
Tarun K S, 2025, 13:3

ISSN (Online): 2348-4098

ISSN (Print): 2395-4752

© 2025 Tarun K S. This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly credited.

International Journal of Science,
Engineering and Technology

An Open Access Journal

Smart Canteen: Efficient Food Ordering for College

Campuses
Tarun K S, Assistant Professor R.S.Nagasundaramd

VISTAS

I. INTRODUCTION

Canteen is the heart of every college or institution. It

caters to the basic needs of everyone. The canteen is

primarily responsible for serving nutritious and

hygienic food to the students and staff. It also serves

meals to the students residing in the campus. As

many students come from distant places, it is

essential for the students to have nutritious food and

refreshments at affordable prices so as to participate

in the daily academic activities actively. The college

canteen plays an important role in this regard by

catering the daily nutritional requirements of

students and staff members.

Abstract- College canteen, also known as a college cafeteria or college food service, is a facility within

a college or university campus that provides food and beverages to students, faculty, staff, and

visitors. It serves as a convenient on-campus dining option, offering a variety of meals, snacks, and

beverages to meet the nutritional needs of the college community. Current systems may rely on

manual order processing, leading to delays and inaccuracies in fulfilling student and staff orders.

The College Canteen Food Ordering System is a web-based platform designed to streamline and

enhance the food ordering process for students and staff within a college campus. This system

involves four main actors: Students, Staff, College Admin, and Canteen Admin, each with distinct

roles and functionalities. Students can access the system to browse the canteen menu, add items to

their cart, and securely place orders. Real-time notifications keep them informed about order status,

and they have the option to provide feedback on food quality and service. The system also enables

students to manage their profiles and view order history. College Admins are responsible for user

management, ensuring the smooth functioning of student and staff accounts. They monitor overall

system performance, access order data, and generate reports for strategic decision-making. Canteen

Admins play a pivotal role in updating the menu, receiving orders, processing payments, managing

inventory, and coordinating with kitchen staff. They handle payment confirmations, generate

invoices, and respond to inquiries from students and staff. Feedback from users is actively addressed

to enhance service quality. The system integrates secure authentication measures, a user-friendly

interface, and real-time notifications to enhance the user experience. Regular reporting and

feedback mechanisms contribute to continuous system improvement. The College Canteen Food

Ordering System aims to create an efficient, transparent, and enjoyable food ordering experience

within the college community.

Keywords- College Canteen, Food Ordering System, Online Food Ordering, Campus Dining System, Canteen

Management System, Web-based Ordering, Student Food Services

 Tarun K S. International Journal of Science, Engineering and Technology,

 2025, 13:3

2

 The objective of the Canteen and meal service is to

protect by reducing the risk of foodborne illness,

with proper sanitary conditions, and preventing

adulterated food. From the very beginning of the

College, the College Canteen has been functioning

efficiently. The canteen is located inside the College.

The hostellers and day scholars are provided meals

by assuring food safety and quality. The students

who come from faraway places, start their journey to

the College early in the morning. The mid-day meal

is provided. Even many day-scholars use canteen

facilities for their breakfast and evening tea with

snacks. The canteen provides healthy, tasty eatables,

fresh fruit juices, hot and cold drinks to the students

at subsidized rates. The location of our college

canteen is such that it is easily approachable from all

the departments. Kitchen staff takes care to provide

the students and staff a nutritious and hygienic food

at our campus canteens. A variety of hygienic food

and snack items includes South and North Indian

Meals, Variety Rice’s Chinese Foods Fresh Juices, etc.

1.2. Problem Statement

The traditional manual processes in college canteens

often lead to a range of operational inefficiencies.

With order processing handled through physical

forms or word-of-mouth communication, there is a

higher likelihood of delays, miscommunication, and

errors, especially during peak hours when demand is

at its highest. This not only frustrates students and

staff but also burdens canteen staff with excessive

administrative tasks, reducing the overall

effectiveness of the operation. Moreover, without a

centralized system, it becomes difficult to track

inventory accurately, manage menu changes, or

ensure timely payments, often resulting in a lack of

transparency for users. Students and staff may also

face inconvenience due to the limited availability of

information on menus, order statuses, or special

promotions, which affects their overall dining

experience. To address these challenges, the Smart

Canteen project proposes a modern, web-based

solution that automates and streamlines canteen

operations. By providing real-time menu browsing,

order management, payment processing, and

inventory tracking, the platform ensures faster, more

accurate service. It also introduces transparent

communication between users and staff, enabling

seamless order placement and updates. The

feedback system further enhances user satisfaction,

giving students and staff a voice in improving food

quality and service. Ultimately, the Smart Canteen

project aims to improve operational efficiency,

reduce administrative workload, and elevate the

overall dining experience within the college campus.

1.3. Full Stack Development

Full stack development is the process of designing,

creating, testing, and deploying a complete web

application from start to finish. Full stack developers

possess the skills to work on all layers of an

application, from the user interface to the server and

database. This comprehensive approach allows them

to create end-to-end solutions by integrating

different technologies and frameworks

.

It involves working with various technologies and

tools, including front-end web development, back-

end web development, and database development.

And full stack development is a term used to

describe a software engineer or developer who

works with both the front and back end of a website

or application. A full-stack developer is comfortable

working with front-end and back-end technologies

that power a website or application.

 Tarun K S. International Journal of Science, Engineering and Technology,

 2025, 13:3

3

 Frontend: A website’s or web app’s frontend is the

user interface visitors use to take action. Frontend

development deals with everything that users see or

do on a website or web app, from design to the

customer journey, like how users navigate the

website. This also involves improving the website’s

usability, user-friendliness, and aesthetic appeal

while making it easier for the users to navigate

.

Frontend development employs programming

languages and frameworks such as CSS, HTML,

React, Angular, TezJS, JavaScript, TypeScript, NextJS,

and Vue. Here’s the deal, you can hire expert full-

stack software engineers and web development

team from Radixweb. Our professional developers

are well-versed in every full-stack programming

language and framework, so you can be stress-free

during development and deployment.

Backend: Backend development creates software

that enables interaction between the interface and

the database. The backend of a website must be kept

up-to-date, and backend developers must manage

servers, software, and databases. They should know

all the popular backend frameworks. Making it

straightforward to access and update involves

working on the server, website structure, and

database. The ultimate goals of backend

development are to control what clients can’t see

and ensure they have a positive experience on your

website or web app.

Database Management: Full-stack developers use

database technologies such as MySQL, PostgreSQL,

and MongoDB to store and manage data within the

web application. They must also be familiar with APIs

(Application Programming Interfaces) which enable

software applications to communicate with each

other.

1.4. AIM AND OBJECTIVE

Aim

The aim of the project is to develop and implement

a project that enhances the efficiency, transparency,

and user experience of food ordering processes

within the college campus.

Objective

• To streamline food ordering processes for students

and staff.

• To improve menu visibility and accessibility in real-

time.

• To facilitate efficient communication among

canteen staff.

• To optimize inventory management and

stock control.

• To ensure robust security measures and

compliance standards.

• To empower users with control over their

profiles and orders.

• To enhance the overall user experience of

campus dining.

1.5. SCOPE OF THE PROJECT

The scope of the project focusing on the following

key aspects:

• System Development: Designing and

building a web-based platform that facilitates food

ordering processes for students and staff within the

college campus.

• User Interfaces: Creating intuitive and user-

friendly interfaces for students, staff, college admins,

and canteen admins to interact with the system

effectively.

• Menu Management: Implementing features

for updating, managing, and displaying the canteen

menu, including item descriptions, prices, and

availability.

 Tarun K S. International Journal of Science, Engineering and Technology,

 2025, 13:3

4

• Order Processing: Developing functionalities

for placing, processing, and tracking food orders in

real-time, ensuring timely and accurate order

fulfillment.

• Communication Channels: Integrating

communication tools to facilitate seamless

interaction among canteen staff, including kitchen

and delivery personnel, for efficient order

management.

• Inventory Control: Establishing a centralized

inventory management system to monitor stock

levels, track usage, and facilitate timely restocking of

food items.

• Security Measures: Implementing robust

security measures, such as encryption and user

authentication, to safeguard user data and ensure

transaction security.

• Feedback Mechanisms: Incorporating

features for users to provide feedback on food

quality, service, and overall experience, enabling

continuous improvement.

• User Management: Providing functionalities

for users to create and manage their profiles, view

order history, and access personalized settings.

• Reporting and Analytics: Developing tools

for generating reports and analyzing data related to

order trends, sales performance, and inventory

management for informed decision-making.

• Integration and Deployment: Integrating

various components of the system and deploying it

on reliable hosting platforms to ensure accessibility

and scalability.

• Training and Support: Providing training

materials and support resources to users and

administrators to facilitate smooth adoption and

operation of the system.

The scope also includes ongoing maintenance and

updates to ensure the system's continued

functionality, security, and relevance to the needs of

the college community.

II. SYSTEM ANLYSIS

2.1. EXISTING SYSTEM

The existing system for food ordering in college

canteens typically involves manual processes and

limited technological support. Here's an overview of

the typical characteristics of the existing system:

Manual Order Placement: Students and staff

physically visit the canteen counter to place their

food orders. This process often involves queuing,

which can result in long waiting times during peak

hours.

•Physical Visit to Canteen Counter

In the existing system, students and staff who wish

to order food from the college canteen must

physically visit the canteen counter. They approach

the counter and join the queue of other customers

who are also waiting to place their orders.

•Order Taking by Canteen Staff

When a student or staff member reaches the front of

the queue, they interact with the canteen staff who

are stationed behind the counter. The canteen staff

member takes the customer's order by verbally

asking for their food preferences and choices. The

customer communicates their order, specifying the

items they want to purchase, along with any

customizations or special requests.

•Manual Writing of Orders

As the customer provides their order, the canteen

staff manually write down the items and any special

instructions on a paper order form or notepad. The

written order may include details such as the name

of the item, quantity, and specific preferences (e.g.,

extra sauce, no onions).

•Communication to Kitchen Staff

After the order is written down, the canteen staff

member communicates the order to the kitchen staff

who are responsible for food preparation. This

communication may occur verbally or through

physical delivery of the written order slip to the

kitchen area.

•Waiting Time for Order Preparation

Once the order is communicated to the kitchen staff,

the customer must wait for their food to be

prepared. The waiting time can vary depending on

factors such as the complexity of the order, the

number of orders being processed, and the

efficiency of the kitchen staff.

•Order Pickup and Payment

When the food is ready, the customer is notified by

the canteen staff, either verbally or through a call-

out of their name. The customer then proceeds to

the pickup counter to collect their order. Upon

receiving the food, the customer makes the

 Tarun K S. International Journal of Science, Engineering and Technology,

 2025, 13:3

5

payment, either in cash or through other accepted

payment methods.

•Completion of Order Transaction

After the customer has collected their order and

made the payment, the transaction is considered

complete. The customer can then take their food and

proceed to enjoy their meal.

Overall, the manual order placement process in

college canteens involves several steps, including

physical visits to the counter, verbal communication

of orders, manual writing of orders, and waiting

times for order preparation. While this traditional

approach has been widely used, it can be inefficient

and time-consuming, especially during peak hours

when queues are long and waiting times are high.

2.1.1. DISADVANTAGES

•Manual order placement leads to long waiting times

and queues at the canteen counter.

•Limited visibility into menu options and availability

contributes to uninformed choices.

•Verbal communication of orders increases the risk

of errors and misunderstandings.

•Lack of centralized order tracking makes it difficult

to monitor order status and processing times.

•Manual inventory management results in

inconsistencies and stock shortages.

•Limited feedback channels hinder opportunities for

improving food quality and service.

•Cash-based transactions pose security risks and

inconvenience for users.

•Lack of user control over orders and profiles limits

customization and personalization options.

2.2. PROPOSED SYSTEM

The proposed system for the project aims to

revolutionize the food ordering experience within

the college campus by leveraging modern

technology and automation. Here's an overview of

the key features and functionalities of the proposed

system:

•Online Ordering Platform

Introduce a user-friendly web-based platform

accessible via desktop and mobile devices, allowing

students and staff to place orders remotely.

•Dynamic Menu Presentation

Implement a dynamic menu interface that displays

real-time updates on available items, prices, and

descriptions, enabling informed decision-making.

•Order Management System

Develop a centralized system for managing orders

from placement to fulfillment, providing real-time

status updates and notifications to users.

•Automated Communication Channels

Establish automated communication channels

between canteen staff and kitchen personnel to

streamline order processing and minimize delays.

•Inventory Tracking Mechanism

Integrate an inventory management system to

monitor stock levels, track usage, and automate

restocking processes for efficient supply chain

management.

•Secure Online Transactions

Implement secure online payment gateways to

facilitate cashless transactions, ensuring data privacy

and financial security for users.

•Feedback Mechanism

Incorporate a feedback mechanism allowing users to

provide ratings and reviews, enabling continuous

improvement of food quality and service.

•User Profiles and Preferences

Enable users to create personalized profiles, save

order preferences, and access order history for a

seamless and customized ordering experience.

•Administrative Dashboard

Provide administrative dashboards for canteen

admins and college admins to manage menus, track

orders, and generate reports for data-driven

decision-making.

2.2.1. Advantages

•Enhanced convenience through remote ordering

from any location within the campus.

•Real-time menu updates for informed decision-

making and improved user experience.

•Streamlined order processing, reducing waiting

times and increasing efficiency.

•Automated communication channels for seamless

coordination among canteen staff.

•Improved inventory management, minimizing stock

shortages and wastage.

•Secure online transactions for cashless payments,

ensuring financial security for users.

•Continuous feedback mechanism for quality

improvement and customer satisfaction.

•Personalized user profiles and order history for a

customized dining experience.

 Tarun K S. International Journal of Science, Engineering and Technology,

 2025, 13:3

6

•Comprehensive administrative dashboards for

data-driven decision-making and operations

management.

•Scalability and flexibility to adapt to future growth

and changes in canteen operations.

•Ongoing training and support for users and

administrators to maximize system utilization and

effectiveness.

Existing studies emphasize the prospect of mobile-

based library systems. [1] Which shows how Android

applications minimize manual labour through

automated book transactions. [2], [3], [4], [5], [6], [7]

up to [12] all the research emphasizes Android

Studio's advantages, including compatibility with

Material Design guidelines and easy integration with

cloud databases such as Firebase. Features that are

common in previous studies are book searching,

user login, and fundamental transaction tracking,

commonly done with Java and SQLite. Gaps exist,

such as poor consideration of offline operation,

sophisticated user experience (UX) design, and

support for cutting-edge technologies such as IoT.

This study improves on the foundations by the

inclusion of Kotlin, cloud synchronisation, and richer

UX, fixing flaws established in previous studies.

III. SYSTEM SPECIFICATION

3.1. HARDWARE REQUIREMENTS

•Processor : Intel Core i5 or higher

•RAM : 8GB or more

•Storage : Minimum 256GB SSD

•Display : 14" Full HD (1920x1080)

resolution or higher

•Network Interface: Ethernet or Wi-Fi connectivity

3.2. SOFTWARE REQUIREMENTS

•Operating System: Windows 10

•Programming : Python

•Framework : Flask framework for building the

web application

•Web Design : HTML, CSS, JavaScript, and

Bootstrap

•Database : MySQL

IV. SYSTEM DESIGN

4.1. INTRODUCTION

The system design of the project utilizes a client-

server architecture to streamline food ordering and

management processes. The design ensures a user-

friendly and efficient experience for students, staff,

and administrators. The front-end leverages HTML,

CSS, JavaScript, and Bootstrap to create a responsive

interface, while the back-end uses Python and Flask

for seamless server-side processing. MySQL is

employed for reliable data storage, handling user

profiles, orders, and menu items. The app integrates

secure payment gateways to support both online

and cash-on-delivery options.

4.2. ARCHITECTURE DESIGN

4.3. INPUT DESIGN

The input design of the project is focused on

creating an intuitive and user-friendly interface to

facilitate easy data entry and ensure smooth

interactions for all users. The system design includes

various input forms and validation mechanisms for

different functionalities:

1. User Login/Authentication

 Tarun K S. International Journal of Science, Engineering and Technology,

 2025, 13:3

7

The login interface allows users to input their

username and password to access their accounts.

Validation checks ensure that the username exists in

the system and the password matches the stored

hash. In case of incorrect login attempts, clear error

messages are displayed, guiding users to correct

their inputs.

2. Menu Browsing

The menu browsing section offers a search bar for

users to find food items quickly. Users can also filter

items by categories like vegetarian, non-vegetarian,

drinks, or based on availability. Input fields for the

name, description, and price of menu items are

available for administrators to manage the offerings.

3. Order Placement

In the order placement section, users can select

menu items, specify the quantity, and provide

optional special instructions. The system ensures

that the item is in stock, and quantities are valid,

while the cart dynamically updates to show added

items, their quantities, and the total price.

4. Payment

For payment, users can choose their payment

method, enter card details (card number, expiration

date, CVV) for online payments, or opt for cash on

delivery. Secure input fields and real-time validation

ensure that sensitive data is entered correctly. A final

confirmation screen displays the total amount,

including applicable taxes and discounts, before

completing the transaction.

5. Feedback and Ratings

The feedback section allows users to rate food items

with a scale from 1 to 5 stars and provide textual

comments. Validation ensures ratings fall within the

accepted range and that the comment box isn’t

empty. Users are prompted to complete all fields

before submitting their feedback.

6. Admin Panel

For administrators, the menu management input

fields allow them to add, edit, or remove items.

Administrators can enter details such as item name,

price, availability, and description. Additional options

for setting time-based promotions or availability

periods are also available.

7. Order Tracking

The order tracking interface requires the order ID for

administrators to manage and update the status of

orders (e.g., in progress, completed). The status can

be changed as needed to reflect the real-time

progress of an order.

8. Notification Preferences

The notification preferences section enables users to

select how they would like to be notified about

updates, including email, SMS, or in-app alerts. Users

can save these preferences for future updates and

notifications.

This input design ensures clarity, reduces the

chances of error, and provides users with a seamless

experience while interacting with the Campus Dining

Web App.

4.4. OUTPUT DESIGN

The output design of the project is focused on

providing users and administrators with clear,

concise, and actionable information, ensuring a

seamless experience and effective management of

operations.

1. User Dashboard

The user dashboard displays a personalized view of

the dining experience. It includes information such

as menu options, active orders, order status, and any

notifications related to promotions or new items.

Users can quickly view their order history, track the

status of their current order, and access payment

receipts. The dashboard also shows recommended

items based on their previous orders and ratings.

2. Menu Display

The menu page presents the available food items,

organized into categories (e.g., starters, mains,

drinks, etc.). For each item, the user can see the

name, price, description, availability status, and any

special promotions or discounts. Images of the items

are included for better visualization. The system

dynamically updates to reflect real-time availability

of items and promotions.

3. Order Confirmation Screen

After users finalize their order, an order confirmation

screen appears. It summarizes the items selected,

including their quantity and total price, with an

option to edit the order. The screen also displays an

estimated delivery time and offers a final

confirmation button to submit the order.

4. Payment Confirmation

Once payment is processed, a payment confirmation

page displays the transaction details, including the

amount paid, payment method, and a transaction ID

for the user’s reference. If the payment is successful,

 Tarun K S. International Journal of Science, Engineering and Technology,

 2025, 13:3

8

users receive a receipt with an option to download

or email it for record-keeping.

5. Order Tracking

The order tracking page allows users to monitor the

progress of their order in real-time. It shows the

current status (e.g., processing, out for delivery,

delivered) with a timestamp and a progress bar.

Users can also view the estimated delivery time and

get notifications if the status changes.

6. Feedback and Ratings Confirmation

Once a user submits feedback or a rating for an item,

a confirmation message appears, thanking them for

their input. Users can also view their previous ratings

and comments on items they have rated in the past.

7. Admin Panel

For administrators, the admin panel offers an

overview of all active orders, inventory levels, and

menu items. Administrators can view real-time order

statuses, update menu items, and access detailed

reports such as sales data, user feedback, and system

performance. They can also manage user accounts,

including viewing user activity, updating order

statuses, and sending notifications to users.

8. Notifications

Notifications are delivered in real-time through in-

app alerts, SMS, or email, depending on the user's

preference. These notifications include order

updates, promotions, payment confirmations, and

other relevant messages such as special offers or

menu changes.

The output design is focused on providing an

efficient, user-friendly experience for both users and

administrators. By presenting information clearly

and in an easily accessible manner, it ensures smooth

interactions and helps maintain transparency

throughout the entire process.

4.5. DATA FLOW DIAGRAM

LEVEL 0

LEVEL 1

LEVEL 2

 Tarun K S. International Journal of Science, Engineering and Technology,

 2025, 13:3

9

4.6. DATABASE DESIGN

1. ADMIN TABLE

Description: Stores administrator login credentials

2. STAFF TABLE

Description: Stores staff details, including login

credentials

STUDENT TABLE

Description: Stores student information and login

credentials

CANTEEN TABLE

Description: Stores canteen vendor details.

5. FOOD TABLE

Description: Stores details of food items available in

the canteen.

6. FOOD ORDER TABLE

Description: Stores customer food orders.

 Tarun K S. International Journal of Science, Engineering and Technology,

 2025, 13:3

10

7. TABLE BOOKING

Description: Stores restaurant table booking details.

V. SOFTWARE DESCRIPTION

5.1. PYTHON 3.8

Python is a general-purpose interpreted, interactive,

object-oriented, and high-level programming

language. It was created by Guido van Rossum

during 1985- 1990. Like Perl, Python source code is

also available under the GNU General Public License

(GPL). This tutorial gives enough understanding on

Python programming language.

Python is a high-level, interpreted, interactive and

object-oriented scripting language. Python is

designed to be highly readable. It uses English

keywords frequently where as other languages use

punctuation, and it has fewer syntactical

constructions than other languages. Python is a

MUST for students and working professionals to

become a great Software Engineer specially when

they are working in Web Development Domain.

Python is currently the most widely used multi-

purpose, high-level programming language. Python

allows programming in Object-Oriented and

Procedural paradigms. Python programs generally

are smaller than other programming languages like

Java. Programmers have to type relatively less and

indentation requirement of the language, makes

them readable all the time. Python language is being

used by almost all tech-giant companies like –

Google, Amazon, Facebook, Instagram, Dropbox,

Uber… etc. The biggest strength of Python is huge

collection of standard library which can be used for

the following:

• Machine Learning

• GUI Applications (like Kivy, Tkinter, PyQt etc.)

• Web frameworks like Django (used by

YouTube, Instagram, Dropbox)

• Image processing (like OpenCV, Pillow)

• Web scraping (like Scrapy, BeautifulSoup,

Selenium)

• Test frameworks

• Multimedia

• Scientific computing

Pandas

pandas are a fast, powerful, flexible and easy to use

open source data analysis and manipulation tool,

built on top of the Python programming language.

pandas are a Python package that provides fast,

flexible, and expressive data structures designed to

make working with "relational" or "labeled" data

both easy and intuitive. It aims to be the

 Tarun K S. International Journal of Science, Engineering and Technology,

 2025, 13:3

11

fundamental high-level building block for doing

practical, real world data analysis in Python.

Pandas is mainly used for data analysis and

associated manipulation of tabular data in Data

frames. Pandas allows importing data from various

file formats such as comma-separated values, JSON,

Parquet, SQL database tables or queries, and

Microsoft Excel. Pandas allows various data

manipulation operations such as merging,

reshaping, selecting, as well as data cleaning, and

data wrangling features. The development of pandas

introduced into Python many comparable features

of working with Data frames that were established in

the R programming language. The panda’s library is

built upon another library NumPy, which is oriented

to efficiently working with arrays instead of the

features of working on Data frames.

NumPy

NumPy, which stands for Numerical Python, is a

library consisting of multidimensional array objects

and a collection of routines for processing those

arrays. Using NumPy, mathematical and logical

operations on arrays can be performed.

NumPy is a general-purpose array-processing

package. It provides a high-performance

multidimensional array object, and tools for working

with these arrays.

Matplotlib

Matplotlib is a comprehensive library for creating

static, animated, and interactive visualizations in

Python. Matplotlib makes easy things easy and hard

things possible.

Matplotlib is a plotting library for the Python

programming language and its numerical

mathematics extension NumPy. It provides an

object-oriented API for embedding plots into

applications using general-purpose GUI toolkits like

Tkinter, wxPython, Qt, or GTK.

5.2. MYSQL 5

MySQL is a relational database management system

based on the Structured Query Language, which is

the popular language for accessing and managing

the records in the database. MySQL is open-source

and free software under the GNU license. It is

supported by Oracle Company. MySQL database

that provides for how to manage database and to

manipulate data with the help of various SQL

queries. These queries are: insert records, update

records, delete records, select records, create tables,

drop tables, etc. There are also given MySQL

interview questions to help you better understand

the MySQL database.

MySQL is currently the most popular database

management system software used for managing

the relational database. It is open-source database

software, which is supported by Oracle Company. It

is fast, scalable, and easy to use database

management system in comparison with Microsoft

SQL Server and Oracle Database. It is commonly

used in conjunction with PHP scripts for creating

powerful and dynamic server-side or web-based

enterprise applications. It is developed, marketed,

and supported by MySQL AB, a Swedish company,

and written in C programming language and C++

programming language. The official pronunciation

of MySQL is not the My Sequel; it is My Ess Que Ell.

However, you can pronounce it in your way. Many

small and big companies use MySQL. MySQL

supports many Operating Systems like Windows,

Linux, MacOS, etc. with C, C++, and Java languages.

 Tarun K S. International Journal of Science, Engineering and Technology,

 2025, 13:3

12

5.3. WAMPSERVER

WampServer is a Windows web development

environment. It allows you to create web

applications with Apache2, PHP and a MySQL

database. Alongside, PhpMyAdmin allows you to

manage easily your database.

WAMPServer is a reliable web development software

program that lets you create web apps with MYSQL

database and PHP Apache2. With an intuitive

interface, the application features numerous

functionalities and makes it the preferred choice of

developers from around the world. The software is

free to use and doesn’t require a payment or

subscription.

5.4. BOOTSTRAP

Bootstrap is a free and open-source tool collection

for creating responsive websites and web

applications. It is the most popular HTML, CSS, and

JavaScript framework for developing responsive,

mobile-first websites.

It solves many problems which we had once, one of

which is the cross-browser compatibility issue.

Nowadays, the websites are perfect for all the

browsers (IE, Firefox, and Chrome) and for all sizes of

screens (Desktop, Tablets, Phablets, and Phones).

Easy to use: Anybody with just basic knowledge of

HTML and CSS can start using Bootstrap

Responsive features: Bootstrap's responsive CSS

adjusts to phones, tablets, and desktops

Mobile-first approach: In Bootstrap, mobile-first

styles are part of the core framework

Browser compatibility: Bootstrap 4 is compatible

with all modern browsers (Chrome, Firefox, Internet

Explorer 10+, Edge, Safari, and Oper)

5.5. FLASK

Flask is a web framework. This means flask provides

you with tools, libraries and technologies that allow

you to build a web application. This web application

can be some web pages, a blog, a wiki or go as big

as a web-based calendar application or a commercial

website.

Flask is often referred to as a micro framework. It

aims to keep the core of an application simple yet

extensible. Flask does not have built-in abstraction

layer for database handling, nor does it have formed

a validation support. Instead, Flask supports the

extensions to add such functionality to the

application. Although Flask is rather young

compared to most Python frameworks, it holds a

great promise and has already gained popularity

among Python web developers. Let’s take a closer

look into Flask, so-called “micro” framework for

Python. Flask is part of the categories of the micro-

framework. Micro-framework is normally framework

with little to no dependencies to external libraries.

This has pros and cons. Pros would be that the

framework is light, there are little dependency to

update and watch for security bugs, cons is that

some time you will have to do more work by yourself

or increase yourself the list of dependencies by

adding plugins.

VI. SYSTEM IMPLEMENTATION

6.1. MODULES

1. Campus Dining Web App

2. End User

3. Authentication Module

4. Menu Management

 Tarun K S. International Journal of Science, Engineering and Technology,

 2025, 13:3

13

5. Order Management

6. Payment

7. Notification

8. Feedbacks and Ratings

6.2. MODULES DESCRIPTION

1. Campus Dining Web App

The design and development of the Campus Dining

Web App involve creating both frontend and

backend components, along with setting up a

MySQL database.

Frontend Development

•Use HTML, CSS, and JavaScript to create the user

interface for the web app.

•Utilize Bootstrap framework for responsive design

and layout.

•Implement dynamic elements and interactivity

using JavaScript.

•Integrate Bootstrap components for consistent

styling and user experience.

Backend Development with Flask

•Install Flask, a lightweight Python web framework,

using pip.

•Define routes and views to handle HTTP requests

and serve web pages.

•Implement authentication and authorization

mechanisms for user login and access control.

•Develop controllers and business logic to process

orders, manage menus, and handle other app

functionalities.

•Use Flask extensions such as Flask-WTF for form

handling and Flask-MySQLdb for MySQL database

integration.

Database Design and Development with MySQL

•Install and configure MySQL database server using

Wampserver.

•Design the database schema to store user data,

menu items, orders, and other relevant information.

•Create tables, define relationships, and establish

constraints to ensure data integrity.

•Use SQL queries to insert, update, retrieve, and

delete data from the database.

•Connect Flask backend to MySQL database using

SQLAlchemy or Flask-MySQLdb for database

operations.

Deployment

•Deploy the Campus Dining Web App to a

Wampserver environment for hosting.

•Configure server settings and permissions to ensure

proper functioning of the app.

•Monitor server performance and troubleshoot any

deployment-related issues.

•Continuously update and maintain the app to

address user feedback and improve functionality.

2. End User

2.1. Student

Authentication: Students can log in using their

student credentials. Additionally, a password

recovery/reset functionality is available to assist with

any login issues.

Menu Interaction: Students can browse the canteen

menu, viewing item names, descriptions, and prices.

They have the ability to add items to their cart, view

and modify the cart contents, and specify any special

instructions or preferences for their orders.

Order Placement: Students can securely confirm and

place their orders, choosing between online

payment or cash-on-delivery options for added

convenience.

Order Status: Students receive real-time notifications

confirming their order placement and can check the

status of current orders, as well as view the history of

past orders for reference.

Feedback System: Students can provide feedback on

food quality and service, rating and commenting on

specific items to help improve the overall dining

experience.

User Profile: Students have the option to edit their

personal information (optional) and view their order

history to track their dining habits and preferences

over time.

Notifications: Students receive alerts for promotions,

discounts, or new menu items to stay informed

about any updates or special offers.

2.2. Staff

Authentication: Staff members log in using their

credentials, with password recovery/reset

functionality available if needed.

Order Processing: Staff receive real-time

notifications for new orders and can view and

manage incoming orders, updating order status as

needed and marking orders as processed.

Menu Management: Staff have the ability to add,

edit, or remove items from the menu, update item

availability, adjust prices and descriptions, ensuring

the menu is up-to-date and accurate.

 Tarun K S. International Journal of Science, Engineering and Technology,

 2025, 13:3

14

Inventory Management: Staff monitor and manage

food inventory, receiving alerts for low stock and

updating stock levels after processing orders to

ensure items are available for order.

Communication: Staff communicate with kitchen

staff for order preparation and can send notifications

to students regarding order status.

Reporting: Staff generate reports on daily sales,

popular items, and inventory levels, analyzing trends

and optimizing stock based on demand.

Feedback Handling: Staff view and respond to

feedback from students, addressing any issues

related to food quality or service to enhance the

overall dining experience.

2.3. College Admin

Authentication: College admins log in using their

admin credentials, with password recovery/reset

functionality available as a safeguard.

User Management: College admins manage student

and staff accounts, reset passwords, and handle any

account-related issues that may arise.

Order Monitoring: College admins access and

monitor overall order data, view order history, and

generate reports on sales and popular items for

analysis.

System Management: College admins oversee

general system settings, ensuring security and

compliance with relevant regulations.

2.4. Canteen Admin

Authentication: Canteen admins log in using their

credentials, with password recovery/reset

functionality in place for security purposes.

Menu Management: Canteen admins update the

menu by adding, editing, or removing items,

indicating items as temporarily out of stock as

needed.

Order Handling: Canteen admins receive real-time

notifications for new orders, access a centralized

dashboard displaying incoming orders, and process

orders, updating order status and communicating

with kitchen staff for order preparation.

Supply Orders: Canteen admins ensure that kitchen

staff are aware of order details for food preparation,

monitor and manage inventory to fulfill orders, and

coordinate with delivery staff if applicable.

Payment Handling: Canteen admins receive

payment, confirm payment status for each order,

handle cash payments upon order delivery, and

generate invoices for each order.

Inventory Management: Canteen admins monitor

inventory levels, receive alerts for low stock, update

stock levels after processing orders, and ensure

accurate stock levels for each menu item.

Communication: Canteen admins coordinate with

kitchen staff regarding order details and respond to

inquiries from students or staff regarding menu

items, orders, or payment.

Reporting: Canteen admins generate reports on

daily sales, popular items, and inventory levels,

analyzing trends and making data-driven decisions

to optimize operations.

Feedback Handling: Canteen admins access and

respond to feedback provided by students and staff,

using feedback to improve the quality of service and

menu offerings.

3. Authentication Module

The Authentication Module serves as the gateway

for user access to the Campus Dining Web App,

ensuring secure authentication and authorization

processes. It allows users to log in using their

respective credentials, such as usernames and

passwords, verifying their identity before granting

access to the system. Additionally, the module

incorporates functionalities for password recovery

and reset, providing users with a seamless

experience in case they forget their login credentials.

Through robust encryption and authentication

mechanisms, the Authentication Module safeguards

sensitive user information and ensures the integrity

of user accounts, thereby maintaining a secure

environment for users to interact with the web

application.

4. Menu Management

The Menu Management Module is pivotal in

maintaining an up-to-date and dynamic canteen

menu within the project. This module empowers

administrators to curate and manage the menu

offerings efficiently. Administrators can seamlessly

add, edit, or remove items from the menu, ensuring

that it reflects the latest culinary offerings available

to users. Additionally, administrators can update

item availability status, providing real-time

information to users about which items are currently

in stock. The module allows for adjustments to item

descriptions, prices, and special promotions,

 Tarun K S. International Journal of Science, Engineering and Technology,

 2025, 13:3

15

ensuring accurate and enticing presentation to

users. Through intuitive interfaces and streamlined

processes, the Menu Management Module

facilitates the smooth operation of the canteen

menu, enhancing user experience and satisfaction

within the Campus.

5. Order Management

The Order Management Module is the backbone of

the project, orchestrating the entire lifecycle of food

orders placed by users. This module seamlessly

facilitates the journey of orders from placement to

fulfillment, ensuring a smooth and efficient process

for both users and staff. Users can browse the menu,

add items to their carts, and securely place orders,

while staff members receive real-time notifications

for new orders. The module tracks order status,

allowing users to stay informed about the progress

of their orders, from processing to delivery.

Furthermore, it maintains a comprehensive order

history, enabling users to review past orders for

reference or reordering. Through robust features

and seamless integration with other modules, the

Order Management Module optimizes the ordering

process, enhancing user satisfaction and operational

efficiency within the Campus Dining Web App.

6. Payment

The Payment Module facilitating secure and

convenient transactions for users. This module

enables users to choose between various payment

methods, including online payment and cash-on-

delivery, providing flexibility and convenience. For

online payments, the module integrates with secure

payment gateways to ensure the confidentiality and

integrity of financial transactions. Users can securely

enter their payment information and complete

transactions with peace of mind. Additionally, the

Payment Module includes features for handling cash

payments upon order delivery, ensuring seamless

payment processing for users who prefer this option.

Through robust encryption and adherence to

industry-standard security protocols, the Payment

Module ensures the security of sensitive financial

data and enhances the overall user experience within

the Campus Dining Web App.

7. Notification

The Notification Module keeping users and staff

informed about important updates and events in

real-time. This module enables the system to send

notifications to users and staff members via various

channels, such as email, SMS, or in-app alerts. Users

receive notifications regarding order confirmations,

status updates, promotions, discounts, or new menu

items, ensuring they stay informed and engaged

throughout their dining experience. Similarly, staff

members receive notifications for new orders, order

status changes, critical system updates, or issues

requiring attention. By delivering timely and relevant

notifications, the Notification Module enhances user

satisfaction, improves operational efficiency, and

fosters better communication between users and

staff within the Campus Dining Web App.

8. Feedbacks and Ratings

The Feedback and Rating Module gathering user

insights and enhancing the overall dining experience

within the Campus Dining Web App. This module

empowers users to provide feedback on food

quality, service, and overall experience through

ratings and comments. Users can rate specific items

on the menu and provide detailed comments,

allowing administrators to understand their

preferences and areas for improvement.

Additionally, the module enables users to share their

suggestions and recommendations, fostering a

collaborative environment for continuous

enhancement. Administrators can access and

analyze the feedback provided by users, leveraging

it to make informed decisions and implement

necessary improvements. By facilitating open

communication and soliciting user feedback, the

Feedback and Rating Module contributes to the

refinement of menu offerings, service quality, and

overall user satisfaction within the Campus Dining

Web App.

VII. SYSTEM TESTING

7.1. SOFTWARE TESTING

System testing in the software development life

cycle aimed at verifying that the implemented

system meets the specified requirements and

functions correctly. Here's an overview of the

different types of testing that can be conducted for

the Campus Dining Web App:

1.Unit Testing

•Test individual components or modules of the

system in isolation.

 Tarun K S. International Journal of Science, Engineering and Technology,

 2025, 13:3

16

•Verify the functionality of functions, methods, or

classes.

•Use tools like unittest in Python to automate unit

tests.

2.Integration Testing

•Test the interaction between different modules or

components of the system.

•Verify that components work together as expected.

•Ensure proper communication and data exchange

between frontend and backend components.

•Conduct tests for API endpoints and database

interactions.

3.Functional Testing

•Test the system's functionality against the specified

requirements.

•Verify that users can perform actions such as

logging in, browsing the menu, placing orders, etc.,

as intended.

•Conduct tests for edge cases, error handling, and

boundary conditions.

4.User Interface (UI) Testing

•Test the user interface for usability, responsiveness,

and consistency across different devices and

browsers.

•Verify that UI elements are properly aligned, styled,

and functional.

•Conduct tests for user interactions such as clicking

buttons, entering text, etc.

5.Performance Testing

•Test the system's performance under various load

conditions.

•Measure response times, throughput, and resource

utilization to identify bottlenecks and optimize

performance.

•Conduct stress testing to determine the system's

capacity and scalability.

6.Security Testing

•Test the system for vulnerabilities and weaknesses

that could be exploited by attackers.

•Conduct tests for authentication, authorization,

data encryption, and protection against common

security threats such as SQL injection, cross-site

scripting (XSS), etc.

7.Compatibility Testing

•Test the system's compatibility with different

operating systems, browsers, and devices.

•Verify that the web app functions correctly and

displays properly across a variety of platforms.

8.User Acceptance Testing (UAT)

•Involve end users (students, staff, admins) to

validate the system against their requirements and

expectations.

•Gather feedback and address any usability issues or

concerns raised by users.

9.Regression Testing

•Repeatedly test the system after each change or

update to ensure that existing functionality has not

been affected.

•Automate regression tests to streamline the testing

process and detect regressions early.

By conducting thorough testing across these

different types, the Campus Dining Web App can be

validated for functionality, performance, security,

and user satisfaction, ensuring a high-quality and

reliable system for users.

7.2. TEST CASES

1. Test Case ID: TC001

Input: Valid student login credentials

Expected Result: User is authenticated and directed

to student dashboard

Actual Result: User successfully logged in and

directed to dashboard

Status: Passed

2. Test Case ID: TC002

Input: Invalid student login credentials

Expected Result: Error message displayed indicating

invalid credentials

Actual Result: Error message displayed as expected

Status: Passed

3. Test Case ID: TC003

Input: Browse menu and add items to cart

Expected Result: Items are added to the cart

Actual Result: Items added to the cart as expected

Status: Passed

4. Test Case ID: TC004

Input: Modify cart (remove item)

Expected Result: Item is removed from the cart

Actual Result: Item successfully removed from the

cart

Status: Passed

5. Test Case ID: TC005

Input: Place order with online payment option

Expected Result: Order is placed successfully and

payment is processed

Actual Result: Order placed and payment processed

successfully

 Tarun K S. International Journal of Science, Engineering and Technology,

 2025, 13:3

17

Status: Passed

6. Test Case ID: TC006

Input: Place order with cash-on-delivery

Expected Result: Order is placed successfully with

cash-on-delivery

Actual Result: Order placed with cash-on-delivery as

expected

Status: Passed

7. Test Case ID: TC007

Input: Provide feedback on food quality

Expected Result: Feedback is submitted successfully

Actual Result: Feedback submitted successfully

Status: Passed

8. Test Case ID: TC008

Input: Check order status

Expected Result: Order status is displayed correctly

Actual Result: Order status displayed correctly

Status: Passed

9. Test Case ID: TC009

Input: View order history

Expected Result: User's order history is displayed

Actual Result: User's order history displayed

correctly

Status: Passed

10. Test Case ID: TC010

Input: Update menu (add new item)

Expected Result: New item is added to the menu

Actual Result: New item added to the menu as

expected

Status: Passed

11. Test Case ID: TC011

Input: Process incoming order

Expected Result: Order is processed and status is

updated

Actual Result: Order processed and status updated

as expected

Status: Passed

12. Test Case ID: TC012

Input: Generate sales report

Expected Result: Sales report is generated and

displayed

Actual Result: Sales report generated and displayed

as expected

Status: Passed

13. Test Case ID: TC013

Input: Test UI responsiveness

Expected Result: UI elements adjust properly to

different screen sizes

Actual Result: UI elements adjust properly as

expected

Status: Passed

14. Test Case ID: TC014

Input: Test compatibility with browsers

Expected Result: Web app functions correctly across

different browsers

Actual Result: Web app functions correctly as

expected

Status: Passed

15. Test Case ID: TC015

Input: Test security vulnerabilities

Expected Result: No security vulnerabilities found

Actual Result: No security vulnerabilities found

Status: Passed

7.3. TEST REPORT

1. Introduction: The project is a system designed to

facilitate food ordering for students and staff within

a college campus. This test report outlines the

testing activities conducted to validate the

functionality, usability, performance, and security of

the application.

2. Test Objective: The objective of the testing is to

ensure that the project meets the specified

requirements and functions correctly across

different scenarios. This includes verifying user

authentication, menu browsing, order placement,

payment handling, feedback submission, and system

management functionalities.

3. Test Scope: The scope of the testing covers all

major features and functionalities of the Campus

Dining Web App, including frontend and backend

components. It includes testing across different user

roles (students, staff, admins) and scenarios such as

normal usage, edge cases, and error handling.

4. Test Environment

•Operating System: Windows 10

•Web Browsers: Chrome, Firefox, Edge

•Programming Languages: Python, HTML, CSS

•Frameworks: Flask, Bootstrap

•Database: MySQL

•Tools: Selenium for automated testing, Postman for

API testing

5. Test Result: The testing activities were conducted

systematically, covering various aspects of the

application. The test cases were executed, and the

results were recorded as follows:

 Tarun K S. International Journal of Science, Engineering and Technology,

 2025, 13:3

18

•Passed: All expected results matched the actual

results, indicating that the system functions

correctly.

•Failed: Deviations or discrepancies were found

between the expected and actual results, indicating

potential issues or defects in the system.

•Pending: Some test cases may require further

investigation or validation before a conclusive result

can be determined.

6. Test Conclusion: Overall, the project performed

well during testing, with the majority of test cases

passing successfully. Any identified issues or defects

were documented and will be addressed by the

development team. The test results indicate that the

system is ready for deployment, with confidence in

its functionality, usability, and reliability

1.Performance

• Transaction Time: Borrowing a book took - 3

seconds whereas manually it takes more than 20+

seconds.

• Scalability: Handling up to 500+ books and 50+

users, validated via testing.

2.Usability

Goal is to design a natural, effective, and user-

friendly interface that benefits both librarians and

users. The app gives the advantage of searching for

books, checking for availability, reserving titles, and

looking at due dates right from their smartphones.

The UI is minimal and clean, with easy navigation and

well-annotated icons or menus to provide ease of

use even to non-technical users.

The Library Management System based on Android

Studio efficiently computerizes library operations

with mobility, efficiency, and scalability. It minimizes

manual effort by 70% (based on transaction time

comparison) and maximizes user engagement

through real-time functionality. The adoption of

Kotlin and Firebase demonstrates best practices in

sync with today's technologies, ensuring the system

is future ready.

VIII. APPENDIX

8.1. SOURCE CODE

Packages

from flask import Flask, render_template, redirect,

request, session, url_for

import datetime

import os

from werkzeug.utils import secure_filename

from flask import send_from_directory, abort

import mysql.connector

import uuid

Register

if request.method=='POST':

name=request.form['name']

dept=request.form['dept']

mobile=request.form['mobile']

email=request.form['email']

username=request.form['username']

password=request.form['password']

now = datetime.datetime.now()

date_join=now.strftime("%d-%m-%Y")

mycursor = mydb.cursor()

mycursor.execute("SELECT count(*) FROM fo_staff

where username=%s",(username,))

cnt = mycursor.fetchone()[0]

if cnt==0:

mycursor.execute("SELECT max(id)+1 FROM

fo_staff")

maxid = mycursor.fetchone()[0]

if maxid is None:

maxid=1

sql = "INSERT INTO fo_staff(id, name, mobile, email,

dept, username, password, date_join) VALUES (%s,

%s, %s, %s, %s, %s, %s, %s)"

val = (maxid, name, mobile, email, dept, username,

password, date_join)

mycursor.execute(sql, val)

mydb.commit()

msg="success"

else:

msg="fail"

if request.method=='POST':

name=request.form['name']

dept=request.form['dept']

mobile=request.form['mobile']

email=request.form['email']

username=request.form['username']

password=request.form['password']

now = datetime.datetime.now()

date_join=now.strftime("%d-%m-%Y")

mycursor = mydb.cursor()

mycursor.execute("SELECT count(*) FROM fo_stu

where username=%s",(username,))

 Tarun K S. International Journal of Science, Engineering and Technology,

 2025, 13:3

19

cnt = mycursor.fetchone()[0]

if cnt==0:

mycursor.execute("SELECT max(id)+1 FROM fo_stu")

maxid = mycursor.fetchone()[0]

if maxid is None:

maxid=1

sql = "INSERT INTO fo_stu(id, name, mobile, email,

dept, username, password, date_join) VALUES (%s,

%s, %s, %s, %s, %s, %s, %s)"

val = (maxid, name, mobile, email, dept, username,

password, date_join)

mycursor.execute(sql, val)

mydb.commit()

msg="success"

else:

msg="fail"

msg=""

if request.method=='POST':

name=request.form['name']

address=request.form['address']

mobile=request.form['mobile']

email=request.form['email']

username=request.form['username']

password=request.form['password']

now = datetime.datetime.now()

date_join=now.strftime("%d-%m-%Y")

if 'profile' in request.files:

profile = request.files['profile']

if profile and allowed_file(profile.filename):

filename = secure_filename(profile.filename)

profile_path =

'D:/kalirajan/Food_court/static/license/' + filename

profile.save(profile_path)

mycursor = mydb.cursor()

mycursor.execute("SELECT count(*) FROM

fo_canteen where username=%s",(username,))

cnt = mycursor.fetchone()[0]

if cnt==0:

mycursor.execute("SELECT max(id)+1 FROM

fo_canteen")

maxid = mycursor.fetchone()[0]

if maxid is None:

maxid=1

sql = "INSERT INTO fo_canteen(id, name, address,

mobile, email, profile, username, password,

date_join) VALUES (%s, %s, %s, %s, %s, %s, %s, %s,

%s)"

val = (maxid, name, address, mobile, email, filename,

username, password, date_join)

mycursor.execute(sql, val)

mydb.commit()

msg="success"

else:

msg="fail"

Add foods

username=session.get('username')

cursor=mydb.cursor()

cursor.execute("SELECT * FROM fo_food")

data = cursor.fetchall()

cursor.close()

msg=""

if request.method=='POST':

rec_name=request.form['rec_name']

price=request.form['price']

rec_type=request.form['rec_type']

rec_category=request.form['rec_category']

now = datetime.datetime.now()

date_join=now.strftime("%Y-%m-%d")

if 'profile' in request.files:

profile = request.files['profile']

if profile and allowed_file(profile.filename):

filename = secure_filename(profile.filename)

profile_path = 'D:/kalirajan/Food_court/static/food/'

+ filename

profile.save(profile_path)

mycursor=mydb.cursor()

mycursor.execute("SELECT max(id)+1 FROM

fo_food")

maxid = mycursor.fetchone()[0]

if maxid is None:

maxid=1

sql = "INSERT INTO fo_food(id, rec_name, price,

rec_type, rec_category, profile, date_join) VALUES

(%s, %s, %s, %s, %s, %s, %s)"

val = (maxid, rec_name, price, rec_type, rec_category,

filename, date_join)

mycursor.execute(sql, val)

mydb.commit()

msg="success"

else:

msg="fail"

View menu

mag=""

username=session.get('username')

cursor=mydb.cursor()

 Tarun K S. International Journal of Science, Engineering and Technology,

 2025, 13:3

20

cursor.execute("SELECT * FROM fo_staff where

username=%s", (username,))

st = cursor.fetchone()

cursor.close()

data1=""

cursor=mydb.cursor()

cursor.execute("SELECT * FROM fo_category")

data = cursor.fetchall()

cursor.close()

type1 = request.args.get('type')

if type1:

print("Received 'type1' value:", type1) # Debugging:

Print the received value

cursor = mydb.cursor()

cursor.execute("SELECT * FROM fo_food WHERE

rec_type=%s", (type1,))

data1 = cursor.fetchall()

cursor.close()

else:

print("No 'type1' value received.") # Debugging:

Indicate if no value is received

if request.method=='POST':

name=request.form['name']

dept=request.form['dept']

mobile=request.form['mobile']

type1=request.form['type']

rec_name=request.form['rec_name']

price=request.form['price']

quantity=request.form['quantity']

now = datetime.datetime.now()

date=now.strftime("%B %d, %Y")

mycursor = mydb.cursor()

mycursor.execute("SELECT max(id)+1 FROM

fo_book")

maxid = mycursor.fetchone()[0]

if maxid is None:

maxid=1

sql = "INSERT INTO fo_book(id, name, dept, mobile,

type, rec_name, price, quantity, date, username)

VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s)"

val = (maxid, name, dept, mobile, type1, rec_name,

price, quantity, date, username)

mycursor.execute(sql, val)

mydb.commit()

msg="success"

else:

msg="fail"

Orders

msg=""

username=session.get('username')

cursor=mydb.cursor()

cursor.execute("SELECT * FROM fo_stu where

username=%s", (username,))

user = cursor.fetchone()

cursor.close()

dataa=""

cursor=mydb.cursor()

cursor.execute("SELECT * FROM fo_category")

data1 = cursor.fetchall()

cursor.close()

food = request.args.get('item')

if food:

print("Received 'type1' value:", food) # Debugging:

Print the received value

cursor = mydb.cursor()

cursor.execute("SELECT * FROM fo_food WHERE

rec_type=%s", (food,))

dataa = cursor.fetchall()

cursor.close()

else:

print("No 'type1' value received.")

if request.method=='POST':

name=request.form['name']

dept=request.form['dept']

mobile=request.form['mobile']

type1=request.form['type']

rec_name=request.form['rec_name']

price=request.form['price']

quantity=request.form['quantity']

now = datetime.datetime.now()

date=now.strftime("%B %d, %Y")

mycursor = mydb.cursor()

mycursor.execute("SELECT max(id)+1 FROM

fo_book")

maxid = mycursor.fetchone()[0]

if maxid is None:

maxid=1

sql = "INSERT INTO fo_book(id, name, dept, mobile,

type, rec_name, price, quantity, date, username)

VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s)"

val = (maxid, name, dept, mobile, type1, rec_name,

price, quantity, date, username)

mycursor.execute(sql, val)

mydb.commit()

msg="success"

else:

 Tarun K S. International Journal of Science, Engineering and Technology,

 2025, 13:3

21

msg="fail"

Reports

username=session.get('username')

if request.method=='POST':

name=request.form['name']

dept=request.form['dept']

mobile=request.form['mobile']

type1=request.form['type']

rec_name=request.form['rec_name']

price=request.form['price']

quantity=request.form['quantity']

date=request.form['date']

time=request.form['time']

now = datetime.datetime.now()

book_date=now.strftime("%B %d, %Y")

mycursor = mydb.cursor()

mycursor.execute("SELECT max(id)+1 FROM

fo_table")

maxid = mycursor.fetchone()[0]

if maxid is None:

maxid=1

sql = "INSERT INTO fo_table(id, name, dept, mobile,

type, rec_name, price, quantity, date, time,

book_date, username) VALUES (%s, %s, %s, %s, %s,

%s, %s, %s, %s, %s, %s, %s)"

val = (maxid, name, dept, mobile, type1, rec_name,

price, quantity, date, time, book_date, username)

mycursor.execute(sql, val)

mydb.commit()

username=session.get('username')

if request.method=='POST':

name=request.form['name']

dept=request.form['dept']

mobile=request.form['mobile']

type1=request.form['type']

rec_name=request.form['rec_name']

price=request.form['price']

quantity=request.form['quantity']

date=request.form['date']

time=request.form['time']

now = datetime.datetime.now()

book_date=now.strftime("%B %d, %Y")

mycursor = mydb.cursor()

mycursor.execute("SELECT max(id)+1 FROM

fo_table")

maxid = mycursor.fetchone()[0]

if maxid is None:

maxid=1

sql = "INSERT INTO fo_table(id, name, dept, mobile,

type, rec_name, price, quantity, date, time,

book_date, username) VALUES (%s, %s, %s, %s, %s,

%s, %s, %s, %s, %s, %s, %s)"

val = (maxid, name, dept, mobile, type1, rec_name,

price, quantity, date, time, book_date, username)

mycursor.execute(sql, val)

mydb.commit()

no=""

user_mobile=""

user_name=""

mess=""

tab1 = request.args.get('type')

cursor=mydb.cursor()

cursor.execute("SELECT * FROM fo_table WHERE

type=%s", (tab1,))

data = cursor.fetchall()

cursor.close()

act=request.args.get("act")

if act=="ok":

aid=request.args.get("aid")

cursor = mydb.cursor()

cursor.execute("update fo_table set action=1 where

id=%s",(aid,))

mydb.commit()

print("successfully accepted")

no="1"

aid=request.args.get("aid")

cursor = mydb.cursor()

cursor.execute("SELECT * FROM fo_table where id =

%s", (aid,))

data1 = cursor.fetchone()

Mysql connection

mydb = mysql.connector.connect(

host="localhost",

user="root",

password="",

charset="utf8",

use_pure=True,

database="food_court"

8.2. SCREENSHOTS

 Tarun K S. International Journal of Science, Engineering and Technology,

 2025, 13:3

22

 Tarun K S. International Journal of Science, Engineering and Technology,

 2025, 13:3

23

 Tarun K S. International Journal of Science, Engineering and Technology,

 2025, 13:3

24

 Tarun K S. International Journal of Science, Engineering and Technology,

 2025, 13:3

25

IX. CONCLUSION

In conclusion, the development of the project has

been a significant endeavor aimed at enhancing the

food ordering experience for students, staff, and

administrators within the college campus. Through

meticulous planning, design, implementation, and

testing, we have successfully created a robust and

user-friendly platform that fulfills the needs and

requirements of our users. The project has involved

the collaboration of multidisciplinary teams,

including developers, designers, testers, and

stakeholders, who have worked tirelessly to ensure

the success of the application. By leveraging

technologies such as Python, Flask, MySQL,

Bootstrap, and WampServer, we have built a scalable

and efficient solution that meets the demands of our

users while providing a seamless experience across

different devices and browsers. The project offers a

wide range of features, including user

authentication, menu browsing, order placement,

payment handling, feedback submission, and system

management, all of which have been thoroughly

tested and validated to ensure reliability and

functionality. Additionally, the application

incorporates security measures to protect user data

and privacy, as well as performance optimization

techniques to ensure a smooth user experience even

under heavy load. Overall, the completion of the

Campus Dining Web App represents a significant

milestone in our efforts to modernize and streamline

the food ordering process within the college

campus. We are confident that the application will

greatly benefit our users by providing them with a

convenient and efficient way to order food,

ultimately enhancing their overall college

experience. We are excited about the potential

impact of the Campus Dining Web App and look

forward to its successful deployment and adoption

by the college community.

X. FUTURE ENHANCEMENT

In the future, the project can undergo several

enhancements to elevate its functionality and user

experience. One pivotal advancement could be the

development of a mobile application, enabling users

to conveniently place orders from their

smartphones, thereby enhancing accessibility and

engagement. Additionally, implementing a

promotions and rewards system could incentivize

user interaction and loyalty by offering discounts,

coupons, and loyalty points for recurring orders or

referrals. Furthermore, incorporating multi-language

support would cater to a broader user base, ensuring

inclusivity and accessibility for individuals from

diverse linguistic backgrounds. These enhancements

collectively aim to fortify the Campus Dining

experience, fostering user satisfaction and

engagement.

REFERENCES

1. M. C. Boliko, "FAO and the situation of food

security and nutrition in the world", Journal of

nutritional science and vitaminology, no. 65, pp.

S4-S8, 2019.

2. B. Garske, K. Heyl, F. Ekardt, L.M. Weber and W.

Gradzka, "Challenges of food waste governance:

An assessment of European legislation on food

waste and recommendations for improvement

by economic instruments", MDPI Land, vol. 9, no.

7, pp. 231, 2020.

3. A. C. Stenmarck, T. Jensen, T. Quested and G.

Moates, "FUSIONS Reducing Food Waste

through Social Innovation", Full Report. IVL

Swedish Environmental Research Institute;

Estimates of European food waste levels, 2016.

4. C.V. Khoie and A. Soletti, "Nutritional status of

elderly in the old age homes: A study in Pune

city", Current Research in Nutrition and Food

Science Journal, vol. 6, no. 1, pp. 234-240, 2018.

5. D. Lovesley, R. Parasuraman and A. Ramamurthy,

"Combating hospital malnutrition: Dietitian-led

 Tarun K S. International Journal of Science, Engineering and Technology,

 2025, 13:3

26

quality improvement initiative", Clinical nutrition

ESPEN, vol. 30, pp. 19-25, 2019.

6. S.J. GeetinderKaur and G. Singh, "Food

Sustainability Using Wireless Sensors Networks:

Waspmote and Meshlium", (IJCSIT) International

Journal of Computer Science and Information

Technologies, vol. 5, no. 3, pp. 4466-446, 2014.

7. N. Salim, S. Zeebaree, M. Sadeeq, A. Radie, M.

Shukur and N. Rashid, "Study for Food

Recognition System Using Deep Learning",

Journal of Physics: Conference Series 2nd

International Conference on Physics and Applied

Sciences (ICPAS 2021), vol. 1963, May 2021.

8. G. Ciocca, G. Micali and P. Napoletano, "State

Recognition of Food Images Using Deep

Features", IEEE Access, vol. 8, pp. 32003-32017,

2020.

9. P. Pouladzadeh and S. Shirmohammadi, "Mobile

Multi-Food Recognition Using Deep Learning",

ACM Transactions on Multimedia Computing

Communications and Applications, vol. 13, no.

3s, pp. 1-21, August 2017.

10. K. Yanai and Y. Kawano, "Food image recognition

using deep convolutional network with pre-

training and fine-tuning", 2015 IEEE

International Conference on Multimedia & Expo

Workshops (ICMEW), pp. 1-6, 2015.

