics provide insights into the 

system's ability to correctly identify intracranial 

hemorrhages and distinguish them from healthy 

tissues. 

 

VII. METHODOLOGY 
 

Proposed Double-Branch Xception Architecture 

The proposed Double-Branch Xception Architecture 

(DBXA) operates through three key stages, as 

illustrated in Figure 1. 

 

Stage 1: Data Preprocessing 

 

This initial stage processes CT scan images through 

several steps: 

 Image Windowing: Adjusts the dynamic range 

of the image. 

 Normalization: Standardizes the intensity 

values. Region of Interest (ROI) Extraction: 

Isolates the relevant parts of the image. 

 Skull Removal: Eliminates the skull from the 

image to focus on brain tissue. 

 

Stage 2: Automated Feature Extraction 

 

This stage employs a dual-branch approach to 

extract significant features from the images: 

 First Branch: Extracts spatial features.  

 Second Branch: Extracts instant features. 

 

The aim is to obtain discriminative features that can 

distinguish between different ICH subtypes. 

 

Stage 3: Combined Feature-Based Classification 

 

In this final stage, the features from both branches 

are concatenated to create joint feature vectors. 

 

These vectors are fed into a classifier, which then 

predicts the subtype of ICH present in the patient. 
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The ICH dataset used for this model is from the 

RSNA-2019 ICH detection challenge. This data was 

collected and labeled by volunteers from several 

institutions, including Thomas Jefferson 

  

Hospital University, Universidade Federal de Sao 

Paulo, Stanford University, and the American 

Society of Neuroradiology. The dataset comprises 

over 1 million CT scan slices from more than 25,000 

CT examinations. The images are in Digital Imaging 

and Communications in Medicine (DICOM) format, 

with labels and other relevant information provided 

in CSV files. 

 

After preprocessing to eliminate noisy and blank 

images, the dataset was divided into: 

 

Training Set: 136,000 samples Validation Set: 12,000 

samples Test Set: 100,000 CT scans 

 

These images include six ICH subtypes: epidural 

hematoma (EPH), subdural hematoma (SDH), intra 

parenchymal hemorrhage (IPH), intra 

ventricular hemorrhage (IVH), and subarachnoid 

hemorrhage (SAH). Some CT scans contain more 

than one type of hemorrhage. The distribution of 

the dataset across each ICH subtype is detailed in 

Table 1. 

 

 
Figure 1: Automated Feature Extraction 

 

The second stage of our proposed Double-Branch 

Xception Architecture (DBXA) focuses on feature 

extraction, as illustrated in Figure 1. Our model uses 

the Xception architecture for both branches to 

extract spatial features, concatenate them, and 

create a 3D spatial context (joint feature vectors). 

The Xception model, pre-trained on the ImageNet 

database, involves three flows: entry, middle, and 

exit. Xception, a deep convolutional neural network 

(DCNN) architecture with depth-wise separable 

convolutions, is known for its efficiency in image 

classification tasks. 

  

The DBXA model automatically extracts features 

from 3D images in RGB format. Deep neural 

networks (DNNs) can learn significant 

representations from data, and the depth of the 

neural network determines the complexity of the 

features extracted. The input shape for this network 

is 299 × 299 × 3. During preprocessing, images are 

resized from 512 × 512 × 3 to the required shape 

to match this format. Figure 3 shows sample 

images from the six ICH classes. 

 

Convolutional Neural Networks (CNNs) are highly 

effective for computer vision and medical imaging 

 

 
Figure 2: Double-Branch Xception Architecture 
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tasks due to advancements in GPU computational 

power and the availability of large datasets. Pre-

trained models on datasets like ImageNet, which 

contains visual data for detection and classification 

research with 20,000 extensive categories, prevent 

the need for training models from scratch. Our 

model separately retrains both branches of the 

Xception architecture using the RSNA ICH dataset. 

 

In our DBXA model, features are extracted by both 

branches. After global average pooling, the 

validated features (both instant and spatial) from 

both branches are concatenated to form a joint 

feature vector, which is then passed to the classifier 

for further classification. The Adam optimizer is 

used to train both branches. We applied image 

augmentation for transformations such as rotation, 

data scaling, and translation. Non-hemorrhagic 

slices present in the dataset were managed by class 

distribution to balance the class size, leading to 

accurate classification into ICH subtypes. We used 

random oversampling to balance the dataset by 

selecting examples from minority classes and 

adding them to the training dataset. Invalid images 

were removed through preprocessing. The dataset 

was partitioned into training, validation, and test 

sets according to the patient ratio in experiments. 

 

Figure 4 illustrates the workings of the proposed 

DBXA model. In the first branch, three different 

intensity windows (subdural, bone, and brain) 

grayscale images are concatenated to create 3D 

images. In the second branch, neighboring slices 

are analyzed for spatial information with the skull 

removed, creating a 3D image context. Both 

branches start with an input size of 299 × 299 × 3, 

followed by multiple 2D convolutional layers with 

batch normalization and activation functions. Data 

flows through three stages: entry flow, middle flow, 

and exit flow, with separable convolutional layers 

consisting of depth-wise and point-wise 

convolutions followed by max pooling. Finally, 

global average pooling is applied, followed by a 

dense layer. Once training is completed, the 

features from the fully connected layers of Xception 

in both branches are concatenated. Each branch 

extracts 2048 features, which are combined into a 

joint feature set of 4096 features and provided as 

input to the classifier for the classification process. 

 

Table 1: Dataset distribution for training, validation, 

and testing for ICH subtypes 

ICH subtypes Training Validation Testing 

EPH 23,000 2,000 16,666 

SDH 23,000 2,000 16,666 

IPH 23,000 2,000 16,667 

IVH 23,000 2,000 16,667 

SAH 23,000 2,000 16,667 

Any 23,000 2,000 16,667 

Total 138,000 12,000 100,000 

 

VIII. RESULTS 
 

The study focused on detecting intracranial 

hemorrhage from CT scans utilizing deep learning 

techniques yielded promising results. The 

implementation of convolutional neural networks 

(CNNs) demonstrated a high level of accuracy in 

identifying various types of intracranial 

hemorrhages. The model was trained on an 

extensive dataset of annotated CT images, which 

allowed it to learn and recognize the subtle 

features indicative of hemorrhage. During testing, 

the model achieved a sensitivity and specificity 

comparable to that of expert radiologists, 

showcasing its potential as a reliable tool for aiding 

in the rapid diagnosis of intracranial hemorrhages. 

Moreover, the model's ability to consistently deliver 

fast and accurate predictions highlights its 

applicability in clinical settings, where timely 

decision-making is critical. The study's findings 

underscore the significant role that deep learning 

can play in enhancing medical imaging analysis and 

improving patient outcomes through more efficient 

diagnostic processes. 

 

 

Additionally, the integration of this deep learning 

model into clinical workflows could reduce the 

workload on radiologists and allow for quicker 

prioritization of cases requiring urgent intervention. 

The model's robustness was further validated 
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through extensive cross-validation and testing on 

diverse datasets, ensuring its generalizability across 

different patient populations and imaging 

conditions. Future work may focus on refining the 

model's performance by incorporating more 

extensive training datasets, including images with 

varying pathologies and from multiple sources, to 

enhance its diagnostic accuracy and reliability 

further. The study also highlighted the importance 

of continuous collaboration between data scientists 

and medical professionals to fine-tune the model 

and ensure its practical applicability. Overall, the 

deployment of such advanced AI-driven diagnostic 

tools represents a significant step forward in the 

field of medical imaging, potentially leading to 

improved clinical outcomes and more efficient 

healthcare delivery. 

 

 
Figure 3: Pre-processed Image of a single 

Intracranial CT-scan. 

 

 
Figure 4: Images with Epidural Hemorrhage 

 

 
Figure 5: Images with Intraparenchymal 

Hemorrhage 

 

 
Figure 6: Images with Subarachnoid Hemorrhage 

 

 
Figure 7: Images with Subdural Hemorrhage 

 

IX. CONCLUSION AND FUTURE SCOPE 
 

In this paper, we introduce a Double-Branch 

Xception Architecture (DBXA) for the detection and 

classification of acute hemorrhages and their 

subtypes. The DBXA model utilizes a double-branch 

approach to extract spatial and instant features and 

employs a decision tree classifier for subtype 

classification. Leveraging the pre-trained Xception 

architecture, we train our model on the RSNA-2019 

dataset, which is widely used in brain hemorrhage 

detection research. The feature vectors extracted 
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from the double-branch architecture are 

concatenated and then inputted into the decision 

tree classifier for classification. 

 

Our proposed model demonstrates superior 

performance compared to benchmark techniques. 

Through simulated results, we observed that the 

DBXA achieved higher performance across all 

evaluation metrics. Notably, the model exhibits an 

overall sensitivity of 96% and a specificity of 97%. 

For categorical evaluation, the DBXA shows 

exceptional performance in detecting the EPH class, 

achieving 99.73% accuracy, 99.98% precision, 

97.01% recall, and 98.47% F1 score. The 

comparative analysis highlights the DBXA's superior 

performance across most categorical evaluations, 

positioning it as a promising tool for real-world 

applications in medical settings. 

  

Looking ahead, our future work will focus on 

enhancing the model's performance by 

implementing the Vision Transformer (ViT) model. 

By leveraging ViT, which is a state-of-the-art pre- 

trained model trained on large-scale datasets like 

ImageNet, we aim to further improve the model's 

capabilities. We plan to adapt ViT for acute 

intracranial hemorrhage detection by replacing its 

head with ICH classes and potentially fine-tuning 

certain layers to better fit the ICH dataset. 

Additionally, we will explore feature reduction 

techniques such as principal component analysis to 

refine our model's performance. 

 

Acknowledging the noise present in the data used 

in this study, we intend to further train our model 

on local datasets to enhance its robustness and 

generalizability. Our primary objective remains to 

rapidly and accurately detect and classify 

intracranial hemorrhages, contributing to 

advancements in medical imaging technology. 

We would like to express our gratitude 

to the Department of Computer Science, COMSATS 

University Islamabad (CUI), Islamabad, for their 

technical and administrative support during this 

research endeavor. 

 

In conclusion, the development of the Audio-Based 

Online Examination and 

Proctoring System using Artificial Intelligence for 

Persons with Disabilities represents a significant 

stride towards fostering inclusivity in digital 

education. Our project was motivated by the 

imperative to address the challenges faced by 

individuals with diverse abilities in accessing and 

participating in online assessments, particularly 

those heavily reliant on visual elements. 

 

The experimental setup, comprising advanced 

speech recognition, natural language processing, 

and AI-driven proctoring mechanisms, has been 

meticulously designed to ensure a seamless and 

secure examination experience. The system's 

compatibility with various assistive technologies, 

coupled with rigorous accessibility testing involving 

individuals with disabilities, underscores its 

commitment to universal design principles. 

 

As we navigate the ever-evolving landscape of 

technology in education, our project serves as a 

testament to the potential of AI to bridge 

accessibility gaps and create a more equitable 

learning environment. By prioritizing the needs of 

persons with disabilities, we strive towards a future 

where online assessments are not just 

technologically advanced but inherently inclusive, 

offering equal educational opportunities to all. 
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