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I. INTRODUCTION 
 

Insulators play an essential role in high-voltage 

power transmission lines, offering both mechanical 

support and electrical insulation between 

conductive components and their corresponding 

structural supports. According to the survey of 

2022, mainland China's urban rail transit network 

consisted of 290 lines, 9,584 km across 53 cities, 

with subways constituting 78.3% of the total [1]. To 

maintain the grid stability and ensure the reliable  

 

 

operation of transmission lines, these insulators are 

essential. Nonetheless, extreme meteorological 

phenomena, bird nests, lightning variations, high 

winds, and some other external environmental 

factors are potentially leading to power 

interruptions [2]. A variety of defects can precipitate 

insulator malfunctions, including cracks, breakage, 

missing components, dirt accumulation, shelter 

flaws, and contamination. Cracks typically arise from 

thermal fluctuations, particularly mechanical stress, 

thermal cycling, alongside material degradation, 

and other external factors that may contribute to 

their deterioration. Breakage happens when 

Abstract- Insulators are essential components in overhead catenary railway systems, providing electrical 

insulation and mechanical support. But lightning, physical damage, negative weather, and some other external 

factors that affect their performance, which in turn could interrupt the electricity supply. However, 

conventional inspection methods are both time consuming and labor-intensive and sensitive to environmental 

conditions. In order to address these challenges and improve detection performance on small defects, this work 

presents a deep learning-based approach to automatically detect insulator defects using the fine-tuned 

YOLOv8n model. The original YOLOv8n model is integrated with the custom loss function, the SGD optimizer, 

and some other parameters. The proposed model is trained on an unbalanced catenary defect detection dataset 

that contains seven categories of insulator images: missing, shelter, breakage, contamination, dirt, and the 

good class. Due to the class imbalance, a variety of data augmentation techniques are applied. We trained our 

same dataset with other existing methods, comparative results demonstrate that our model performs better 

than conventional methods, with achieving overall precision 95.3% and recall 93.4%. Experimental results also 

show excellent performance on contamination, shelter and good categories insulators, and produce promising 

results on more challenging defects like dirt, breakage, or cracks. In addition, the study also highlights that 

YOLOv8n can be used to automatically detect and classify insulator defects, which is more efficient and reliable 

in terms of maintenance and safety of the overhead contact lines. 
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insulators are physically damaged, which can be 

from poor maintenance, vandalism, and accidental 

incidents, which could influence both the insulator's 

mechanical strength and their insulation 

capabilities. The absence of critical components, like 

caps or hardware, typically results from improper 

maintenance or acts of vandalism, which affect the 

structural and functional integrity of the insulator. 

Industrial emissions and agricultural activities 

produce a lot of dust, pollutants, salt substances, 

and some other biological materials to cause 

insulator contamination. These are present on the 

insulator’s surface, resulting in flashovers, leakage 

currents, tracking phenomena, and enhanced 

surface conductivity [3]. Dirt occurs when moisture 

is present in the environment, especially during arid 

and windy conditions, potentially creating 

conductive pathways, leading to tracking and 

arcing. Finally, shelter can happen when the 

protective shields of the insulator are either 

damaged or inadequately installed, rendering the 

insulator susceptible to environmental exposure. 

 

Different kinds of materials are used to make 

insulators, including ceramics, glasses, and 

composites [4]. Manually insulator defect detection 

is very challenging and time-consuming because of 

the diversity of their types and shapes, different 

environmental conditions, as well as their 

backgrounds [5]. Several researchers have proposed 

their techniques for insulator defect detection in 

the past few years. Most of their techniques are 

traditional image processing techniques,  such  as  

morphological  filtering,  threshold-based  

segmentation,  and  spatial transformation. These 

techniques are highly dependent on algorithms like 

adaptive thresholds, support vector machines 

(SVM), and template matching. However, these 

algorithms essentially concentrate on image 

segmentation tasks and are susceptible to making 

mistakes from environmental factors such as fog, 

light variations, and the complexity of image 

processing tasks, leading to computationally 

challenging [6][7]. labor-intensive, and time-

intensive tasks. As the alternative option for 

automatically detecting the defects in insulators 

and overcoming the limitations of traditional visual 

inspection methods, deep learning offers a very 

powerful technique. They proved that insulator 

defects can be detected in complex environments 

with variable light conditions, shadows, and other 

environmental noise [8] [9]. These methods have 

also shown significant improvements in detection 

accuracy, particularly for minor and difficult-to- 

detect defects. Detection accuracy for minor and 

difficult-to-detect defects has been improved 

significantly by these methods. In deep learning, 

there are usually two stages: a single-stage and a 

two-stage target detection model [10]. YOLO, and 

even more, SSD, are single-stage families of models 

that predict both classification and bounding boxes 

after feature extraction with fast detection speed. 

Taken into consideration are these models like 

YOLOv1 [10], YOLOv2 [11], YOLOv3 [12], YOLOv4 

[13], YOLOv5 [7], YOLOv7 [14], YOLOv8[15], due to 

their efficiency. There are two stage models, 

including RCNN, Fast RCNN [16], and Faster RCNN 

[17], which first generate areas of interest and then 

classify and refine bounding boxes in order to 

achieve increased accuracy but at much slower 

processing speeds and higher levels of computing 

complexity [18] [19]. 

 

For the detection of insulator defects in over speed 

railway systems, this work presents a fine-tuned 

YOLOv8n model. Firstly, various data augmentation 

methods, both linear and nonlinear, have been 

applied to reduce class imbalance, then the model 

has been modified by using a custom loss function 

and the SGD optimizer, as well as picking out 

specific model parameters such as a learning rate, 

weight decay, and batch size. Performance 

improvements occur on minority defect classes 

(dirt, breakage, and crack), and the model performs 

well with 50 epochs of training. The model 

performed well on the majority class but still needs 

more tuning to do better on certain defect 

categories. This study's major contributions include: 

(1) using targeted data augmentation techniques 

like flipping, rotation, and adding noise; these can 

help improve the model's generalization; (2) fine-

tuning the YOLOv8 model to get the highest 

accuracy on that dataset; and 
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(3) a detailed evaluation of the results, such as 

bounding boxes, class names, and scores, which 

strengthen the results. 

 

II. RELATED WORK 
 

Insulator defect detection has received a lot of 

attention in recent years since it plays such an 

important role in maintaining power transmission 

networks especially in high speed railway systems. 

Several techniques have been presented, based on 

developments on deep learning and computer 

vision. Several research has used the YOLO 

architecture to develop improved models for 

detecting insulator defects. For instance, a Foggy 

Insulator Network (FINet) based on YOLOv5 uses a 

synthetic fog technique to improve defect 

identification in complex environments, resulting in 

the Synthetic Foggy Insulator Dataset (SFID) [20]. 

Similarly, a modified YOLOv8n model incorporates 

a Triplet Attention Module and SC-Detect 

lightweight architecture to handle complex 

backgrounds and size variations in defect detection 

[15]. Additional improvements to YOLOv8n, such as 

GSConv and CARAFE, increase feature retention and 

fusion, allowing for more precise identification of 

minor and complex defects [21]. Another major 

innovation, ID-YOLO, is based on YOLOv4 and uses 

a CSP-ResNeSt backbone and a Bi-SimAM-FPN to 

improve small-scale fault identification in aerial 

images [13]. 

 

Unsupervised approaches have also been 

investigated. A Siamese Defect Detection Network 

(SDDN) combines R-YOLOv5s for insulator 

localization with a real-time unsupervised defect 

detection network trained only on normal data [22]. 

Another unsupervised method employs Mask R-

CNN for segmentation, together with 

Reconstruction and Classification Convolutional 

Auto Encoder Network (RCCAEN) for defect 

removal and identification [23]. The integration of 

newly developed modules into deep learning 

frameworks has greatly improved the subject. A 

CBAM-based YOLOv5 model, for example, 

concentrates on key image characteristics while 

using BiFPN for feature fusion across layers, which 

improves detection accuracy for small-scale defects 

[7]. Attention methods, such the SE module in SE-

YOLOv5, improve performance by dynamically 

weighting feature channels [20]. The 

MobileNet_CenterNet model solves real-time 

detection difficulties by combining a lightweight 

backbone with CBAM for small-target detection 

[24]. 

  

Transformer-based models have also shown their 

potential. DETR (Detection Transformer) uses an 

encoder-decoder architecture for insulator defect 

detection, using bipartite matching loss to align 

predictions with ground truth [25]. Another hybrid 

model uses the Swin Transformer and CNN features 

to increase multiscale feature extraction and defect 

detection performance [26]. 

 

Two-stage detection methods remain popular. For 

example, a Faster R-CNN combined with Feature 

Pyramid Networks (FPN) increases detection in 

complicated backgrounds, whereas ResNet-152 as a 

backbone improves feature extraction [27]. 

Similarly, a Cascaded Split Detection Network 

(CSDN) combines two networks for sequential 

defect detection and classification, therefore 

improving accuracy and efficiency [28]. End-to-end 

techniques, such as the Box-Point Detector, 

combine localization and classification tasks into a 

single network, solving issues caused by small-scale 

faults and complicated settings [29]. Similarly, the 

Center Mask technique [30] combines instance 

segmentation with anchor-free detection to 

efficiently identify faults in high- resolution aerial 

images. These achievements reflect the fast growth 

of insulator defect detection methods, which has 

been fueled by advances in neural network designs 

and the incorporation of specific modules to meet 

distinct issues in power line inspection. 

 

III. METHODOLOGY 
 

1. The Network Structure of YOLOv8n 

YOLOv8n is a lightweight and efficient object 

detection architecture designed for real-time 

applications, also known for their acceptable 

balance between accuracy and speed. There are 
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different types of configurations in this model, such 

as YOLOv8n, YOLOv8s, YOLOv8m, YOLOv8l, and 

YOLOv8x. They meet different computing 

requirements based on dataset length, and it offers 

deeper or wider as needed. It has four principal 

parts: backbone, input, head, and neck. For 

computational purposes, the model takes input 

images of 640x640x3 dimensions. The backbone 

serves an important role in feature extraction, which 

involves multiple convolutional neural network 

(CNN) layers and C2f modules. It is capable of 

retrieving hierarchical information efficiently. The 

SPPF (Spatial Pyramid Pooling-Fast) layer is 

integrated at the end of the backbone and 

improves the model's ability to process with a 

multiscale input image and enhances the model 

structure to recognize different size and shape 

objects. 

 

 
Figure 1. The network architecture of yolov8n 

 

In Yolov8n architecture, the neck merges and 

refines the features in different backbone layers, 

thus improving the performance of detection. To 

ensure successful integration of high-level 

contextual data with fine-grained details, it 

incorporates upsampling, concatenation layers, and 

extra C2F modules. The ability of the model to 

detect objects in multiple shapes and sizes is 

provided by this multiscale feature fusion. Finally, 

the head leverages the refined features that are 

extracted from the neck to execute detection 

predictions. It helps the model find out the accurate 

object localization and classification using class 

probabilities, bounding boxes, and confidence 

scores across multiple scales. The design of this 

architecture is demonstrates reliable performance 

on real-time object detection tasks and well-suited 

for deployment on resource-limited devices. 

 

 
Figure 2. The schematic representation of C2f 

module [31] 

  

To overcome the dataset imbalance problem for 

catenary insulator defect detection, a fine- tuned 

YOLOv8n architecture is proposed in this study. We 

made some adjustments here by customizing the 

loss function, using the SGD optimizer, and 

modifying some other parameters in this model. To 

increase the dataset length, especially for minority 

classes, we have separately applied some linear and 

non-linear data augmentation techniques and 

resized our input image by 256 x 256 with 32 batch 

sizes and 50 epochs for faster training. Our 

experimental results show that these adjustments 

improve the model’s performance and achieved 

excellent detection accuracy in the unseen test 

images with the overall accuracy of 95.3%, recall 

93.4%, and mAP50- 95 64%. It is also highlighted 

that this model outperformed in identifying minor 

defect classes such as contamination, shelter, and 

missing components. This supplement is to 

illustrate how the model is likely to reveal instant 

and exact defects of catenary insulators, serving as 

a means to automate the inspection in high-speed 

railway systems. 

 

2. Evaluation Indicators 

In this work explores the custom YOLOv8-based 

defect detection algorithm research for 

transmission line. Evaluation often takes place with 

the use of metrics such as precision, recall, mAP50 

and mAP50–95, sometimes referred to as insulators. 

Measures of the performance of the model's 
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detection for these indicators are closely 

associated. 

 

Precision 

A precision metric is used to evaluate classification 

and object detection tasks. how accurate positive 

predictions made by a model were. This is the 

proportion of correctly predicted all instances 

predicted as positive except for the positive 

instances. It is calculated using the following 

formula: 

 

 
 

where, TP presents the number of instances that 

the model is successfully predicted as positive, 

where FP presents the number of instances that the 

model is incorrectly predicted as positive. 

 

Recall 

Another performance metric for a model is to 

measure how well it can recall (i.e., all the relevant 

positive instances in a dataset). It shows the ratio of 

actual positive instances whose model returns on 

the right track. The formula for recall is: 

 

 
 

Where, TP denotes the number of instances that 

the model finds to be positive, and the number of 

instances that the model incorrectly classifies as 

negative where FN represents. 

 

MAP50 

A commonly used performance metric for object 

detection tasks, mAP50 (mean average precision at 

the IoU threshold of 0.5) measures with what 

precision a model is able to learn the objects at a 

specific IoU threshold. With IoU threshold 0.5, it 

calculates the average precision (AP); in other 

words, when the threshold of an IoU overlaps at 

least 50% with the ground truth value, we say the 

predicted box is correct. The mAP is calculated 

using this formula: 

 

 
 

At an IoU threshold of 0.5, this is simply the 

average across all classes, N, where APi is the 

average precision metric for class i. 

 

MAP50-95 

Mean Average Precision at IoU thresholds between 

0.5 and 0.95 (mAP50-95) is a generalization of the 

performance metric in object detection to multiple 

Intersection over Union (IoU) thresholds. mAP50-95 

differs from mAP50, which only calculates the 

average precision (AP) at an IoU threshold of 0.5, at 

which increasing precision causes decreasing recall. 

It measures AP in steps of 0.05 at IoU values from 

0.5 to 0.95.  

 

By evaluating this metric, we are able to detect 

objects that have varying overlaps with the 

predicted and ground truth bounding box. In 

particular, we find it particularly useful for 

evaluating how well the model detects objects with 

fewer precise, smaller bounding box overlaps. 

 

IV. DATASET PREPARATION AND 

EXPERIMENTS 
 

1. Experimental Setting 

A comprehensive experimental setup was set up to 

train and evaluate the proposed YOLOv8n-based 

model for insulator defect detection. We used 

Google Colab as the integrated development 

environment and used a Tesla T4 GPU for fast 

training. We implemented the model in Python 

3.10.12, Torch 2.4.0 framework, and Ultralytics 

YOLOv8 version 8.0.20.  

 

To have high- quality labeled datasets, Roboflow 

was used to data annotate. Resizing the input 

images to 256×256 improved processing speed, 

and the model was trained using an SGD optimizer 

with a learning rate of 0.01, weight decay of 0.0005, 

and momentum of 0.937. We trained over 50 

epochs with a batch size of 32 for efficiency and 

accuracy, respectively. Table 1 presents detailed 

experimental configurations. 
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Table 1. Experimental Configuration Table 

Parameter value 

IDE Google Colab 

GPU Tesla T4, 15102MiB 

Python 3.10.12 

Framework Torch 2.4.0 

Ultralytics Yolov 8.0.20 

Data annotation Roboflow 

Image sizes 256x256 

Optimizer SGD 

Epoch 50 

Batch size 32 

Initial learning rate 0.01 

Final learning rate 0.1 

Weight decay 0.0005 

Momentum 0.937 

 

2. Dataset Preparation 

For application in over speed railway systems, this 

work uses the publicly available Catenary Insulator 

Defect Detection (CID) dataset to detect and 

classify insulator defects. The dataset is categorized 

into seven categories: crack, dart, good, 

contamination, shelter, missing, and breakage. 

Individual characteristic requirements for successful 

detection of defects are represented by each 

category. The dataset had a substantial difficulty in 

class imbalance, with 3,900 "good" images and only 

60 number of images for every defect class. 

 

 
Figure 3. Our dataset samples 

 

Therefore, only data augmentation was applied to 

the defective classes in order to address the class 

imbalance. Geometric variations were performed 

via random rotations, flips, and zooms for linear 

augmentation methods, and real-world conditions 

were simulated via non-linear techniques of 

changing brightness, contrast, and color. These 

augmentations significantly increased the amount 

of images in the defective categories, resulting in 

the following distributions: The "bad" class was 

contaminated (515), breakage (792), dirt (810), 

shelter (475), missing (531), crack (789), and the 

'good' class was unchanged. The dataset was 

labeled online using the Roboflow online 

annotation tool after augmentation, so each image 

is correctly labeled. Finally, the dataset was divided 

into training, validation, and test sets for maximal 

performance evaluation through complete 

evaluation. To make sure the model can properly 

identify normal from defective images, the training 

set is also made of defective as well as "good" 

images 

  

Table-2 Dataset details for our model 

Before Augmentation After augmentation 

Data type Training data Data type Training 

data 

Good 3900 Good 3900 

(Keep) 

Contamination 60 Contamination 515 

Breakage 60 Breakage 792 

dirt 60 dirt 810 

Shelter 60 Shelter 475 

Missing 60 Missing 531 

Crack 60 Crack 789 

 

In addition, to simplify data integration into the 

model training pipeline and easily handle dataset 

paths such as Train, Test, and Val, a YAML 

configuration file was created. 

 

3. Non maximum suppression(NMS) 

An important step in improving the results of object 

detection models is post processing. Non-

Maximum Suppression (NMS) was applied in the 

improvement of the detection results of our 

YOLOv8n-based insulator defect detection system. 

This technique cuts out those unnecessary 

bounding boxes and keeps only the most confident 

predictions for each defect class. Specifically, the 

NMS technique filters low-confidence predictions 

using a confidence threshold and reduces potential 

false positives. We set an Intersection over Union 
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(IoU) threshold to avoid multiple bounding boxes 

of the same objects. If the IoU of two bounding 

boxes overlaps and exceeds a threshold, then we 

keep only the one with a higher confidence score, 

otherwise using the bounding box with the highest 

confidence score. All the detections present in the 

final output contain accurate and reliable outputs. 

Stepping down this pipeline and integrating it with 

NMS has greatly amplified the precision of the 

model by reversing low-confidence bounding 

boxes. Furthermore, recall levels were high at the 

same time, allowing all major defect areas to be 

identified. This led to better model outputs of mean 

average precision (mAP) such that even different 

categories with a significant loss in precision, such 

as 'contamination' (with 94.3% precision and 

mAP50 of 99.3%), were achieved. NMS resolved 

prediction overlaps and inconsistencies to produce 

stable and interpretable results when our YOLOv8n-

based model was used in inspecting insulator 

defects in a high-speed railway system. 

 

4. Visual Analysis of Our Model Performance 

As shown in Figure 4, the fine-tuned YOLOv8n 

model can precisely and accurately detect defects 

in railway system insulators.  

 

 
Figure.4: Our proposed model results. 

 

Each output image uses a three-layered 

visualization to demonstrate the model's capacity 

to analyze and locate defect regions: bounding box 

predictions overlaid on corresponding defect 

regions, as well as defect highlighting with respect 

to the original input image. In addition to 

improving interpretability, it also guarantees that 

correct defects such as cracks, contamination, and 

breakages are detected even in situations such as 

small defects. This visual clarity demonstrates the 

durability of our method to providing effective 

defect detection in real- world applications. 

 

Figure 5 shows our model’s precision-recall curve, 

which shows our model's ability to balance recall 

and precision across all defect classes. A close to 

perfect trade-off is observed in the curve, with all 

defect categories having high average accuracy 

values, implying that the model is relatively unlikely 

to generate false positives. While the Good, Shelter, 

and Contamination classes remain high and 

consistent on the slope, the model consistently 

identifies each of these classes. On the other hand, 

the breakdown class does not exhibit many 

variations, possibly due to the inherent class 

imbalance in the data along with the difficulty of 

this defect type. 

 

 
Figure 5. Precision-Recall Curve 

 

As Figure 6 shows, the confusion matrix is a good 

overview of the classification accuracy for each 

defect class.  

 

The fact that the model perfectly performs with a 

very small amount of misclassifications and has 

high overall accuracy indicates the matrix’s 
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diagonal dominance. For example, good and 

missing types were almost perfectly classified, and 

minor confusions were found among breakage and 

crack types due to their similarity in visual 

appearance. 

 

 
Figure 6. Confusion matrix 

 

5. Performance Evaluation 

In Table 3, we list a comprehensive overview of our 

experimental results and the class-wise 

performance metric of the fine-tuned YOLOv8n 

model. Thus the model was able to detect defect-

free insulators with precision of 99.4%, recall of 

100%, and mAP50-95 of 93.2%, and the model 

proved to be the best performing to detect this 

class. The shelter and missing types performed very 

well, but with mAP50-95 scores of 78.9% and 

74.3%, respectively, while the breakdown suffers a 

lot, with mAP50-95 scores of 31.4%. 

 

Table 3. Experimental Results 

Class Precision 

(%) 

Recall (%) mAP50 

(%) 

mAP50-95 

(%) 

all 0.953 0.934 0.957 0.64 

breakage 0.874 0.757 0.836 0.314 

contamina

tion 

0.943 1 0.993 0.636 

Crack 0.973 0.891 0.93 0.454 

Dirt 0.92 0.899 0.959 0.616 

Good 0.994 1 0.995 0.932 

Missing 0.974 0.989 0.991 0.738 

shelter 0.994 1 0.995 0.789 

In Table 4, we present a comparative analysis of the 

performance of our model against three YOLO 

variations trained on the same dataset and settings. 

We clearly demonstrate that our fine-tuned 

YOLOv8n outperforms YOLOv5, YOLOv6, and 

YOLOv7 on all the evaluation metrics. For instance, 

many may say that a well-developed model such as 

YOLOv5 got impressive results of 87.6% accuracy, 

85.2% recall, and mAP50 of 87.4; the values from 

our model are 95.3%, 93.4%, and 95.7%, 

respectively.  

 

Our fine-tuning procedure of using SGD optimizer, 

batch size 32 and data augmentation adapted for 

unbalanced for dataset is able to accomplish this 

constant outperformance, which indicates that it 

works. 

 

Table 4. Comparison result of different yolo mode 

on our dataset 

Model 

Name 

Precision(%) Recall(%) mAP50(%) mAP5

0- 

95(%) 

Yolov5 87.6 85.2 87.4 55.2 

Yolov6 66.8 67.5 88.1 59.1 

Yolov7 83.6 85.1 84.6 57.7 

Yolov8n 91.7 86 89.9 57.9 

Yolov8n(ps2) 87 80.5 86.1 54 

Yolov8n(ps6) 86.8 81.6 83.8 53.8 

Our model 95.3 93.4 95.7 65.7 

 

6. Comparative Analysis with Existing Methods 

Table 5 compares the results of our fine-tuned 

YOLOv8n model with all other methods in the 

literature to evaluate the more general applicability 

and efficiency of our method.  

 

Table 5 compiles performance measures given by 

other authors on similar insulator defect detection 

tasks, but unlike Tables 3 and 4, which focus on 

performance within our dataset.  

 

Compared to previous techniques, our model 

achieved 95.3% accuracy, 95.7% mAP50 and set a 

new standard for the task. Moreover, such 

robustness is shown by our model when extended 
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to a more complete metric, which additionally 

includes mAP50-95, where it reaches a value of 64% 

as opposed to other methods. 

 

Table 5. Comparison table of the different existing 

methods with our prosed method 

M
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e
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ll(
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F
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(%
) 

R
e
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CNNs(Vgg19),

MTL 

Defect and 

non-defect 

80 - 85 75 [32] 

Improved 

ResNet-18 

Defect and 

non-defect 

94 79 - 86 [33] 

Improved 

YOLOv4 

Defect and 

non-defect 

94.53 93 93.09 94 [34] 

AC-YOLO Breakage 

and 

flashover 

93.8 89 93.4 91 [35] 

YOLOv7-C3C2-

GAM 

Bird Nest, 

cracked, 

blast 

and normal 

89.1 84.7 87.9 - [36] 

Improved 

YOLOv7 

Self-

explosion, 

normal 

and partial 

damage 

93.3 92 94.9 - [14] 

Improved 

YOLOv7 

Flashover 

and damage 

94 93.4 93.8 94 [37] 

Improved 

YOLOv7-tiny 

Defect and 

non-defect 

94.51 94 98.31 96 [38] 

ID-YOLOv7 Defect 92.6 80 85.7 - [39] 

YOLO-S Defect and 

non-defect 

88.5 85 57.2 - [40] 

LiteYOLO-ID Broken, 

flashover 

83 59 65.1 - [41] 

Cascaded CNN Defect 94.10 92 93.46 90 [28] 

GC-YOLO Pollution, 

breakage, 

flashover 

93.1 89 94.2 - [42] 

Ours method Good, 

missing, 

crack, 

breakage, 

shelter, dirt, 

contaminati

on 

95.3 93.4 95.7 94  

 

Leveraging this comparative analysis, we 

demonstrate the validation of our approach over 

other advancements focused on adaptability to 

imbalanced datasets and to detect subtle defect 

types. We leverage a combination of data 

augmentation, fine-tuned hyperparameters and 

advanced visualization to address key challenges 

left out by previous methods, including the 

handling of varying defect categories with minimal 

class overlap. 

 

V. CONCLUSION  
 

A fine-tuned YOLOv8n model is proposed in this 

study to automatically detect catenary insulator 

defects in high-speed railway systems. By tackling 

the issues of unbalanced datasets and 

environmental unpredictability. Our methodology 

dramatically improves defect detection and 

classification accuracy over existing methods. 

Targeted data augmentation techniques and 

optimization of the YOLOv8n model with a custom 

loss function and SGD optimizer significantly 

improved the defect type identification of both 

common and rare defect types.  

 

Our experimental results show that the model 

achieved very high accuracy, in particular for 

defects such as contamination, shelter, missing, and 

good-type insulators, and promising results for tiny, 

hard-to- detect problems like dirt, cracks, and 

breakage. However, the performance of some 

minority defect classes, particularly dirt and crack, 

should be improved.  

 

The results also highlight that deep learning models 

require continual tuning for improving detection 

skills, especially under adverse conditions. We 

present a more efficient, reliable, and scalable 

solution for insulator fault detection using deep 

learning, which is highlighted by this study as 

having the capacity to change critical infrastructure 

inspection and maintenance in real time.  

 

We will explore future work to increase the model's 

resilience through alternative training procedures 

for multi-modal data and carefully tend to extreme 
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unbalanced datasets. In total, this paper serves as a 

solid base to continue the development of 

automatic inspection technologies within the 

railway sector, promoting the safety, reliability, and 

long life of catenary insulators. 

 

REFERENCES 
 

1. L. Huang, Y. Li, W. Wang, and Z. He, “Enhanced 

Detection of Subway Insulator Defects Based on 

Improved YOLOv5,” Appl. Sci., vol. 13, no. 24, 

2023, doi: 10.3390/app132413044. 

2. D. Li, P. Yang, and Y. Zou, “Optimizing Insulator 

Defect Detection with Improved DETR Models,” 

Mathematics, vol. 12, no. 10, 2024, doi: 

10.3390/math12101507. 

3. Q. Wang, Z. Fan, Z. Luan, and R. Shi, “Insulator 

Abnormal Condition Detection from Small Data 

Samples,” Sensors, vol. 23, no. 18, 2023, doi: 

10.3390/s23187967. 

4. C. Liu, W. Yi, M. Liu, Y. Wang, S. Hu, and M. Wu, 

“A Lightweight Network Based on Improved 

YOLOv5s for Insulator Defect Detection,” 

Electron., vol. 12, no. 20, 2023, doi: 

10.3390/electronics12204292. 

5. G. Kang, S. Gao, L. Yu, and D. Zhang, “Deep 

Architecture for High-Speed Railway Insulator 

Surface Defect Detection: Denoising 

Autoencoder with Multitask Learning,” IEEE 

Trans. Instrum. Meas., vol. 68, no. 8, pp. 2679–

2690, 2019, doi: 10.1109/TIM.2018.2868490. 

6. Q. Lu, K. Lin, and L. Yin, “3D attention-focused 

pure convolutional target detection algorithm 

for insulator defect detection,” Expert Syst. 

Appl., vol. 249, p. 123720, 2024, doi: 

https://doi.org/10.1016/j.eswa.2024.123720. 

7. J. Liu, M. Wang, X. Xie, Y. Song, and L. Xu, 

“Leather Defect Detection Algorithm Based on 

Improved YOLOv5,” Jisuanji 

Gongcheng/Computer Eng., vol. 49, no. 8, pp. 

240–249, 2023, doi: 10.19678/j.issn.1000-

3428.0064587. 

8. V. N. Nguyen, R. Jenssen, and D. Roverso, 

“Automatic autonomous vision-based power 

line inspection: A review of current status and 

the potential role of deep learning,” Int. J. Electr. 

Power Energy Syst., vol. 99, pp. 107–120, 2018, 

doi: 

https://doi.org/10.1016/j.ijepes.2017.12.016. 

9. F. Fahim and M. S. Hasan, “Enhancing the 

reliability of power grids: A YOLO based 

approach for insulator defect detection,” e-

Prime - Adv. Electr. Eng. Electron. Energy, vol. 9, 

no. September, 2024, doi: 

10.1016/j.prime.2024.100663. 

10. J. Redmon, “You only look once: Unified, real-

time object detection,” in Proceedings of the 

IEEE conference on computer vision and pattern 

recognition, 2016. 

11. Z. Cao, T. Liao, W. Song, Z. Chen, and C. Li, 

“Detecting the shuttlecock for a badminton 

robot: A YOLO based approach,” Expert Syst. 

Appl., vol. 164, p. 113833, 2021, doi: 

https://doi.org/10.1016/j.eswa.2020.113833. 

12. B. Wang, C. Yang, Y. Ding, and G. Qin, 

“Detection of Wood Surface Defects Based on 

Improved YOLOv3 Algorithm,” BioResources, 

vol. 16, no. 4, pp. 6766–6780, 2021, doi: 

10.15376/biores.16.4.6766-6780. 

13. K. Hao, G. Chen, L. Zhao, Z. Li, Y. Liu, and C. 

Wang, “An Insulator Defect Detection Model in 

Aerial Images Based on Multiscale Feature 

Pyramid Network,” IEEE Trans. Instrum. Meas., 

vol. 71, pp. 1–12, 2022, doi: 

10.1109/TIM.2022.3200861. 

14. Z. Wang, G. Yuan, H. Zhou, Y. Ma, Y. Ma, and D. 

Chen, “Improved YOLOv7 model for insulator 

defect detection,” Electron. Res. Arch., vol. 32, 

no. 4, pp. 2880–2896, 2024, doi: 

10.3934/ERA.2024131. 

15. J. Su, Y. Yuan, K. Przystupa, and O. Kochan, 

“Insulator defect detection algorithm based on 

improved YOLOv8 for electric power,” Signal, 

Image Video Process., vol. 18, no. 8, 

16. pp. 6197–6209, 2024, doi: 10.1007/s11760-024-

03307-w.Q. Wen, “Deep Learning Approaches 

on Defect Detection in High,” 2021. 

17. Y. Chen et al., “Lightweight Detection Methods 

for Insulator Self-Explosion Defects,” 2024. 

18. Y. Wang, Z. Li, X. Yang, N. Luo, Y. Zhao, and G. 

Zhou, “Insulator Defect Recognition Based on 

Faster R-CNN,” Proc. 2020 Int. Conf. Comput. 

Inf. Telecommun. Syst. CITS 2020, 2020, doi: 

10.1109/CITS49457.2020.9232614. 



 Zhang Zheng.  International Journal of Science, Engineering and Technology, 

 2024, 12:6 

 

11 
 

 

19. D. Wei, B. Hu, C. Shan, and H. Liu, “Insulator 

defect detection based on improved Yolov5s,” 

Front. Earth Sci., vol. 11, no. February, pp. 1–10, 

2023, doi: 10.3389/feart.2023.1337982. 

20. Z. De Zhang et al., “FINet: An Insulator Dataset 

and Detection Benchmark Based on Synthetic 

Fog and Improved YOLOv5,” IEEE Trans. 

Instrum. Meas., vol. 71, 2022, doi: 

10.1109/TIM.2022.3194909. 

 

21. Y. Chen, H. Liu, J. Chen, J. Hu, and E. Zheng, 

“Insu-YOLO: An Insulator Defect Detection 

Algorithm Based on Multiscale Feature Fusion,” 

Electron., vol. 12, no. 15, 2023, doi: 

10.3390/electronics12153210. 

22. K. Yang, S. Gao, L. Yu, D. Zhang, J. Wang, and C. 

Song, “A Real-Time Siamese Network Based on 

Knowledge Distillation for Insulator Defect 

Detection of Overhead Contact Lines,” IEEE 

Trans. Instrum. Meas., vol. PP, p. 1, 2024, doi: 

10.1109/TIM.2024.3376702. 

 

23. W. Liu, Z. Liu, H. Wang, and Z. Han, “An 

Automated Defect Detection Approach for 

Catenary Rod-Insulator Textured Surfaces Using 

Unsupervised Learning,” IEEE Trans. Instrum. 

Meas., vol. 69, no. 10, pp. 8411–8423, 2020, doi: 

10.1109/TIM.2020.2987503. 

24. U. A. Imagery, “An Improved CenterNet Model 

for Insulator Defect Detection Using Aerial 

Imagery,” 2022. 

25. W. Xu, X. Zhong, M. Luo, L. Weng, and G. Zhou, 

“End-to-End Insulator String Defect Detection 

in a Complex Background Based on a Deep 

Learning Model,” Front. Energy Res., vol. 10, no. 

July, pp. 1–11, 2022, doi: 

10.3389/fenrg.2022.928162. 

26. Z. He et al., “Insulator Defect Detection Based 

on YOLOv8s-SwinT,” pp. 1–15, 2024. 

27. D. Learning, “Image Detection of Insulator 

Defects Based on Morphological Processing 

and Deep Learning,” 2022. 

28. Z. Wang, X. Liu, H. Peng, L. Zheng, J. Gao, and Y. 

Bao, “Railway Insulator Detection Based on 

Adaptive Cascaded Convolutional Neural 

Network,” IEEE Access, vol. 9, pp. 115676–

115686, 2021, doi: 

10.1109/ACCESS.2021.3105419. 

29. X. Liu, X. Miao, H. Jiang, and J. Chen, “Box-Point 

Detector: A Diagnosis Method for Insulator 

Faults in Power Lines Using Aerial Images and 

Convolutional Neural Networks,” IEEE Trans. 

Power Deliv., vol. 36, no. 6, pp. 3765–3773, 

2021, doi: 10.1109/TPWRD.2020.3048935. 

30. Z. Xuan, J. Ding, and J. Mao, “Intelligent 

Identification Method of Insulator Defects 

Based on CenterMask,” IEEE Access, vol. 10, pp. 

59772–59781, 2022, doi: 

10.1109/ACCESS.2022.3179975. 

31. Q. Yang and F. Yu, “Deep Learning Based Defect 

Detection Research on Printed Circuit Boards,” 

Int. J. Adv. Network, Monit. Control., vol. 9, pp. 

51–58, 2024, doi: 10.2478/ijanmc-2024-0015. 

32. R. M. Prates, R. Cruz, A. P. Marotta, R. P. Ramos, 

E. F. Simas Filho, and J. S. Cardoso, “Insulator 

visual non-conformity detection in overhead 

power distribution lines using deep learning,” 

Comput. Electr. Eng., vol. 78, pp. 343–355, 2019, 

doi: 10.1016/j.compeleceng.2019.08.001. 

33. Y. Cao, H. Xu, C. Su, and Q. Yang, “Accurate 

Glass Insulators Defect Detection in Power 

Transmission Grids Using Aerial Image 

Augmentation,” IEEE Trans. Power Deliv., vol. 38, 

no. 2, pp. 956–965, 2023, doi: 

10.1109/TPWRD.2022.3202958. 

34. Z. Qiu, X. Zhu, C. Liao, D. Shi, and W. Qu, 

“Detection of Transmission Line Insulator 

Defects Based on an Improved Lightweight 

YOLOv4 Model,” Appl. Sci., vol. 12, no. 3, 2022, 

doi: 10.3390/app12031207. 

35. Y. Hu, B. Wen, Y. Ye, and C. Yang, “Multi-Defect 

Detection Network for High-Voltage Insulators 

Based on Adaptive Multi-Attention Fusion,” 

Appl. Sci., vol. 13, no. 24, 2023, doi: 

10.3390/app132413351. 

36. B. Li, M. Xu, Z. Xie, D. Qi, and Y. Yan, “Research 

on Insulator Defect Detection Based on 

Improved YOLOv7,” Lect. Notes Electr. Eng., vol. 

1169 LNEE, pp. 173–180, 2024, doi: 

10.1007/978-981-97-1072-0_17. 

37. J. Zheng, H. Wu, H. Zhang, Z. Wang, and W. Xu, 

“Insulator-Defect Detection Algorithm Based on 



 Zhang Zheng.  International Journal of Science, Engineering and Technology, 

 2024, 12:6 

 

12 
 

 

Improved YOLOv7,” Sensors, vol. 22, no. 22, pp. 

1–23, 2022, doi: 10.3390/s22228801. 

38. S. Wu et al., “Online insulator defects detection 

and application based on YOLOv7-tiny 

algorithm,” Front. Energy Res., vol. 12, no. 

March, pp. 1–12, 2024, doi: 

10.3389/fenrg.2024.1372618. 

39. B. Chen, W. Zhang, W. Wu, Y. Li, Z. Chen, and C. 

Li, “ID-YOLOv7: an efficient method for 

insulator defect detection in power distribution 

network,” Front. Neurorobot., vol. 17, 2023, doi: 

10.3389/fnbot.2023.1331427. 

40. W. Yi, S. Ma, and R. Li, “Insulator and Defect 

Detection Model Based on Improved Yolo-S,” 

IEEE Access, vol. 11, no. September, pp. 93215–

93226, 2023, doi: 

10.1109/ACCESS.2023.3309693. 

41. D. Li, Y. Lu, Q. Gao, X. Li, X. Yu, and Y. Song, 

“LiteYOLO-ID: A Lightweight Object Detection 

Network for Insulator Defect Detection,” IEEE 

Trans. Instrum. Meas., vol. 73, pp. 1–12, 2024, 

doi: 10.1109/TIM.2024.3418082. 

42. L. U. Ding, Z. H. I. Qiang, R. A. O. Jr, B. Ding, and 

S. J. I. A. Li, “Research on Defect Detection 

Method of Railway Transmission Line Insulators 

Based on GC-YOLO,” IEEE Access, vol. 11, no. 

August, pp. 102635–102642, 2023, doi: 

10.1109/ACCESS.2023.3316266. 
 


