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I. INTRODUCTION 
 

About 328,000 accidents are caused by sleepy 

driving annually [1]. It is involved in around 15.5% 

and 13.1%, respectively, of fatal incidents that result 

in injuries and fatalities [2]. It occurs when a driver is 

extremely sleepy, rendering him unable to react to 

traffic situations while operating a vehicle. Reduced 

driving accidents due to sleepiness might be 

achieved with the use of a real-time, precise system 

for detecting sleepiness. However, the 

shortcomings of the approaches that current 

solutions employ place limitations on them. Three 

primary procedures are employed in the literature 

to identify the state of drivers: computer vision 

approaches, physiological-based methodologies, 

and vehicle behavior monitoring methods [3]. In 

order to construct detection systems, these 

approaches rely on several properties. Methods of 

vehicle behaviour Make use of patterns like steering 

activity and variations in the vehicle's location with 

respect to road characteristics [4]. These techniques,  

 

however, are less dependable than the other 

strategies due to the unpredictable nature of the 

driving environment and variations in driving styles 

across drivers. Wearable device-collected heart rate 

variability and electroencephalogram (EEG) 

measurements are essential to physiologically-

based approaches. Nevertheless, vibrations from 

engines and motion can affect EEG equipment. As a 

result, they perform poorly in actual driving 

situations [5]. Lastly, head orientation, yawning, and 

eye movement derived from video feeds and 

photos are used in computer vision algorithms. ECG 

readings. The RGB colors that make up the UTA-

RLDD dataset videos gathered from individuals of 

different ethnicities. The UTA-RLDD dataset differs 

from the other dataset mostly in because the 

dataset records the participants as they drift off to 

sleep, therefore capturing the subtle changes in 

expression that occur as the participants get sleepy. 

A deep drowsiness detection (DDD) network is 

proposed in [7]. Features are extracted from both 

RGB videos and optical flow, and then the features 

are passed to three different networks: Flow 
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ImageNet extracts head and facial movements, 

VGG-Face Net learns features related to drowsiness 

but is more sensitive to appearance variations, and 

AlexNet extracts features related to drowsiness. On 

the NTHU dataset, this architecture achieves 73.06% 

detection accuracy.  

 

A more tailored strategy for buses and heavy trucks 

is suggested in [8]. This idea makes predictions 

based on the driver's entire upper body and facial 

characteristics using the dome cameras that are 

currently in place. It takes into account posture 

variations using a multi-model method.  

 

In contrast, machine learning algorithms 

demonstrated competitive outcomes when it came 

to the task of classifying driving behavior based on 

smartphone usage. The authors of [10] used feature 

extraction, feature selection, and classification 

techniques to separate safe driving practices from 

aggressive driving styles. They extracted 78 driving 

features from preprocessed 3-axis accelerometer 

sensor readings, which were divided into five sets in 

the time and frequency domains: jerk profile feature 

sets in the time domain, correlation coefficient, data 

threshold violation, and histogram feature sets. Six 

of the 78 characteristics were chosen using a 

random forest classifier for the classification test, 

and they had a 95.5% classification accuracy. The 

study [11] examined the performance of many 

sensors, including the accelerometer sensor, using 

data from 

 

II. METHODOLOGY 
 

As previously stated, the method is based on two 

independent steps: the driver side does the local 

sleepiness detection step, and the edge side 

performs the drowsiness confirmation step. 

 

1. Model for Local Drowsiness Detection 

This section outlines the suggested vision-based 

sleepiness detection techniques, which use input 

pictures collected from a video stream that uses an 

agent-integrated front-facing camera to capture 

the driver's face and generate a binary classification 

of the driver's tiredness. A face-based sleepiness 

detector that uses the entire face as input to 

produce the categorization is the first tested 

method. The eye and mouth regions of interest 

(ROIs) are used in the second tested method. This 

method builds two classifiers, the outputs of which 

are combined to determine whether or not the 

driver is sleepy. The mouth ROI is classified into the 

normal or yawing condition by the second classifier, 

while the eye ROIs are classified into open and 

closed classes by the first classifier. When to 

determine whether or not the driver is sleepy. The 

mouth ROI is classified into the normal or yawing 

condition by the second classifier, while the eye 

ROIs are classified into open and closed classes by 

the first classifier. A motorist is deemed tired if their 

mouth is yawning and their eye is closed, but they 

appear normal elsewhere. 

 

Using a Face-based Approach to Detect 

Sleepiness  

Face characteristics that are taken from the entire 

face are used in the first method of sleepiness 

detection. The suggested model utilizes Five frames 

per second (FPS) of picture frames taken from 

movies are put into the model to train it in two 

different scenarios. employing raw frame photos 

from a single scenario, the model is trained. 

 

Without employing face identification algorithms to 

trim the face area of interest (ROI). In order to trim 

the face ROI from the frames and provide the data 

to the model, the second scenario looks at face 

detection approaches. Figure 1 displays samples of 

the input data for each of the two scenarios. The 

face region is found using the built-in dlib face 

detector, which is then cropped from the picture 

and sent into the model. 

 

 
Fig.1. Input Data Samples for the Face-based 

Drowsiness Detection Model. 
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A pretrained VGG16 model that has previously 

been trained on the ImageNet dataset is used to 

construct the face-based sleepiness detector. The 

final fully connected (FC) layer of the VGG16 model 

is fine-tuned using the extracted frames from the 

movies in the NTHU dataset while the pre-trained 

convolutional layers of the model are first frozen. 

After the fully connected layer and L2 regularizes 

were added to the FC and output layers, a dropout 

layer was added to prevent the model from 

overfitting. Because the pre-trained VGG16 network 

layers were frozen, the number of trainable 

parameters decreased from 15,894,849 to just 

1,180,161 parameters. This substantially shortened 

the training time and made advantage of the deep 

VGG16 architecture. 

 

A ROI-Based Eye and Mouth Drowsiness 

Detection Approach  

An additional method that makes use of facial traits 

connected to the eye and mouth region of interest 

is suggested in order to enhance the outcomes of 

the driver sleepiness detection implemented on the 

worker nodes.  

 

The movies that were recorded for the driver are 

first pre-processed using a script that extracts 

picture frames at a rate of five frames per second. 

Next, the face and eye ROIs are cut from the picture 

and sent to the mouth and eye classifiers in 

tandem. To lower the computational detection, just 

the eye that is closer to the camera is taken into 

account. 

 

Period without impacting the effectiveness of the 

model [10]. The eye classifier receives the ROI of 

the eye as input and produces one of two classes: 

closed or open eyes. The face ROI is the mouth 

classifier's input, while the normal classes and yawn 

are its outputs.  

 

The two classifiers' frame output is used to 

establish the driver's level of tiredness. If the driver 

is yawning and has one eye closed, he is deemed 

sleepy; if not, he is deemed normal. The CNN 

model is utilized to create the eye classifier, and 

figure 2 displays an example of the input data that 

was used to train the classifier. The suggested 

architecture was developed by looking at several 

network modifications. 

     

 
Fig.2. Input Data Samples for the Eye ROI 

Classification Model. 

 

2. Architectural Diversity 

The processes for establishing the framework 

architecture as they are shown in algorithm 1 are 

explained in this part. First, as seen in figure 2, the 

CCTVs placed in streets, intersections, and traffic 

signals are referred to as edge nodes. Because they 

must constantly retrieve data from sleepy drivers, 

roadside CCTVs—which can be uni- or multi-

directional—are regarded as high-performance 

devices. 
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The distance between every edge node is 50 meters 

which is the detection range of CCTV (lines 2-9). 

Once the list of LENs (playing the role of CCTVs) is 

pre-defined, an objective function is calculated 

using LENs computing capabilities in term of 

energy consumption REWi and computing unit UW 

and devices accuracy (lines 11-13) to define a final 

list of LENs and then the MEN. The MEN is LEN with 

the highest objective function, responsible for 

reporting the overall detection to authorities to 

stop the drowsy driver (lines 16-20). To cope with 

the mobility of cars and the change in the CCTV 

range, the clustering process is dynamic and relies 

on LENs and car locations (X and Y Coordinates). 

 

Each re-clustering is the start of a new cycle. The 

cycle ends after the MENs confirmation of 

drowsiness detection. The length of each cycle is 

set to five-time units. A relatively small process is 

selected to track the drivers as they are moving 

continuously.  

 

fter each cycle, LENs share records of drivers with 

sufficient data to the MEN, and the rest of the data 

is forwarded to the other LENs as carry-over. At the 

beginning of the next cycle, each LEN keeps only 

the carry-over records of its detected drivers and 

continues accumulating data. If a driver is detected 

as drowsy, his data collection continues until he 

gets a MEN drowsiness confirmation. This feature 

enables the solution to keep track of malicious 

drivers over time (lines 25-31). 

 

3. Classification of Driving Actions Confirmation 

of Drowsiness 

The mobile client records a video feed, which is 

used to identify driver tiredness and initiate the 

drowsiness detection procedure. The LENs gets the 

detection result and proceed to monitor the sleepy 

drivers in order to gather more accelerometer 

readings and drowsiness detection data. The MEN 

receive the LENs' detection records for each 

motorist who exhibits signs of sleepiness after they 

have generated enough acceleration measures to 

support the LENs' findings. The result is a list of 

individuals who have been verified to be sleepy. A 

methodology for classifying driving behavior is 

used on the MEN side. It detects driving behavior 

over a sliding window of data by using the 

acceleration records of the drivers that are 

gathered over time. To verify the Considering the 

commonalities between the classes, the following 

five are included abrupt right, left swerving, abrupt 

acceleration, and breaking. As indicated in table 5, a 

range of distinct sequence lengths are employed to 

assess the categorization accuracy. 

 

III. SIMULATION PARAMETERS 
 

Four datasets are taken into consideration in this 

work: the Sarwat Foursquare databases [11], the 

NTHU dataset [16], and the Kaggle sleepiness 

detection dataset [20]. Two subsets of the Kaggle 

dataset are available for classification: the first 

classifies the eye ROI into closed eye and open eye, 

while the second classifies the mouth as either 

normal or yawning. There are 2900 640 × 480-pixel 

photos in the entire collection. On the other hand, 

films of drivers in various daytime and nighttime 

lighting conditions may be found in the NTHU 

collection. The AVI format videos were gathered 

with a resolution of 640 × 480 pixels. Using an 

infrared (IR) lamp, low-light (nighttime) video 

footage is captured. It includes training and 

assessment films featuring eighteen subjects. 

Techniques for enhancing data are utilized. shear 

effects, rescaling, and horizontal flipping methods 

to both datasets. The eye ROIs are shrunk to 64 × 

64 pixels, while the face ROI pictures are down-

sampled to 112 × 112 pixels in order to simplify the 

method. 

 

The model's acceleration dataset may be found in 

[19]. Acceleration readings for events along the x, y, 

and z axes are included. The action segments are 

from 38 and 200-time steps long. Sequences that 

are utilized to actively choose whether to break or 

accelerate are divided into four categories: regular 

behavior, sudden breaking, sudden acceleration, 

and sudden swerving. At the same time, if the 

driver lets off of the steering wheel, the car may 

veer without warning. While quick acceleration and 

sudden breaking are deemed natural, abrupt 

swerving is seen as drowsiness. In this model, data 

regarding the driver’s gadgets, including energy, 

sensor availability, and device accuracy, are 
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obtained from the Sarwat Foursquare dataset [11], 

a dataset for social networking apps. Table 1 lists 

additional simulation settings for the sleepiness 

detection model.  

 

  
Fig.3. Edge-based distributed architecture for 

Drowsiness Detection. 

 

 
Fig.4. Conceptual Architecture. 

 

IV. EVALUATION PARAMETERS 
 

The main performance metrics are described as 

follows 

 

1. Precision Rate 

 

 
 

where FP stands for false positive and TP for true 

positive. The percentage of samples expected to be 

genuine positives in the sample of positive 

instances is shown by the precision rate.  

2. Recall Rate 

 

 
 

The recall rate shows the percentage of samples 

that were anticipated to be negative cases out of all 

positive samples, and FN stands for false negatives. 

 

3. F1-score 

 

 
 

4. Accuracy 

It measures how accurate the model is in providing 

correct predictions. 

 

 
 

Table 1. Implementation Parameters. 

Parameters Description 

Datasets NTHU, DoTA, OffSEC datasets 

Driver Parameters 

Number of 

Participants 

500 

Number of edge 

nodes 

4 

Drivers Location 

(Lat, Long) 

([31….43], [129….144]) 

Drivers Information Video Streaming, 

Accelerometers readings 

Connectivity type Wireless, Bluetooth, CCTV 

Car Information ID, Name 

Sensors Type Residual Energy, CPU, 

Accuracy 

Weather Conditions Sunny, Snowy, Rainy 

Implementation Parameters 

Algorithms CNN, LSTM 

Train_Val_Test Split 80%, 20% 

Number of Epochs 30 (ROI-based), 10 (Face-

based) 

Optimizers Adam (Eye Model & Face-

based), RMS prop (Mouth 

Model) 

Learning Rate 0.0005 (ROI-based & Face-

based) 
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Face-Based Drowsiness Detection Approach 

The 16 patients in the NTHU dataset comprised the 

training dataset that was utilized to train the 

suggested face-based sleepiness detection 

algorithm. 20% of the training set is chosen at 

random to validate the model, and a testing subset 

of the NTHU dataset is used for testing. With 256 

neurons in the FC layer and learning rates of 0.0005 

for the pre-processed face frames scenario and 

0.0005 for the RMSprop optimizers, respectively, 

the best detection results are obtained. A batch size 

of 64 and 10 epochs were used to train both 

models. 

 

Eye And Mouth Classifier 

Once the model is trained and validated on the 

NTHU and Kaggle datasets, it is tested on the 

training set of the Kaggle eye and mouth dataset 

[20], which is randomly divided into training and 

validation subsets." To get the best classification 

results, train the model using Adam optimizer for 

eye training and RMSprop optimizer for mouth 

training across 30 epochs with 16 batches at a 

learning rate of 0.0005. Using the Kaggle dataset 

rather than the NTHU dataset, it is evident that the 

highest classification accuracy is obtained for both 

the mouth and the eye. Eye ROI and Mouth ROI are 

two subgroups of the Kaggle dataset that, as 

previously mentioned, help the algorithm learn and 

lower the loss function. On the other hand, because 

the NTHU dataset's learning process is created 

from scratch, processing the films will take longer 

and require more powerful computers, which might 

result in more loss.  

 

The accuracy performances throughout the training 

and validation stages are shown in Figures 5(a) and 

6(a). As demonstrated, CNN quickly improved 

training and validation accuracy throughout the 

course of the epochs. This indicates that the model 

is well-trained as it achieved an ideal accuracy of 

98% and 97% for mouth and eye identification, 

respectively. Nonetheless, figures 5 (b) and 6 (b) 

demonstrate the performance of the loss function. 

The CNN model's loss function was reduced during 

training and validation in order to get the lowest 

feasible value. For mouth and eye detection, this 

resulted in convergent values of 5% and 10% after 

30 epochs.  

 

           
(a) 

        
(b) 

Fig.5. Training vs. Validation Accuracy and Loss for 

Eye Detection. 

 

         
(a) 

        
(b) 

Fig.6. Training vs. Validation Accuracy and Loss for 

Mouth Detection. 
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Fig.7. Prediction Performances of Driving Behaviour 

Classification. 

    

 
Fig.8. Average metrics of Driving Behaviour 

Classification. 

 

The sequence with a length of 16 and the fewest 

records yielded the highest accuracy for the trained 

model, 93%. In terms of accuracy, recall, and F1-

score, LSTM performed well for the final 

identification of sleepiness. According to Figure 7, 

the model's detection precision for the not-drowsy 

and drowsy classes is 93% and 92%, respectively. In 

a similar vein, the awake classes outperformed the 

sleepy class, achieving high memory and F1-score 

of 98% and 95%, respectively, compared to 81% 

and 86% for recall and F1-score, respectively. 

Regardless of the amount of each category in the 

dataset, Figure 8 shows the macro-average and 

weighted-average used to calculate precision, 

recall, and F1-Score for each. Both metrics achieved 

similar precision of 93% while they are different for 

recall and F1-score where macro-avg is lower than 

weighted-avg. 

 

V. CONCLUSION AND FUTURE WORK  
 

This research suggests a sleepiness detection 

system that can identify drowsiness accurately. It 

can overcome the problems associated with 

deploying critical systems on centralized 

architectures since it is deployed on a distributed 

architecture. Two stages of detection are used in 

the implementation of the sleepiness detection 

system: local detection via facial expression and 

global detection via the combination of local and 

driving behavior detections. CNN models yield 

97.3% and 98.2% accuracy for mouth and eye 

classifiers, respectively. The results of the two 

classifiers and the accelerometer measurements 

from the automobile are used to calculate the 

overall sleepiness state. The driving behavior 

categorization model verified that the 93% accurate 

LSTM algorithm is used at the edge level for driver 

sleepiness detection. In future studies, additional 

factors like heart rate and sensor body readings will 

be taken into account to verify the driver's 

tiredness. 
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