Tarun K S, 2025, 13:3 International Journal of Science,

ISSN (Online): 2348-4098 Engineering and Technology
ISSN (Print): 2395-4752

An Open Access Journal

Smart Canteen: Efficient Food Ordering for College
Campuses

Tarun K S, Assistant Professor R.S.Nagasundaramd
VISTAS

Abstract- College canteen, also known as a college cafeteria or college food service, is a facility within
a college or university campus that provides food and beverages to students, faculty, staff, and
visitors. It serves as a convenient on-campus dining option, offering a variety of meals, snacks, and
beverages to meet the nutritional needs of the college community. Current systems may rely on
manual order processing, leading to delays and inaccuracies in fulfilling student and staff orders.
The College Canteen Food Ordering System is a web-based platform designed to streamline and
enhance the food ordering process for students and staff within a college campus. This system
involves four main actors: Students, Staff, College Admin, and Canteen Admin, each with distinct
roles and functionalities. Students can access the system to browse the canteen menu, add items to
their cart, and securely place orders. Real-time notifications keep them informed about order status,
and they have the option to provide feedback on food quality and service. The system also enables
students to manage their profiles and view order history. College Admins are responsible for user
management, ensuring the smooth functioning of student and staff accounts. They monitor overall
system performance, access order data, and generate reports for strategic decision-making. Canteen
Admins play a pivotal role in updating the menu, receiving orders, processing payments, managing
inventory, and coordinating with kitchen staff. They handle payment confirmations, generate
invoices, and respond to inquiries from students and staff. Feedback from users is actively addressed
to enhance service quality. The system integrates secure authentication measures, a user-friendly
interface, and real-time notifications to enhance the user experience. Regular reporting and
feedback mechanisms contribute to continuous system improvement. The College Canteen Food
Ordering System aims to create an efficient, transparent, and enjoyable food ordering experience
within the college community.

Keywords- College Canteen, Food Ordering System, Online Food Ordering, Campus Dining System, Canteen
Management System, Web-based Ordering, Student Food Services

l. INTRODUCTION catering the daily nutritional requirements of
students and staff members.

Canteen is the heart of every college or institution. It
caters to the basic needs of everyone. The canteen is
primarily responsible for serving nutritious and
hygienic food to the students and staff. It also serves
meals to the students residing in the campus. As
many students come from distant places, it is
essential for the students to have nutritious food and
refreshments at affordable prices so as to participate
in the daily academic activities actively. The college
canteen plays an important role in this regard by

© 2025 Tarun K S. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly credited.

Tarun K S. International Journal of Science, Engineering and Technology,

2025, 13:3

The objective of the Canteen and meal service is to
protect by reducing the risk of foodborne illness,
with proper sanitary conditions, and preventing
adulterated food. From the very beginning of the
College, the College Canteen has been functioning
efficiently. The canteen is located inside the College.
The hostellers and day scholars are provided meals
by assuring food safety and quality. The students
who come from faraway places, start their journey to
the College early in the morning. The mid-day meal
is provided. Even many day-scholars use canteen
facilities for their breakfast and evening tea with
snacks. The canteen provides healthy, tasty eatables,
fresh fruit juices, hot and cold drinks to the students
at subsidized rates. The location of our college
canteen is such that it is easily approachable from all
the departments. Kitchen staff takes care to provide
the students and staff a nutritious and hygienic food
at our campus canteens. A variety of hygienic food
and snack items includes South and North Indian
Meals, Variety Rice's Chinese Foods Fresh Juices, etc.

1.2. Problem Statement

The traditional manual processes in college canteens
often lead to a range of operational inefficiencies.
With order processing handled through physical
forms or word-of-mouth communication, there is a
higher likelihood of delays, miscommunication, and
errors, especially during peak hours when demand is
at its highest. This not only frustrates students and
staff but also burdens canteen staff with excessive
administrative tasks, reducing the overall
effectiveness of the operation. Moreover, without a
centralized system, it becomes difficult to track
inventory accurately, manage menu changes, or
ensure timely payments, often resulting in a lack of
transparency for users. Students and staff may also
face inconvenience due to the limited availability of
information on menus, order statuses, or special
promotions, which affects their overall dining
experience. To address these challenges, the Smart
Canteen project proposes a modern, web-based
solution that automates and streamlines canteen
operations. By providing real-time menu browsing,
order management, payment processing, and
inventory tracking, the platform ensures faster, more
accurate service. It also introduces transparent
communication between users and staff, enabling

seamless order placement and updates. The
feedback system further enhances user satisfaction,
giving students and staff a voice in improving food
quality and service. Ultimately, the Smart Canteen
project aims to improve operational efficiency,
reduce administrative workload, and elevate the
overall dining experience within the college campus.

1.3. Full Stack Development

Full stack development is the process of designing,
creating, testing, and deploying a complete web
application from start to finish. Full stack developers
possess the skills to work on all layers of an
application, from the user interface to the server and
database. This comprehensive approach allows them
to create end-to-end solutions by integrating
different technologies and frameworks

It involves working with various technologies and
tools, including front-end web development, back-
end web development, and database development.
And full stack development is a term used to
describe a software engineer or developer who
works with both the front and back end of a website
or application. A full-stack developer is comfortable
working with front-end and back-end technologies
that power a website or application.

Tarun K S. International Journal of Science, Engineering and Technology,

2025, 13:3

front
(]

~

full-stack
development

(1=
- - (e
(oo I ——1
Sscws

databases

Frontend: A website’s or web app’s frontend is the
user interface visitors use to take action. Frontend
development deals with everything that users see or
do on a website or web app, from design to the
customer journey, like how users navigate the
website. This also involves improving the website's
usability, user-friendliness, and aesthetic appeal
while making it easier for the users to navigate

@ =, |B E] ==n(ee [
r‘j‘ ® < Emn .
Jser Vhat t T -
(P i
Backend
Frontend development employs programming

languages and frameworks such as CSS, HTML,
React, Angular, TezJS, JavaScript, TypeScript, NextJS,
and Vue. Here's the deal, you can hire expert full-
stack software engineers and web development
team from Radixweb. Our professional developers
are well-versed in every full-stack programming
language and framework, so you can be stress-free
during development and deployment.

Backend: Backend development creates software
that enables interaction between the interface and
the database. The backend of a website must be kept
up-to-date, and backend developers must manage
servers, software, and databases. They should know
all the popular backend frameworks. Making it
straightforward to access and update involves

working on the server, website structure, and
database. The ultimate goals of backend
development are to control what clients can't see
and ensure they have a positive experience on your
website or web app.

Database Management: Full-stack developers use
database technologies such as MySQL, PostgreSQL,
and MongoDB to store and manage data within the
web application. They must also be familiar with APIs
(Application Programming Interfaces) which enable
software applications to communicate with each
other.

1.4. AIM AND OBJECTIVE

Aim

The aim of the project is to develop and implement
a project that enhances the efficiency, transparency,
and user experience of food ordering processes
within the college campus.

Objective

« To streamline food ordering processes for students
and staff.

» To improve menu visibility and accessibility in real-
time.

. To facilitate efficient communication among
canteen staff.

. To optimize inventory management and
stock control.

. To ensure robust security measures and
compliance standards.

. To empower users with control over their
profiles and orders.

. To enhance the overall user experience of

campus dining.

1.5. SCOPE OF THE PROJECT

The scope of the project focusing on the following
key aspects:

. System Development: Designing and
building a web-based platform that facilitates food
ordering processes for students and staff within the
college campus.

. User Interfaces: Creating intuitive and user-
friendly interfaces for students, staff, college admins,
and canteen admins to interact with the system
effectively.

. Menu Management: Implementing features
for updating, managing, and displaying the canteen
menu, including item descriptions, prices, and
availability.

Tarun K S. International Journal of Science, Engineering and Technology,

2025, 13:3

. Order Processing: Developing functionalities
for placing, processing, and tracking food orders in

real-time, ensuring timely and accurate order
fulfillment.

. Communication Channels: Integrating
communication tools to facilitate seamless

interaction among canteen staff, including kitchen

and delivery personnel, for efficient order
management.
. Inventory Control: Establishing a centralized

inventory management system to monitor stock
levels, track usage, and facilitate timely restocking of
food items.

. Security Measures: Implementing robust
security measures, such as encryption and user
authentication, to safeguard user data and ensure
transaction security.

. Feedback Mechanisms: Incorporating
features for users to provide feedback on food
quality, service, and overall experience, enabling
continuous improvement.

. User Management: Providing functionalities
for users to create and manage their profiles, view
order history, and access personalized settings.

. Reporting and Analytics: Developing tools
for generating reports and analyzing data related to
order trends, sales performance, and inventory
management for informed decision-making.

. Integration and Deployment: Integrating
various components of the system and deploying it
on reliable hosting platforms to ensure accessibility
and scalability.

. Training and Support: Providing training
materials and support resources to users and
administrators to facilitate smooth adoption and
operation of the system.

The scope also includes ongoing maintenance and
updates to ensure the system's continued
functionality, security, and relevance to the needs of
the college community.

Il. SYSTEM ANLYSIS

2.1. EXISTING SYSTEM

The existing system for food ordering in college
canteens typically involves manual processes and
limited technological support. Here's an overview of
the typical characteristics of the existing system:

Manual Order Placement: Students and staff
physically visit the canteen counter to place their
food orders. This process often involves queuing,
which can result in long waiting times during peak
hours.

Physical Visit to Canteen Counter

In the existing system, students and staff who wish
to order food from the college canteen must
physically visit the canteen counter. They approach
the counter and join the queue of other customers
who are also waiting to place their orders.

«Order Taking by Canteen Staff

When a student or staff member reaches the front of
the queue, they interact with the canteen staff who
are stationed behind the counter. The canteen staff
member takes the customer's order by verbally
asking for their food preferences and choices. The
customer communicates their order, specifying the
items they want to purchase, along with any
customizations or special requests.

*Manual Writing of Orders

As the customer provides their order, the canteen
staff manually write down the items and any special
instructions on a paper order form or notepad. The
written order may include details such as the name
of the item, quantity, and specific preferences (e.g.,
extra sauce, no onions).

«Communication to Kitchen Staff

After the order is written down, the canteen staff
member communicates the order to the kitchen staff
who are responsible for food preparation. This
communication may occur verbally or through
physical delivery of the written order slip to the
kitchen area.

*Waiting Time for Order Preparation

Once the order is communicated to the kitchen staff,
the customer must wait for their food to be
prepared. The waiting time can vary depending on
factors such as the complexity of the order, the
number of orders being processed, and the
efficiency of the kitchen staff.

*Order Pickup and Payment

When the food is ready, the customer is notified by
the canteen staff, either verbally or through a call-
out of their name. The customer then proceeds to
the pickup counter to collect their order. Upon
receiving the food, the customer makes the

Tarun K S. International Journal of Science, Engineering and Technology,

2025, 13:3

payment, either in cash or through other accepted
payment methods.

*Completion of Order Transaction

After the customer has collected their order and
made the payment, the transaction is considered
complete. The customer can then take their food and
proceed to enjoy their meal.

Overall, the manual order placement process in
college canteens involves several steps, including
physical visits to the counter, verbal communication
of orders, manual writing of orders, and waiting
times for order preparation. While this traditional
approach has been widely used, it can be inefficient
and time-consuming, especially during peak hours
when queues are long and waiting times are high.
2.1.1. DISADVANTAGES

*Manual order placement leads to long waiting times
and queues at the canteen counter.

Limited visibility into menu options and availability
contributes to uninformed choices.

*Verbal communication of orders increases the risk
of errors and misunderstandings.

Lack of centralized order tracking makes it difficult
to monitor order status and processing times.
*Manual inventory management results in
inconsistencies and stock shortages.

Limited feedback channels hinder opportunities for
improving food quality and service.

*Cash-based transactions pose security risks and
inconvenience for users.

eLack of user control over orders and profiles limits
customization and personalization options.

2.2. PROPOSED SYSTEM

The proposed system for the project aims to
revolutionize the food ordering experience within
the college campus by leveraging modern
technology and automation. Here's an overview of
the key features and functionalities of the proposed
system:

*Online Ordering Platform

Introduce a user-friendly web-based platform
accessible via desktop and mobile devices, allowing
students and staff to place orders remotely.
*Dynamic Menu Presentation

Implement a dynamic menu interface that displays
real-time updates on available items, prices, and
descriptions, enabling informed decision-making.
*Order Management System

Develop a centralized system for managing orders
from placement to fulfillment, providing real-time
status updates and notifications to users.
*Automated Communication Channels

Establish automated communication channels
between canteen staff and kitchen personnel to
streamline order processing and minimize delays.
sInventory Tracking Mechanism

Integrate an inventory management system to
monitor stock levels, track usage, and automate
restocking processes for efficient supply chain
management.

Secure Online Transactions

Implement secure online payment gateways to
facilitate cashless transactions, ensuring data privacy
and financial security for users.

*Feedback Mechanism

Incorporate a feedback mechanism allowing users to
provide ratings and reviews, enabling continuous
improvement of food quality and service.

*User Profiles and Preferences

Enable users to create personalized profiles, save
order preferences, and access order history for a
seamless and customized ordering experience.
«Administrative Dashboard

Provide administrative dashboards for canteen
admins and college admins to manage menus, track
orders, and generate reports for data-driven
decision-making.

2.2.1. Advantages

*Enhanced convenience through remote ordering
from any location within the campus.

*Real-time menu updates for informed decision-
making and improved user experience.
«Streamlined order processing, reducing waiting
times and increasing efficiency.

«Automated communication channels for seamless
coordination among canteen staff.

«Improved inventory management, minimizing stock
shortages and wastage.

Secure online transactions for cashless payments,
ensuring financial security for users.
«Continuous feedback mechanism
improvement and customer satisfaction.
Personalized user profiles and order history for a
customized dining experience.

for quality

Tarun K S. International Journal of Science, Engineering and Technology,

2025, 13:3

*Comprehensive administrative dashboards for
data-driven decision-making and operations
management.

+Scalability and flexibility to adapt to future growth
and changes in canteen operations.

*Ongoing training and support for users and
administrators to maximize system utilization and
effectiveness.

Existing studies emphasize the prospect of mobile-
based library systems. [1] Which shows how Android
applications minimize manual labour through
automated book transactions. [2], [3], [4], [5], [6], [7]
up to [12] all the research emphasizes Android
Studio's advantages, including compatibility with
Material Design guidelines and easy integration with
cloud databases such as Firebase. Features that are
common in previous studies are book searching,
user login, and fundamental transaction tracking,
commonly done with Java and SQLite. Gaps exist,
such as poor consideration of offline operation,
sophisticated user experience (UX) design, and
support for cutting-edge technologies such as loT.
This study improves on the foundations by the
inclusion of Kotlin, cloud synchronisation, and richer
UX, fixing flaws established in previous studies.

I1l. SYSTEM SPECIFICATION

3.1. HARDWARE REQUIREMENTS

*Processor - Intel Core i5 or higher
*RAM : 8GB or more

*Storage > Minimum 256GB SSD
+Display 214" Full HD (1920x1080)

resolution or higher

*Network Interface: Ethernet or Wi-Fi connectivity
3.2. SOFTWARE REQUIREMENTS

*Operating System: Windows 10

*Programming : Python

*Framework : Flask framework for building the
web application

*Web Design : HTML, CSS, JavaScript, and
Bootstrap

«Database : MySQL

IV. SYSTEM DESIGN

4.1. INTRODUCTION

The system design of the project utilizes a client-
server architecture to streamline food ordering and
management processes. The design ensures a user-
friendly and efficient experience for students, staff,
and administrators. The front-end leverages HTML,
CSS, JavaScript, and Bootstrap to create a responsive
interface, while the back-end uses Python and Flask
for seamless server-side processing. MySQL is
employed for reliable data storage, handling user
profiles, orders, and menu items. The app integrates
secure payment gateways to support both online
and cash-on-delivery options.

4.2. ARCHITECTURE DESIGN

Canteen
Logis
A 4
-
-
-
Add
] Food
View
Orders
View
Payment:
View
Report
View
Feedback
BD:]N Students
T 00
_/
H— O~
Regsister/login

View Food

[=)
% Add Cart
Database

View
Reports

/ z

Reviews

4.3. INPUT DESIGN

The input design of the project is focused on
creating an intuitive and user-friendly interface to
facilitate easy data entry and ensure smooth
interactions for all users. The system design includes
various input forms and validation mechanisms for
different functionalities:

1. User Login/Authentication

Tarun K S. International Journal of Science, Engineering and Technology,

2025, 13:3

The login interface allows users to input their
username and password to access their accounts.
Validation checks ensure that the username exists in
the system and the password matches the stored
hash. In case of incorrect login attempts, clear error
messages are displayed, guiding users to correct
their inputs.

2. Menu Browsing

The menu browsing section offers a search bar for
users to find food items quickly. Users can also filter
items by categories like vegetarian, non-vegetarian,
drinks, or based on availability. Input fields for the
name, description, and price of menu items are
available for administrators to manage the offerings.
3. Order Placement

In the order placement section, users can select
menu items, specify the quantity, and provide
optional special instructions. The system ensures
that the item is in stock, and quantities are valid,
while the cart dynamically updates to show added
items, their quantities, and the total price.

4. Payment

For payment, users can choose their payment
method, enter card details (card number, expiration
date, CVV) for online payments, or opt for cash on
delivery. Secure input fields and real-time validation
ensure that sensitive data is entered correctly. A final
confirmation screen displays the total amount,
including applicable taxes and discounts, before
completing the transaction.

5. Feedback and Ratings

The feedback section allows users to rate food items
with a scale from 1 to 5 stars and provide textual
comments. Validation ensures ratings fall within the
accepted range and that the comment box isn't
empty. Users are prompted to complete all fields
before submitting their feedback.

6. Admin Panel

For administrators, the menu management input
fields allow them to add, edit, or remove items.
Administrators can enter details such as item name,
price, availability, and description. Additional options
for setting time-based promotions or availability
periods are also available.

7. Order Tracking

The order tracking interface requires the order ID for
administrators to manage and update the status of
orders (e.g., in progress, completed). The status can

be changed as needed to reflect the real-time
progress of an order.

8. Notification Preferences

The notification preferences section enables users to
select how they would like to be notified about
updates, including email, SMS, or in-app alerts. Users
can save these preferences for future updates and
notifications.

This input design ensures clarity, reduces the
chances of error, and provides users with a seamless
experience while interacting with the Campus Dining
Web App.

4.4. OUTPUT DESIGN

The output design of the project is focused on
providing users and administrators with clear,
concise, and actionable information, ensuring a
seamless experience and effective management of
operations.

1. User Dashboard

The user dashboard displays a personalized view of
the dining experience. It includes information such
as menu options, active orders, order status, and any
notifications related to promotions or new items.
Users can quickly view their order history, track the
status of their current order, and access payment
receipts. The dashboard also shows recommended
items based on their previous orders and ratings.

2. Menu Display

The menu page presents the available food items,
organized into categories (e.g., starters, mains,
drinks, etc). For each item, the user can see the
name, price, description, availability status, and any
special promotions or discounts. Images of the items
are included for better visualization. The system
dynamically updates to reflect real-time availability
of items and promotions.

3. Order Confirmation Screen

After users finalize their order, an order confirmation
screen appears. It summarizes the items selected,
including their quantity and total price, with an
option to edit the order. The screen also displays an
estimated delivery time and offers a final
confirmation button to submit the order.

4. Payment Confirmation

Once payment is processed, a payment confirmation
page displays the transaction details, including the
amount paid, payment method, and a transaction 1D
for the user's reference. If the payment is successful,

Tarun K S. International Journal of Science, Engineering and Technology,

2025, 13:3

users receive a receipt with an option to download
or email it for record-keeping.

5. Order Tracking

The order tracking page allows users to monitor the
progress of their order in real-time. It shows the
current status (e.g., processing, out for delivery,
delivered) with a timestamp and a progress bar.
Users can also view the estimated delivery time and
get notifications if the status changes.

6. Feedback and Ratings Confirmation

Once a user submits feedback or a rating for an item,
a confirmation message appears, thanking them for
their input. Users can also view their previous ratings
and comments on items they have rated in the past.
7. Admin Panel

For administrators, the admin panel offers an
overview of all active orders, inventory levels, and
menu items. Administrators can view real-time order
statuses, update menu items, and access detailed
reports such as sales data, user feedback, and system
performance. They can also manage user accounts,
including viewing user activity, updating order
statuses, and sending notifications to users.

8. Notifications

Notifications are delivered in real-time through in-
app alerts, SMS, or email, depending on the user's
preference. These notifications include order
updates, promotions, payment confirmations, and
other relevant messages such as special offers or
menu changes.

The output design is focused on providing an
efficient, user-friendly experience for both users and
administrators. By presenting information clearly
and in an easily accessible manner, it ensures smooth
interactions and helps maintain transparency
throughout the entire process.

4.5. DATA FLOW DIAGRAM

LEVELO

LEVEL 1

b o)

Login reg

Login Aok

Food cave

r

fo_canteen

s

fo_staff

fo_cantzan fo_student
. Smart L
S Canteen i

k.

LEVEL 2

Web App
Togiz Togin

fo_student

Tarun K S. International Journal of Science, Engineering and Technology,
2025, 13:3

4.6. DATABASE DESIGN

1. ADMIN TABLE

Description: Stores administrator login credentials

S.No| Field |Data Typel Field Sizd| Constraint Description
1 |Usemame|Varchar |20 Primary Key[Admin usemame|
2 |Password |Varchar |20 Not Null Admin password
2. STAFF TABLE
Description: Stores staff details, including login
credentials
. Data | Field . .
S.No| Field Type Size Constraint Descri
1 Staff_Id Int 1 Primary Key Unigue !
2 Name Varchar |50 Not Null Staff Na
3 Mobile Varchar (15 Not Null S:EH
4 Ermail ‘archar |50 Unigque Staff Em
Foreign Key (References|Staff
5 Department [Varchar (50 Department Table) Departn
6 Usemame (Varchar |20 Unigue Login
Useman
7 Password [Varchar (20 Not Null Login
Passwor
|]a |oin_Date |DATE |- [Not Nl | Date of

STUDENT TABLE

Description: Stores student information and login
credentials

Data | Field
S.No| Field ¢ Constraint Description
Type Size
1 |Studentid |int 11 |Primary Key I%”'q“e Student
2 Name Varchar |50 Not Null Student Name
3 Mobile Varchar |15 Not Null iln;derrt Mobile
4 Email Varchar |50 Unique Student Email
B Department [Varchar |50 Foreign Key (References|Student
Department Table) Department
Usemame |Varchar |20 Unique Login Usermame
Password |Varchar |20 Mot MNull Login Password
|5 |ioin_Date |DATE |- | Not Null | Date of Joining

CANTEEN TABLE

Description: Stores canteen vendor details.

S.No| Field |DataType|Field Sizel Constraint Description

1 Canteen_ld| Int 11 Primary Key|Unique Canteen Vendor ID|
2 MNarme Varchar |50 Mot Mull Vendor Narme

3 Mobile Varchar |15 Mot Mull Vendor Mobile No

4 Email Varchar |50 Unique Vendor Email

5 Profile Varchar |50 - ‘Vendor Profile Details

& Address |Varchar (100 Not Mull Vendor Address

7 Usemame |Varchar |20 Unique Login Usemame

2 Password |Varchar |20 Mot Mull Login Password

|9 |Join_Da‘te | DATE |— Mot Null |Da‘te of Joining

5. FOOD TABLE

Description: Stores details of food items available in

the canteen.

S.No Field Data Type|Field Size| Constraint Description

1 Recipe_Ild Int 1 Primary Key||Unique Redpe ID

2 |Recipe Name |Varchar |50 Unique Mame of the Recipe

3 |Price Int 50 Not Null Price of the Recipe

4 |Category Varchar |50 - Redpe Category

5 [Type Varchar |30 - Redpe Type (Veg/Non-Veg))
6 [Image Varchar {100 - Redpe Image URL

7 Post_Date DATE - Mot Null Date Redpe was Added

6. FOOD ORDER TA

BLE

Description: Stores customer food orders.

Tarun K S. International Journal of Science, Engineering and Technology,

2025, 13:3
Data | Field . s
S.No| Field Type | Size Constraint Description
1 |OrderId Int 1 Primary Key Unique Order ID
2 |Name Varchar |50 Mot Null Customer Name
3 |Mobile Warchar |15 Mot Null fl\:;stomer Mobild
Customer
4 |Departrrent |Varchar |50 Department
5 |User_Type |Varchar |20 - Type of Orderer
. Foreign Key (References .
6 |Recipeld |Int il Food Table) Ordered Recipe
7 |Quantity |Int 1 Mot Null Cuantity Ordered
8 |Price Int 20 Mot Null Price of Redpe
9 |Order_Date |DATE Mot Null Date of Order
10 |username |varchar |20 Foreign Key (References|Custormer
Student Table) Usemame
11 |Order_Status| Varchar |20 - Status of Order

7. TABLE BOOKING
Description: Stores restaurant table booking details.

. Data | Field . .
S.No| Field Type | Size Constraint Description
1 |Bookud |int 11 |Primary Key :g”'q”e Booking
2 [Name Varchar |50 Mot Mull Name of the
Booker
Mobile Varchar |15 Mot Mull Contact No
Departrrent |Varchar |50 Department
User Type |Varchar |20 Type of User
. Foreign Key (References .
6 [Recipeld |Int 1 Food Table) Ordered Recipe
7 |Price Int " Not Null Price of Recipe
8 Book_Date |DATE Not Null Booking Date
9 Book_Time |TIME Not Null Booking Time
10 |Guest Countint 5 Not Null Number o
Guests
Foreign Key (References|Booking
11 |Username - Varchar 120 Student Table) Usermame
12 |Status Varchar |20 Booking Status

V. SOFTWARE DESCRIPTION

5.1. PYTHON 3.8

Python is a general-purpose interpreted, interactive,
object-oriented, and high-level programming
language. It was created by Guido van Rossum
during 1985- 1990. Like Perl, Python source code is
also available under the GNU General Public License
(GPL). This tutorial gives enough understanding on
Python programming language.

python

Programming

Python is a high-level, interpreted, interactive and
object-oriented scripting language. Python s
designed to be highly readable. It uses English
keywords frequently where as other languages use
punctuation, and it has fewer syntactical
constructions than other languages. Python is a
MUST for students and working professionals to
become a great Software Engineer specially when
they are working in Web Development Domain.
Python is currently the most widely used multi-
purpose, high-level programming language. Python
allows programming in Object-Oriented and
Procedural paradigms. Python programs generally
are smaller than other programming languages like
Java. Programmers have to type relatively less and
indentation requirement of the language, makes
them readable all the time. Python language is being
used by almost all tech-giant companies like -
Google, Amazon, Facebook, Instagram, Dropbox,
Uber... etc. The biggest strength of Python is huge
collection of standard library which can be used for
the following:

. Machine Learning

o GUI Applications (like Kivy, Tkinter, PyQt etc.)

) Web frameworks like Django (used by
YouTube, Instagram, Dropbox)

o Image processing (like OpenCV, Pillow)

) Web scraping (like Scrapy, BeautifulSoup,
Selenium)

) Test frameworks

. Multimedia

. Scientific computing

Pandas

pandas are a fast, powerful, flexible and easy to use
open source data analysis and manipulation tool,
built on top of the Python programming language.
pandas are a Python package that provides fast,
flexible, and expressive data structures designed to
make working with "relational” or "labeled" data
both easy and intuitive. It aims to be the

10

Tarun K S. International Journal of Science, Engineering and Technology,

2025, 13:3

fundamental high-level building block for doing
practical, real world data analysis in Python.

ﬁlpandas

Pandas is mainly used for data analysis and
associated manipulation of tabular data in Data
frames. Pandas allows importing data from various
file formats such as comma-separated values, JSON,
Parquet, SQL database tables or queries, and
Microsoft Excel. Pandas allows various data
manipulation operations such as merging,
reshaping, selecting, as well as data cleaning, and
data wrangling features. The development of pandas
introduced into Python many comparable features
of working with Data frames that were established in
the R programming language. The panda’s library is
built upon another library NumPy, which is oriented
to efficiently working with arrays instead of the
features of working on Data frames.

NumPy

NumPy, which stands for Numerical Python, is a
library consisting of multidimensional array objects
and a collection of routines for processing those
arrays. Using NumPy, mathematical and logical
operations on arrays can be performed.

N NumPy

NumPy is a general-purpose array-processing
package. It provides a high-performance
multidimensional array object, and tools for working
with these arrays.

Matplotlib

Matplotlib is a comprehensive library for creating
static, animated, and interactive visualizations in
Python. Matplotlib makes easy things easy and hard
things possible.

matpl:tlib

Matplotlib is a plotting library for the Python
programming language and its numerical
mathematics extension NumPy. It provides an
object-oriented APl for embedding plots into
applications using general-purpose GUI toolkits like
Tkinter, wxPython, Qt, or GTK.

5.2. MYSQL 5

MySQL is a relational database management system
based on the Structured Query Language, which is
the popular language for accessing and managing
the records in the database. MySQL is open-source
and free software under the GNU license. It is
supported by Oracle Company. MySQL database
that provides for how to manage database and to
manipulate data with the help of various SQL
queries. These queries are: insert records, update
records, delete records, select records, create tables,
drop tables, etc. There are also given MySQL
interview questions to help you better understand
the MySQL database.

MySal

MySQL is currently the most popular database
management system software used for managing
the relational database. It is open-source database
software, which is supported by Oracle Company. It
is fast, scalable, and easy to use database
management system in comparison with Microsoft
SQL Server and Oracle Database. It is commonly
used in conjunction with PHP scripts for creating
powerful and dynamic server-side or web-based
enterprise applications. It is developed, marketed,
and supported by MySQL AB, a Swedish company,
and written in C programming language and C++
programming language. The official pronunciation
of MySQL is not the My Sequel; it is My Ess Que Ell.
However, you can pronounce it in your way. Many
small and big companies use MySQL. MySQL
supports many Operating Systems like Windows,
Linux, MacOS, etc. with C, C++, and Java languages.

11

Tarun K S. International Journal of Science, Engineering and Technology,

2025, 13:3

5.3. WAMPSERVER

WampServer is a Windows web development
environment. It allows you to «create web
applications with Apache2, PHP and a MySQL
database. Alongside, PhpMyAdmin allows you to
manage easily your database.

WAMPServer is a reliable web development software
program that lets you create web apps with MYSQL
database and PHP Apache2. With an intuitive
interface, the application features numerous
functionalities and makes it the preferred choice of
developers from around the world. The software is
free to use and doesn't require a payment or
subscription.

5.4. BOOTSTRAP

Bootstrap is a free and open-source tool collection
for creating responsive websites and web
applications. It is the most popular HTML, CSS, and
JavaScript framework for developing responsive,
mobile-first websites.

It solves many problems which we had once, one of
which is the cross-browser compatibility issue.
Nowadays, the websites are perfect for all the
browsers (IE, Firefox, and Chrome) and for all sizes of
screens (Desktop, Tablets, Phablets, and Phones).
Easy to use: Anybody with just basic knowledge of
HTML and CSS can start using Bootstrap

Responsive features: Bootstrap's responsive CSS
adjusts to phones, tablets, and desktops

Mobile-first approach: In Bootstrap, mobile-first
styles are part of the core framework

Browser compatibility: Bootstrap 4 is compatible
with all modern browsers (Chrome, Firefox, Internet
Explorer 10+, Edge, Safari, and Oper)

5.5. FLASK

Flask is a web framework. This means flask provides
you with tools, libraries and technologies that allow
you to build a web application. This web application
can be some web pages, a blog, a wiki or go as big
as a web-based calendar application or a commercial

¢ Flask

web development,
one dmp at a time

Flask is often referred to as a micro framework. It
aims to keep the core of an application simple yet
extensible. Flask does not have built-in abstraction
layer for database handling, nor does it have formed
a validation support. Instead, Flask supports the
extensions to add such functionality to the
application. Although Flask is rather young
compared to most Python frameworks, it holds a
great promise and has already gained popularity
among Python web developers. Let's take a closer
look into Flask, so-called “micro” framework for
Python. Flask is part of the categories of the micro-
framework. Micro-framework is normally framework
with little to no dependencies to external libraries.
This has pros and cons. Pros would be that the
framework is light, there are little dependency to
update and watch for security bugs, cons is that
some time you will have to do more work by yourself
or increase yourself the list of dependencies by
adding plugins.

VI. SYSTEM IMPLEMENTATION

6.1. MODULES

1. Campus Dining Web App
2. End User

3. Authentication Module
4. Menu Management

12

Tarun K S. International Journal of Science, Engineering and Technology,

2025, 13:3

5. Order Management

6. Payment

7. Notification

8. Feedbacks and Ratings

6.2. MODULES DESCRIPTION

1. Campus Dining Web App

The design and development of the Campus Dining
Web App involve creating both frontend and
backend components, along with setting up a
MySQL database.

Frontend Development

*Use HTML, CSS, and JavaScript to create the user
interface for the web app.

+Utilize Bootstrap framework for responsive design
and layout.

sImplement dynamic elements and interactivity
using JavaScript.

Integrate Bootstrap components for consistent
styling and user experience.

Backend Development with Flask

«Install Flask, a lightweight Python web framework,
using pip.

«Define routes and views to handle HTTP requests
and serve web pages.

eImplement authentication and authorization
mechanisms for user login and access control.
*Develop controllers and business logic to process
orders, manage menus, and handle other app
functionalities.

*Use Flask extensions such as Flask-WTF for form
handling and Flask-MySQLdb for MySQL database
integration.

Database Design and Development with MySQL
«Install and configure MySQL database server using
Wampserver.

*Design the database schema to store user data,
menu items, orders, and other relevant information.
*Create tables, define relationships, and establish
constraints to ensure data integrity.

*Use SQL queries to insert, update, retrieve, and
delete data from the database.

*Connect Flask backend to MySQL database using
SQLAIchemy or Flask-MySQLdb for database
operations.

Deployment

*Deploy the Campus Dining Web App to a
Wampserver environment for hosting.

«Configure server settings and permissions to ensure
proper functioning of the app.

*Monitor server performance and troubleshoot any
deployment-related issues.

«Continuously update and maintain the app to
address user feedback and improve functionality.

2. End User

2.1. Student
Authentication: Students can log in using their
student credentials. Additionally, a password

recovery/reset functionality is available to assist with
any login issues.

Menu Interaction: Students can browse the canteen
menu, viewing item names, descriptions, and prices.
They have the ability to add items to their cart, view
and modify the cart contents, and specify any special
instructions or preferences for their orders.

Order Placement: Students can securely confirm and
place their orders, choosing between online
payment or cash-on-delivery options for added
convenience.

Order Status: Students receive real-time notifications
confirming their order placement and can check the
status of current orders, as well as view the history of
past orders for reference.

Feedback System: Students can provide feedback on
food quality and service, rating and commenting on
specific items to help improve the overall dining
experience.

User Profile: Students have the option to edit their
personal information (optional) and view their order
history to track their dining habits and preferences
over time.

Notifications: Students receive alerts for promotions,
discounts, or new menu items to stay informed
about any updates or special offers.

2.2. Staff

Authentication: Staff members log in using their
credentials, with password recovery/reset
functionality available if needed.

Order Processing: Staff receive real-time
notifications for new orders and can view and
manage incoming orders, updating order status as
needed and marking orders as processed.

Menu Management: Staff have the ability to add,
edit, or remove items from the menu, update item
availability, adjust prices and descriptions, ensuring
the menu is up-to-date and accurate.

13

Tarun K S. International Journal of Science, Engineering and Technology,

2025, 13:3

Inventory Management: Staff monitor and manage
food inventory, receiving alerts for low stock and
updating stock levels after processing orders to
ensure items are available for order.
Communication: Staff communicate with kitchen
staff for order preparation and can send notifications
to students regarding order status.

Reporting: Staff generate reports on daily sales,
popular items, and inventory levels, analyzing trends
and optimizing stock based on demand.

Feedback Handling: Staff view and respond to
feedback from students, addressing any issues
related to food quality or service to enhance the
overall dining experience.

2.3. College Admin

Authentication: College admins log in using their
admin credentials, with password recovery/reset
functionality available as a safeguard.

User Management: College admins manage student
and staff accounts, reset passwords, and handle any
account-related issues that may arise.

Order Monitoring: College admins access and
monitor overall order data, view order history, and
generate reports on sales and popular items for
analysis.

System Management: College admins oversee
general system settings, ensuring security and
compliance with relevant regulations.

2.4. Canteen Admin

Authentication: Canteen admins log in using their
credentials, with password recovery/reset
functionality in place for security purposes.

Menu Management: Canteen admins update the
menu by adding, editing, or removing items,
indicating items as temporarily out of stock as
needed.

Order Handling: Canteen admins receive real-time
notifications for new orders, access a centralized
dashboard displaying incoming orders, and process
orders, updating order status and communicating
with kitchen staff for order preparation.

Supply Orders: Canteen admins ensure that kitchen
staff are aware of order details for food preparation,
monitor and manage inventory to fulfill orders, and
coordinate with delivery staff if applicable.

Payment Handling: Canteen admins receive
payment, confirm payment status for each order,

handle cash payments upon order delivery, and
generate invoices for each order.

Inventory Management: Canteen admins monitor
inventory levels, receive alerts for low stock, update
stock levels after processing orders, and ensure
accurate stock levels for each menu item.
Communication: Canteen admins coordinate with
kitchen staff regarding order details and respond to
inquiries from students or staff regarding menu
items, orders, or payment.

Reporting: Canteen admins generate reports on
daily sales, popular items, and inventory levels,
analyzing trends and making data-driven decisions
to optimize operations.

Feedback Handling: Canteen admins access and
respond to feedback provided by students and staff,
using feedback to improve the quality of service and
menu offerings.

3. Authentication Module

The Authentication Module serves as the gateway
for user access to the Campus Dining Web App,
ensuring secure authentication and authorization
processes. It allows users to log in using their
respective credentials, such as usernames and
passwords, verifying their identity before granting
access to the system. Additionally, the module
incorporates functionalities for password recovery
and reset, providing users with a seamless
experience in case they forget their login credentials.
Through robust encryption and authentication
mechanisms, the Authentication Module safeguards
sensitive user information and ensures the integrity
of user accounts, thereby maintaining a secure
environment for users to interact with the web
application.

4. Menu Management

The Menu Management Module is pivotal in
maintaining an up-to-date and dynamic canteen
menu within the project. This module empowers
administrators to curate and manage the menu
offerings efficiently. Administrators can seamlessly
add, edit, or remove items from the menu, ensuring
that it reflects the latest culinary offerings available
to users. Additionally, administrators can update
item availability status, providing real-time
information to users about which items are currently
in stock. The module allows for adjustments to item
descriptions, prices, and special promotions,

14

Tarun K S. International Journal of Science, Engineering and Technology,

2025, 13:3

ensuring accurate and enticing presentation to
users. Through intuitive interfaces and streamlined
processes, the Menu Management Module
facilitates the smooth operation of the canteen
menu, enhancing user experience and satisfaction
within the Campus.

5. Order Management

The Order Management Module is the backbone of
the project, orchestrating the entire lifecycle of food
orders placed by users. This module seamlessly
facilitates the journey of orders from placement to
fulfillment, ensuring a smooth and efficient process
for both users and staff. Users can browse the menu,
add items to their carts, and securely place orders,
while staff members receive real-time notifications
for new orders. The module tracks order status,
allowing users to stay informed about the progress
of their orders, from processing to delivery.
Furthermore, it maintains a comprehensive order
history, enabling users to review past orders for
reference or reordering. Through robust features
and seamless integration with other modules, the
Order Management Module optimizes the ordering
process, enhancing user satisfaction and operational
efficiency within the Campus Dining Web App.

6. Payment

The Payment Module facilitating secure and
convenient transactions for users. This module
enables users to choose between various payment
methods, including online payment and cash-on-
delivery, providing flexibility and convenience. For
online payments, the module integrates with secure
payment gateways to ensure the confidentiality and
integrity of financial transactions. Users can securely
enter their payment information and complete
transactions with peace of mind. Additionally, the
Payment Module includes features for handling cash
payments upon order delivery, ensuring seamless
payment processing for users who prefer this option.
Through robust encryption and adherence to
industry-standard security protocols, the Payment
Module ensures the security of sensitive financial
data and enhances the overall user experience within
the Campus Dining Web App.

7. Notification

The Notification Module keeping users and staff
informed about important updates and events in

real-time. This module enables the system to send
notifications to users and staff members via various
channels, such as email, SMS, or in-app alerts. Users
receive notifications regarding order confirmations,
status updates, promotions, discounts, or new menu
items, ensuring they stay informed and engaged
throughout their dining experience. Similarly, staff
members receive notifications for new orders, order
status changes, critical system updates, or issues
requiring attention. By delivering timely and relevant
notifications, the Notification Module enhances user
satisfaction, improves operational efficiency, and
fosters better communication between users and
staff within the Campus Dining Web App.

8. Feedbacks and Ratings

The Feedback and Rating Module gathering user
insights and enhancing the overall dining experience
within the Campus Dining Web App. This module
empowers users to provide feedback on food
quality, service, and overall experience through
ratings and comments. Users can rate specific items
on the menu and provide detailed comments,
allowing administrators to understand their
preferences and areas for improvement.
Additionally, the module enables users to share their
suggestions and recommendations, fostering a
collaborative environment for continuous
enhancement. Administrators can access and
analyze the feedback provided by users, leveraging
it to make informed decisions and implement
necessary improvements. By facilitating open
communication and soliciting user feedback, the
Feedback and Rating Module contributes to the
refinement of menu offerings, service quality, and
overall user satisfaction within the Campus Dining
Web App.

VII. SYSTEM TESTING

7.1. SOFTWARE TESTING

System testing in the software development life
cycle aimed at verifying that the implemented
system meets the specified requirements and
functions correctly. Here's an overview of the
different types of testing that can be conducted for
the Campus Dining Web App:

1.Unit Testing

Test individual components or modules of the
system in isolation.

15

Tarun K S. International Journal of Science, Engineering and Technology,

2025, 13:3

+Verify the functionality of functions, methods, or
classes.

*Use tools like unittest in Python to automate unit
tests.

2.Integration Testing

*Test the interaction between different modules or
components of the system.

+Verify that components work together as expected.
*Ensure proper communication and data exchange
between frontend and backend components.
*Conduct tests for APl endpoints and database
interactions.

3.Functional Testing

*Test the system's functionality against the specified
requirements.

*Verify that users can perform actions such as
logging in, browsing the menu, placing orders, etc.,
as intended.

«Conduct tests for edge cases, error handling, and
boundary conditions.

4.User Interface (Ul) Testing

*Test the user interface for usability, responsiveness,
and consistency across different devices and
browsers.

*Verify that Ul elements are properly aligned, styled,
and functional.

«Conduct tests for user interactions such as clicking
buttons, entering text, etc.

5.Performance Testing

*Test the system's performance under various load
conditions.

*Measure response times, throughput, and resource
utilization to identify bottlenecks and optimize
performance.

*Conduct stress testing to determine the system's
capacity and scalability.

6.Security Testing

*Test the system for vulnerabilities and weaknesses
that could be exploited by attackers.

«Conduct tests for authentication, authorization,
data encryption, and protection against common
security threats such as SQL injection, cross-site
scripting (XSS), etc.

7.Compeatibility Testing

*Test the system's compatibility with different
operating systems, browsers, and devices.

*Verify that the web app functions correctly and
displays properly across a variety of platforms.

8.User Acceptance Testing (UAT)

sInvolve end users (students, staff, admins) to
validate the system against their requirements and
expectations.

*Gather feedback and address any usability issues or
concerns raised by users.

9.Regression Testing

*Repeatedly test the system after each change or
update to ensure that existing functionality has not
been affected.

«Automate regression tests to streamline the testing
process and detect regressions early.

By conducting thorough testing across these
different types, the Campus Dining Web App can be
validated for functionality, performance, security,
and user satisfaction, ensuring a high-quality and
reliable system for users.

7.2. TEST CASES

1. Test Case ID: TCOO1

Input: Valid student login credentials

Expected Result: User is authenticated and directed
to student dashboard

Actual Result: User successfully logged in and
directed to dashboard

Status: Passed

2. Test Case ID: TC002

Input: Invalid student login credentials

Expected Result: Error message displayed indicating
invalid credentials

Actual Result: Error message displayed as expected
Status: Passed

3. Test Case ID: TC003

Input: Browse menu and add items to cart

Expected Result: Items are added to the cart

Actual Result: Items added to the cart as expected
Status: Passed

4. Test Case |ID: TCO04

Input: Modify cart (remove item)

Expected Result: Iltem is removed from the cart
Actual Result: Item successfully removed from the
cart

Status: Passed

5. Test Case ID: TC005

Input: Place order with online payment option
Expected Result: Order is placed successfully and
payment is processed

Actual Result: Order placed and payment processed
successfully

16

Tarun K S. International Journal of Science, Engineering and Technology,

2025, 13:3

Status: Passed

6. Test Case ID: TCO06

Input: Place order with cash-on-delivery

Expected Result: Order is placed successfully with
cash-on-delivery

Actual Result: Order placed with cash-on-delivery as
expected

Status: Passed

7. Test Case ID: TCO07

Input: Provide feedback on food quality

Expected Result: Feedback is submitted successfully
Actual Result: Feedback submitted successfully
Status: Passed

8. Test Case ID: TCO08

Input: Check order status

Expected Result: Order status is displayed correctly
Actual Result: Order status displayed correctly
Status: Passed

9. Test Case ID: TCO09

Input: View order history

Expected Result: User's order history is displayed
Actual Result: User's order history displayed
correctly

Status: Passed

10. Test Case ID: TCO10

Input: Update menu (add new item)

Expected Result: New item is added to the menu
Actual Result: New item added to the menu as
expected

Status: Passed

11. Test Case ID: TCO11

Input: Process incoming order

Expected Result: Order is processed and status is
updated

Actual Result: Order processed and status updated
as expected

Status: Passed

12. Test Case ID: TCO12

Input: Generate sales report

Expected Result: Sales report is generated and
displayed

Actual Result: Sales report generated and displayed
as expected

Status: Passed

13. Test Case ID: TCO13

Input: Test Ul responsiveness

Expected Result: Ul elements adjust properly to
different screen sizes

Actual Result: Ul elements adjust properly as
expected

Status: Passed

14. Test Case ID: TC014

Input: Test compatibility with browsers

Expected Result: Web app functions correctly across
different browsers

Actual Result: Web app functions correctly as
expected

Status: Passed

15. Test Case ID: TCO15

Input: Test security vulnerabilities

Expected Result: No security vulnerabilities found
Actual Result: No security vulnerabilities found
Status: Passed

7.3. TEST REPORT

1. Introduction: The project is a system designed to
facilitate food ordering for students and staff within
a college campus. This test report outlines the
testing activities conducted to validate the
functionality, usability, performance, and security of
the application.

2. Test Objective: The objective of the testing is to
ensure that the project meets the specified
requirements and functions correctly across
different scenarios. This includes verifying user
authentication, menu browsing, order placement,
payment handling, feedback submission, and system
management functionalities.

3. Test Scope: The scope of the testing covers all
major features and functionalities of the Campus
Dining Web App, including frontend and backend
components. It includes testing across different user
roles (students, staff, admins) and scenarios such as
normal usage, edge cases, and error handling.

4. Test Environment

*Operating System: Windows 10

*Web Browsers: Chrome, Firefox, Edge
*Programming Languages: Python, HTML, CSS
«Frameworks: Flask, Bootstrap

«Database: MySQL

Tools: Selenium for automated testing, Postman for
API testing

5. Test Result: The testing activities were conducted
systematically, covering various aspects of the
application. The test cases were executed, and the
results were recorded as follows:

17

Tarun K S. International Journal of Science, Engineering and Technology,

2025, 13:3

*Passed: All expected results matched the actual
results, indicating that the system functions
correctly.

Failed: Deviations or discrepancies were found
between the expected and actual results, indicating
potential issues or defects in the system.

*Pending: Some test cases may require further
investigation or validation before a conclusive result
can be determined.

6. Test Conclusion: Overall, the project performed
well during testing, with the majority of test cases
passing successfully. Any identified issues or defects
were documented and will be addressed by the
development team. The test results indicate that the
system is ready for deployment, with confidence in
its functionality, usability, and reliability

1.Performance

+ Transaction Time: Borrowing a book took - 3
seconds whereas manually it takes more than 20+
seconds.

* Scalability: Handling up to 500+ books and 50+
users, validated via testing.

2.Usability

Goal is to design a natural, effective, and user-
friendly interface that benefits both librarians and
users. The app gives the advantage of searching for
books, checking for availability, reserving titles, and
looking at due dates right from their smartphones.
The Ul is minimal and clean, with easy navigation and
well-annotated icons or menus to provide ease of
use even to non-technical users.

The Library Management System based on Android
Studio efficiently computerizes library operations
with mobility, efficiency, and scalability. It minimizes
manual effort by 70% (based on transaction time
comparison) and maximizes user engagement
through real-time functionality. The adoption of
Kotlin and Firebase demonstrates best practices in
sync with today's technologies, ensuring the system
is future ready.

Vill. APPENDIX

8.1. SOURCE CODE

Packages

from flask import Flask, render_template, redirect,
request, session, url_for

import datetime

import os

from werkzeug.utils import secure_filename

from flask import send_from_directory, abort

import mysql.connector

import uuid

Register

if request.method=="POST"
name=request.form['name']
dept=request.form['dept']
mobile=request.form['mobile’]
email=request.form['email']
username=request.form[‘username’]
password=request.form['password']

now = datetime.datetime.now()
date_join=now.strftime("%d-%m-%Y")

mycursor = mydb.cursor()
mycursor.execute("SELECT count(*) FROM fo_staff
where username=%s",(username,))

cnt = mycursor.fetchone()[0]

if cnt==0:
mycursor.execute("SELECT
fo_staff")

maxid = mycursor.fetchone()[0]
if maxid is None:

maxid=1

sgl = "INSERT INTO fo_staff(id, name, mobile, email,
dept, username, password, date_join) VALUES (%s,
%s, %s, %s, %s, %s, %s, %s)"

val = (maxid, name, mobile, email, dept, username,
password, date_join)

mycursor.execute(sql, val)

mydb.commit()

msg="success"

else:

msg="fail"

if request.method=="POST"
name=request.form['name']
dept=request.form['dept']
mobile=request.form['mobile’]
email=request.form[‘email’]
username=request.form[‘username’]
password=request.form['password']

now = datetime.datetime.now()
date_join=now.strftime("%d-%m-%Y")

mycursor = mydb.cursor()
mycursor.execute("SELECT count(*) FROM fo_stu
where username=%s",(username,))

max(id)+1 FROM

18

Tarun K S. International Journal of Science, Engineering and Technology,

2025, 13:3

cnt = mycursor.fetchone()[0]

if cnt==0:

mycursor.execute("SELECT max(id)+1 FROM fo_stu")
maxid = mycursor.fetchone()[0]

if maxid is None:

maxid=1

sql = "INSERT INTO fo_stu(id, name, mobile, email,
dept, username, password, date_join) VALUES (%s,
%s, %s, %S, %s, %s, %s, %s)"

val = (maxid, name, mobile, email, dept, username,
password, date_join)

mycursor.execute(sql, val)

mydb.commit()

msg="success"

else:

msg="fail"

msg=""

if request.method=="POST"
name=request.form['name']
address=request.form['address']
mobile=request.form['mobile’]
email=request.form['email']
username=request.form[‘username’]
password=request.form['password']

now = datetime.datetime.now()
date_join=now.strftime("%d-%m-%Y")

if 'profile’ in request.files:

profile = request.files['profile']

if profile and allowed_file(profile.filename):

filename = secure_filename(profile.filename)
profile_path =
'D:/kalirajan/Food_court/static/license/' + filename
profile.save(profile_path)

mycursor = mydb.cursor()
mycursor.execute("SELECT count(*) FROM
fo_canteen where username=%s",(username,))

cnt = mycursor.fetchone()[0]

if cnt==0:

mycursor.execute("SELECT max(id)+1 FROM
fo_canteen")

maxid = mycursor.fetchone()[0]

if maxid is None:

maxid=1

sql = "INSERT INTO fo_canteen(id, name, address,
mobile, email, profile, username, password,

date_join) VALUES (%s, %s, %s, %s, %s, %s, %s, %s,
%s)"

val = (maxid, name, address, mobile, email, filename,
username, password, date_join)
mycursor.execute(sql, val)

mydb.commit()

msg="success"

else:
msg="fail"
Add foods

username=session.get(‘'username’)
cursor=mydb.cursor()

cursor.execute("SELECT * FROM fo_food")

data = cursor.fetchall()

cursor.close()

msg=""

if request.method=="POST"
rec_name=request.form['rec_name']
price=request.form['price']
rec_type=request.form[‘rec_type'l
rec_category=request.form['rec_category']

now = datetime.datetime.now()
date_join=now.strftime("%Y-%m-%d")

if ‘profile’ in request.files:

profile = request.files['profile']

if profile and allowed_file(profile.filename):

filename = secure_filename(profile.filename)
profile_path = 'D:/kalirajan/Food_court/static/food/'
+ filename
profile.save(profile_path)
mycursor=mydb.cursor()
mycursor.execute("SELECT
fo_food")

maxid = mycursor.fetchone()[0]
if maxid is None:

maxid=1

sql = "INSERT INTO fo_food(id, rec_name, price,
rec_type, rec_category, profile, date_join) VALUES
(%s, %s, %s, %s, %s, %s, %S)"

val = (maxid, rec_name, price, rec_type, rec_category,
filename, date_join)

mycursor.execute(sql, val)

mydb.commit()

msg="success"

else:

msg="fail"

View menu

mag=""

username=session.get(‘'username’)
cursor=mydb.cursor()

max(id)+1 FROM

19

Tarun K S. International Journal of Science, Engineering and Technology,

2025, 13:3
cursor.execute("SELECT * FROM fo_staff where
username=%s", (username,))

st = cursor.fetchone()

cursor.close()

datal=""

cursor=mydb.cursor()

cursor.execute("SELECT * FROM fo_category")

data = cursor.fetchall()

cursor.close()

typel = request.args.get('type’)

if type:

print("Received 'typel' value:", type1) # Debugging:
Print the received value

cursor = mydb.cursor()

cursor.execute("SELECT * FROM fo_food WHERE
rec_type=%s", (typel,))

datal = cursor.fetchall()
cursor.close()

else:

print("No 'typel' value received.")
Indicate if no value is received

if request.method=="POST"
name=request.form['name’]
dept=request.form['dept']
mobile=request.form['mobile']
typel=request.form['type']
rec_name=request.form['rec_name']
price=request.form['price']
quantity=request.form['quantity']
now = datetime.datetime.now()
date=now.strftime("%B %d, %Y")
mycursor = mydb.cursor()
mycursor.execute("SELECT
fo_book")

maxid = mycursor.fetchone()[0]
if maxid is None:

maxid=1

sql = "INSERT INTO fo_book(id, name, dept, mobile,
type, rec_name, price, quantity, date, username)
VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s)"
val = (maxid, name, dept, mobile, type1l, rec_name,
price, quantity, date, username)
mycursor.execute(sql, val)

mydb.commit()

msg="success"

else:

msg="fail"

Orders

Debugging:

max(id)+1 FROM

msg=
username=session.get(‘'username’)
cursor=mydb.cursor()
cursor.execute("SELECT *
username=%s", (username,))
user = cursor.fetchone()
cursor.close()

dataa=""
cursor=mydb.cursor()
cursor.execute("SELECT * FROM fo_category")

datal = cursor.fetchall()

cursor.close()

food = request.args.get('item’)

if food:

print("Received ‘type1' value:", food) # Debugging:
Print the received value

cursor = mydb.cursor()

cursor.execute("SELECT * FROM fo_food WHERE
rec_type=%s", (food,))

dataa = cursor.fetchall()

cursor.close()

else:

print("No 'typel’ value received.")

if request.method=="POST"
name=request.form['name']
dept=request.form['dept']
mobile=request.form['mobile']
typel=request.form['type'l
rec_name=request.form['rec_name']
price=request.form['price']
quantity=request.form['quantity']

now = datetime.datetime.now()
date=now.strftime("%B %d, %Y")

mycursor = mydb.cursor()
mycursor.execute("SELECT
fo_book")

maxid = mycursor.fetchone()[0]
if maxid is None:

maxid=1

sgl = "INSERT INTO fo_book(id, name, dept, mobile,
type, rec_name, price, quantity, date, username)
VALUES (%s, %s, %s, %s, %s, %s, %s, %s, %s, %s)"
val = (maxid, name, dept, mobile, type1l, rec_name,
price, quantity, date, username)
mycursor.execute(sql, val)

mydb.commit()

msg="success"

else:

FROM fo_stu where

max(id)+1 FROM

20

Tarun K S. International Journal of Science, Engineering and Technology,

2025, 13:3

msg="fail"

Reports
username=session.get(‘'username’)
if request.method=="POST"
name=request.form['name’]
dept=request.form['dept']
mobile=request.form['mobile']
typel=request.form['type']
rec_name=request.form['rec_name']
price=request.form['price']
quantity=request.form['quantity']
date=request.form['date']
time=request.form['time']

now = datetime.datetime.now()
book_date=now.strftime("%B %d, %Y")
mycursor = mydb.cursor()

mycursor.execute("SELECT max(id)+1 FROM
fo_table")

maxid = mycursor.fetchone()[0]

if maxid is None:

maxid=1

sql = "INSERT INTO fo_table(id, name, dept, mobile,
type, rec_name, price, quantity, date, time,

book_date, username) VALUES (%s, %s, %s, %s, %s,
%s, %s, %S, %s, %s, %s, %s)"

val = (maxid, name, dept, mobile, type1l, rec_name,
price, quantity, date, time, book_date, username)
mycursor.execute(sql, val)

mydb.commit()

username=session.get(‘'username’)

if request.method=="POST"
name=request.form['name’]
dept=request.form['dept']
mobile=request.form['mobile']
typel=request.form['type']
rec_name=request.form['rec_name’]
price=request.form['price']
quantity=request.form['quantity']
date=request.form['date']

time=request.form['time’']

now = datetime.datetime.now()
book_date=now.strftime("%B %d, %Y")

mycursor = mydb.cursor()
mycursor.execute("SELECT
fo_table")

maxid = mycursor.fetchone()[0]
if maxid is None:

maxid=1

max(id)+1 FROM

sqgl = "INSERT INTO fo_table(id, name, dept, mobile,
type, rec_name, price, quantity, date, time,
book_date, username) VALUES (%s, %s, %s, %s, %s,
%s, %s, %s, %s, %s, %s, %s)"

val = (maxid, name, dept, mobile, type1, rec_name,
price, quantity, date, time, book_date, username)
mycursor.execute(sql, val)

mydb.commit()

no=""
user_mobile=

user_names=
mess=""

tab1 = request.args.get('type’)
cursor=mydb.cursor()

cursor.execute("SELECT * FROM fo_table WHERE
type=%s", (tab1,))

data = cursor.fetchall()

cursor.close()

act=request.args.get("act")

if act=="ok":

aid=request.args.get("aid")

cursor = mydb.cursor()

cursor.execute("update fo_table set action=1 where
id=%s",(aid,))

mydb.commit()

print("successfully accepted")

no="1"

aid=request.args.get("aid")

cursor = mydb.cursor()

cursor.execute("SELECT * FROM fo_table where id =
%s", (aid,))

datal = cursor.fetchone()

Mysql connection

mydb = mysql.connector.connect(

host="localhost",

user="root",

password="",
charset="utf8",
use_pure=True,

database="food_court"

8.2. SCREENSHOTS

21

Tarun K S. International Journal of Science, Engineering and Technology,
2025, 13:3

- o fsacen x o+ =
- © O loanomsaacd e T
FOOD COURT @ 0

Welcome To Food Court f s D~ 0@

ot ko o pobt o g s
% R QG

@.,, X0

@& o QG
<

PR - e —— =% 03

|
1
o [T q - A |
1
1

FOOD COURT &

Staff registration

& Foud cave —
Passanrd
[l mo QoK sEeR A - e]

1
O 0 sk ypes et wow i
1
[K
| FOOD COURT @ :
i 1
e bl - a8 x : Food cave :
€ 3 O (O memssm e oz : H
1
FOOD COURT @ v : :
1
1
|
Todays receipe H Februsry 14,2024 :
: Ravi - B.tech :
| | !
i 1
Choose | 1
Fio | !
i 1
i 1
| 1
i 1
{ 1

- o fsacen . =
- © O loanomsaacd e & 0a
FOOD COURT

e - o:
%, R Q-
@ - 0

@ ~ QG
<

22

Tarun K S. International Journal of Science, Engineering and Technology,

2025, 13:3

March 02,2024

Ravi- Btech
Mobdo no - B4B9S6634
Rocoipe :Beyan
Quantity:1

Status : Roady

Update

February 14, 2024

Ravi - Bech

Mobie no: 8148956634
Rocepe : Chappathi
Quantity:8

W tesscon x + =S ~ e x + = =g 0l
« OO lcanensooybookiegypes et % 02 « O O lecanestso0oat mmTtypes Lih * 02
FOOD COURT [o FOOD COURT @ bala
Our menu
Food cave

Receipe name ; Biryandchicken. mution)

Price 180

Receipe name : Parstha

Price: 20

O lcanensooybookingypes et

Horee .+

Lo o o 0 wanmsommun vempestinn * oa

Order your food

February W, 202

Ravi - B.tech
Mobile o : B14B556654
[—

- ol e =
“ G O kamasum g
FOOD COURT

Staff

Staft Lagin

> Cp= a- il Ho n - S
€ b 0 (O eamms——y * 0= T s o (0 nanesovmn mmmsetnn ® oa i
FOOD COURT ° o

Food cave

Table reservation

ad-mme vy

Fow many gusst?

“ R = L I

FOOD COURT & bala

Student

My ondess.

February &

Receipe : Chappath

23

Tarun K S. International Journal of Science, Engineering and Technology,

2025, 13:3

& Student

Studgent Login

= ol fesscon =+ - 8 x o fesacam =+ - 8 =
“ G O ks = O a LS C O oansvode ®* Oa
FOOD COURT @ FOOD COURT 0 i
Student Student
My orders

March 02, 2024 February M, 2024

Receipe : Biryani Receipe : Chappathi

Prica 180
Quantity 1

Status - Roady

Recapa nama ;Lo fatlda

Price: 120

Receipe name Choco falloda
Price: 130

- x + = o xl - asscen .+ - o x
« C O lcncasctnnadnt e kareae % 02 - © O lanmsoum L
FOOD COURT (] i FOOD COURT @ rd
Our menu
Student

2024-02-23

Receipe: Chappathi

ad-mem-yyry

He Ay uesty

- o resacan x4 - 8 x
€ 9 0 O kanoumnby wn 0a
FOOD COURT ‘

Admin

Agmin Login

|l foviton w

€ 0 O O kv % o0&

FOOD COURT ‘
Acmin

Stat registration

Staff name

Mobie no

Ernal acdress

Department

24

Tarun K S. International Journal of Science, Engineering and Technology,
2025, 13:3

HE
I,
1
1
1
[}
1
1
1
[}
1
1
1
[}
1
1
1
[}
1
1
1
[}
1
1
1
[}

FOOD COURT &

Foodcave registration

IX. CONCLUSION

In conclusion, the development of the project has
been a significant endeavor aimed at enhancing the
food ordering experience for students, staff, and
administrators within the college campus. Through
meticulous planning, design, implementation, and
testing, we have successfully created a robust and
user-friendly platform that fulfills the needs and
requirements of our users. The project has involved
the collaboration of multidisciplinary teams,
including developers, designers, testers, and
stakeholders, who have worked tirelessly to ensure
the success of the application. By leveraging
technologies such as Python, Flask, MySQL,
Bootstrap, and WampServer, we have built a scalable
and efficient solution that meets the demands of our
users while providing a seamless experience across
different devices and browsers. The project offers a
wide range of features, including user
authentication, menu browsing, order placement,
payment handling, feedback submission, and system
management, all of which have been thoroughly
tested and validated to ensure reliability and
functionality. Additionally, the application
incorporates security measures to protect user data
and privacy, as well as performance optimization
techniques to ensure a smooth user experience even
under heavy load. Overall, the completion of the
Campus Dining Web App represents a significant
milestone in our efforts to modernize and streamline
the food ordering process within the college
campus. We are confident that the application will
greatly benefit our users by providing them with a
convenient and efficient way to order food,
ultimately enhancing their overall college
experience. We are excited about the potential

impact of the Campus Dining Web App and look
forward to its successful deployment and adoption
by the college community.

X. FUTURE ENHANCEMENT

In the future, the project can undergo several
enhancements to elevate its functionality and user
experience. One pivotal advancement could be the
development of a mobile application, enabling users
to conveniently place orders from their
smartphones, thereby enhancing accessibility and
engagement. Additionally, implementing a
promotions and rewards system could incentivize
user interaction and loyalty by offering discounts,
coupons, and loyalty points for recurring orders or
referrals. Furthermore, incorporating multi-language
support would cater to a broader user base, ensuring
inclusivity and accessibility for individuals from
diverse linguistic backgrounds. These enhancements
collectively aim to fortify the Campus Dining
experience, fostering user satisfaction and
engagement.

REFERENCES

1. M. C. Boliko, "FAO and the situation of food
security and nutrition in the world", Journal of
nutritional science and vitaminology, no. 65, pp.
S4-S8, 2019.

2. B. Garske, K. Heyl, F. Ekardt, L M. Weber and W.
Gradzka, "Challenges of food waste governance:
An assessment of European legislation on food
waste and recommendations for improvement
by economic instruments", MDPI Land, vol. 9, no.
7, pp. 231, 2020.

3. A. C. Stenmarck, T. Jensen, T. Quested and G.
Moates, "FUSIONS Reducing Food Waste
through Social Innovation”, Full Report. IVL
Swedish Environmental Research Institute;
Estimates of European food waste levels, 2016.

4. C.V. Khoie and A. Soletti, "Nutritional status of
elderly in the old age homes: A study in Pune
city”, Current Research in Nutrition and Food
Science Journal, vol. 6, no. 1, pp. 234-240, 2018.

5. D.Lovesley, R. Parasuraman and A. Ramamurthy,
"Combating hospital malnutrition: Dietitian-led

25

Tarun K S. International Journal of Science, Engineering and Technology,

2025, 13:3

10.

quality improvement initiative", Clinical nutrition
ESPEN, vol. 30, pp. 19-25, 2019.

SJ. GeetinderKaur and G. Singh, "Food
Sustainability Using Wireless Sensors Networks:
Waspmote and Meshlium", (IJCSIT) International
Journal of Computer Science and Information
Technologies, vol. 5, no. 3, pp. 4466-446, 2014.
N. Salim, S. Zeebaree, M. Sadeeq, A. Radie, M.
Shukur and N. Rashid, "Study for Food
Recognition System Using Deep Learning",
Journal of Physics: Conference Series 2nd
International Conference on Physics and Applied
Sciences (ICPAS 2021), vol. 1963, May 2021.

G. Ciocca, G. Micali and P. Napoletano, "State
Recognition of Food Images Using Deep
Features”, IEEE Access, vol. 8, pp. 32003-32017,
2020.

P. Pouladzadeh and S. Shirmohammadi, "Mobile
Multi-Food Recognition Using Deep Learning",
ACM Transactions on Multimedia Computing
Communications and Applications, vol. 13, no.
3s, pp. 1-21, August 2017.

K. Yanaiand Y. Kawano, "Food image recognition
using deep convolutional network with pre-
training and fine-tuning”, 2015 IEEE
International Conference on Multimedia & Expo
Workshops (ICMEW), pp. 1-6, 2015.

26

