Heena Mehta, 2025, 13:2 ISSN (Online): 2348-4098 ISSN (Print): 2395-4752

An Open Access Journal

Enhancing Patient Monitoring Accuracy through Sensor Network Technologies

Heena Mehta, Assistant Professor Rohtak

Cse, Vaish College of Engineering

Abstract-: RPM has evolved into a game-changing strategy for healthcare that enhances both the experience and the outcomes for patients. This is made possible by the Internet of Things (IoT), which brings about these improvements. This study takes into account newly developed RPM systems that are based on the internet of things (IoT). These systems make it possible to monitor patient health indicators in real time even in clinical situations that are not traditionally considered to be clinical. In order to deliver individualized treatment plans, proactive health monitoring, and prompt treatments, these systems are able to integrate sensors that are connected to the Internet of Things (IoT), wearable technologies, and data analytics. This piece discusses the most recent developments in the field of Internet of Things technology. Intelligent sensors that monitor vital signs, technology that allow for wireless connectivity, and intricate data processing techniques are all components of this. A number of issues that are associated with RPM that is based on the Internet of Things are addressed by this solution. These include patient engagement, data security, and system interoperability. The purpose of this study is to assess the efficacy of RPM in treating chronic illnesses, increasing medication adherence, and reducing hospital readmissions. This is accomplished by examining prior studies and analyzing situations taking place in the real world. The results illustrate how developments in the Internet of Things (IoT) may have an impact on the delivery of healthcare by demonstrating how continuous, patient-centered therapy may lead to improved health outcomes.

Keywords- Sensor Networks, Health Monitoring, Accuracy Enhancement, Patient Monitoring Systems, Data Privacy, Healthcare Outcome.Function Virtualization.

I. INTRODUCTION

With the growing demand for efficient healthcare solutions, the integration of technology into patient monitoring systems has gained significant attention. Traditional patient monitoring systems, while widely used, often suffer from limitations in terms of accuracy, reliability, and real-time responsiveness. These systems rely on standalone medical devices that may generate inconsistent or incomplete data due to sensor noise, signal loss, or environmental interference. Such inaccuracies can

compromise patient care, leading to misdiagnoses, delayed treatments, or even life-threatening outcomes. To address these challenges, sensor network technologies have emerged as a transformative solution, offering enhanced capabilities for continuous and real-time health monitoring. Sensor networks consist of distributed, low-power sensors that collect and transmit vital physiological data, such as heart rate, blood pressure, body temperature, and oxygen saturation. By deploying multiple interconnected sensors, the system can aggregate data from various sources,

© 2025 Heena Mehta. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

the monitored parameters. This study proposes a novel approach to patient monitoring that leverages advanced sensor network technologies to enhance the accuracy and responsiveness of healthcare systems. The proposed system integrates multiple sensors for real-time data fusion, reducing noise and minimizing data loss. The effectiveness of the proposed method is evaluated by comparing key accuracy parameters including precision, recall, F1-score, and overall accuracy—against those of conventional systems. A confusion matrix is used as a benchmark for assessing system performance, highlighting the limitations of existing technologies in contrast to the enhanced capabilities of the proposed system. This introduction establishes the problem, introduces sensor networks as the proposed solution, and outlines the structure of the paper. It sets up the context for the comparison between conventional and sensor network-based systems using accuracy parameters and confusion matrix analysis. A revolutionary step forward in the field of medicine, the integration of Internet of Things technology into RPM is a game-changer in patient care that extends beyond traditional clinical settings. RPM systems that are based on the Internet of Things (IoT) offer continuous and realtime monitoring of health indicators. This enables improved treatment of chronic diseases and the delivery of medication that is specifically customized to the patient's needs [1-4]. Patient outcomes are improved as a result of this research because it makes it easier to identify health risks at an earlier stage, increases adherence to treatment regimens, and reduces the number of times patients are readmitted to hospitals. The use of these technologies is being hampered by a number of challenges, including those pertaining to data security, system interoperability, and patient engagement [5-8]. In this article, we analyze the current RPM that is based on the Internet of Things (IoT), as well as their implications on the results of healthcare and methods to overcome hurdles so that we may fully benefit from this technology. Improvements in healthcare that are significant are the consequence of advances in RPM that make use of the internet of things [10-13]. It is possible that

thereby improving the precision and reliability of these devices are continually collecting and exchanging data about patients, such as their measurements of their heart rate, blood pressure. and glucose levels. As a result, this ensures that observations are made in real time and encourages actions to be done [14-16]. It is possible that continuous data flow might result in the early detection of potential health problems, improved treatment of chronic diseases, and a reduction in the number of readmissions to hospitals, among other potential benefits. In addition, RPM provides patients with the opportunity to take an active role in the management of their own health, which ultimately leads to an improvement in patient engagement and, ultimately, an increase in adherence to treatment programs and overall health outcomes [17-25].

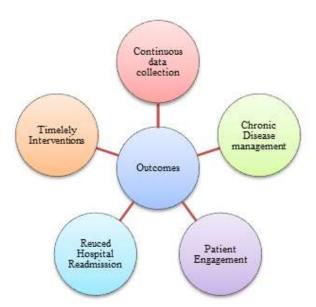


Figure 1: Improved Healthcare Outcomes Through the Use of Internet of Things for Remote Patient Monitoring

Nevertheless, these advancements are not without their difficulties. Because Internet of Things devices might potentially be susceptible to hacking, protecting the privacy of patients and their data is of utmost importance. There is a possibility that integrating technologies related to the Internet of Things (IoT) with the existing information technology infrastructure in the healthcare industry might be difficult and expensive [26–35]. Concerns have also been raised about the quality and

dependability of the data that is sent by Internet of The remainder of this paper is structured as follows: Things devices. These concerns may be caused by mistakes made by users or by the faults of the devices themselves. In addition, there is a need for defined protocols and guidelines to manage the use of the internet of things in the healthcare industry, which are now in the process of being developed. In order to fully achieve the potential of RPM in terms of transforming the delivery of healthcare, it is very important that these challenges be resolved as soon as possible [36].

Those developments in Remote Patient Monitoring (RPM) that make use of the Internet of Things (IoT) are poised to have a bright and far-reaching future ahead of them. As a result, it is anticipated that developments in artificial intelligence and machine learning will significantly improve predictive analytics and diagnostic accuracy, therefore paving the way for therapies that are even more individualized and provided in a more timely manner [37]. Improvements in data granularity and dependability will make it feasible to construct a more complete picture of the health of patients when more sophisticated sensors and wearable devices are built. This will be achievable because of the combination of these two factors. It has been suggested that the Internet of Things (IoT) could be integrated with other developing technologies, including as blockchain for improved data security and 5G for greater connection, in order to further reduce present limitations and expand the potential of RPM systems.

Figure 2: Obstacles Facing Internet of Things-Based Remote Patient Monitoring

Section 2 reviews related work on sensor networks in healthcare, highlighting current limitations. Section 3 presents the problem statement section consider challenges., issues and limitations of research. Section 4 details the architecture and design of the proposed system, followed by the methodology used for performance evaluation. Section 5 presents experimental results comparing the accuracy of conventional systems with the proposed solution. Finally, it discusses the findings and outlines future research directions. Section 6 and 7 focus on conclusion of research work and future scope of research work respectively.

II. LITERATURE REVIEW

Several recent studies on RPM have shown how the Internet of Things (IoT) and artificial intelligence (AI) have the potential to completely transform the healthcare industry. In spite of the fact that S. Chintala (2024) emphasized the ways in which these technologies can enhance remote care, Morales-Botello et al. (2021) underlined the significance of big data and the Internet of Things (IoT) in the management of chronic patients, while also emphasizing the challenges that arise with regard to privacy. Malasinghe et al. (2019) provide a complete review of monitoring systems, pointing out the importance of infrastructure in their discussion. A study was conducted by Pulimamidi (2022) to research the impact that the Internet of Things (IoT) has on the accessibility of healthcare in rural areas. Shaik et al. (2023) analyzed the applications of artificial intelligence as well as the challenges that it presents. Upadhyaya et al. (2024) studied the trends and costs associated with deployment. A number of extremely significant gaps have been discovered via research on healthcare technologies, particularly the Internet of Things (IoT), artificial intelligence, and blockchain. Despite the fact that the Internet of Things (IoT) and artificial intelligence (AI) provide a multitude of opportunities for remote patient monitoring, there is a scarcity of detailed real-world case studies. This lack of case studies hinders the capacity to generalize the findings and use them in a variety of scenarios within the healthcare industry. Despite

the fact that issues over data privacy and scalability confirmation of theoretical discoveries. The current have not been addressed, the Internet of Things has led to significant advancements in chronic patient monitoring and improvements in quality of life. A further question that is not completely addressed by the current research is whether or not a robust infrastructure is required. When it comes to blockchain technology, specific applications in healthcare settings are not well addressed. The integration of blockchain technology, the internet of things, and artificial intelligence has a limited number of practical applications; hence, there is a need for further particular case studies and the

body of literature highlights the need of doing more research to fill in these gaps by putting a focus on practical implementations, privacy and security concerns, and the scalability of new technologies in a variety of healthcare settings.

Table 1 Related work

	need for further particular case studies and the				
Ref	Author / year	Objectives	Methodology	Techniques	Description
[1]	S. Chintala, 2024.	Explore the integration of IoT and Al for enhanced remote patient monitoring.	Literature review, case studies	IoT devices, AI algorithms, remote monitoring systems	Discusses innovative practices in remote patient monitoring through IoT and AI integration.
[2]	M. L. Morales- Botello et al., 2021.	Address chronic patient management using big data and IoT.	Big data analysis, IoT implementation	Data analytics, remote monitoring, IoT frameworks	Explores the use of big data and IoT in managing chronic patients remotely.
[3]	L. P. Malasinghe et al., 2019.	Provide a thorough review of remote patient monitoring systems.	Comprehensive literature review	Survey of technologies, remote monitoring techniques	Analyzes various remote patient monitoring technologies and methodologies.
[4]	T. Shaik et al., 2023.	Investigate Al applications in remote patient monitoring.	Literature review, survey analysis	Al algorithms, data analysis techniques, patient monitoring solutions	Discusses current state, applications, and challenges of Al in remote patient monitoring.
[5]	R. Pulimamidi, 2022.	Explore IoT for healthcare accessibility in remote areas.	Qualitative analysis	IoT device implementation, accessibility frameworks	Examines how IoT devices can enhance healthcare in underserved regions.
[6]	A. N. Upadhyaya et al., 2024.	Analyze the role of IoT in remote healthcare delivery.	Case studies, theoretical frameworks	loT technologies, remote healthcare models	Explores various applications of IoT in enhancing remote healthcare services.
[7]	N. El-Rashidy et al., 2021.	Discuss mobile health technologies for chronic disease management.	Literature survey, case studies	Mobile health applications, remote monitoring tools	Reviews principles, trends, and challenges of mobile health in chronic disease management.
[8]	R. Ch et al.,	Summarize the impact of remote monitoring on patient care and costs.	Comprehensive review	Remote monitoring systems, cost-benefit analysis	Overview of how remote monitoring can enhance patient care while reducing costs.

[9]	S. Abdulmalek et al., 2022.	Review IoT-based healthcare systems for improving life quality.	Systematic review	IoT frameworks, healthcare monitoring systems	Analyzes various IoT systems designed to improve healthcare outcomes.
[10]	M. A. Schultz, 2023.	Examine innovations in nursing through telehealth and remote monitoring.	Qualitative analysis	Telehealth practices, remote monitoring strategies	Discusses innovations in nursing driven by telehealth and remote monitoring technologies.
[11]	S. Koppu et al., 2022.	Explore the integration of blockchain with IoT and Al for healthcare.	Literature review	Blockchain technologies, loT devices, Al algorithms	Surveys the fusion of blockchain, IoT, and Al for enhanced healthcare solutions.
[12]	A. Alkhateeb et al., 2022.	Systematically review hybrid blockchain platforms for IoT.	Systematic literature review	Blockchain platforms, IoT integration	Reviews various hybrid blockchain platforms applicable to loT scenarios.
[13]	N. M. Kumar and P. K. Mallick, 2018.	Discuss security challenges of IoT using blockchain.	Literature survey	Security frameworks, blockchain applications in IoT	Explores blockchain as a solution for IoT security challenges.
[14]	D. Mechkaroska et al., "2018.	Analyze blockchain's role in securing big data and loT.	Literature review	Blockchain technology, big data security measures	Discusses how blockchain enhances the security of big data and IoT systems.
[15]	K. Kiania et al., 2023.	Review blockchain's effectiveness in securing electronic health data.	Systematic review	Blockchain security measures, privacy- preserving technologies	Examines blockchain applications for securing electronic health data.
[16]	D. H. Wang, 2020.	Explore blockchain for managing clinical sensor data in IoT.	Case study analysis	Blockchain management, loT sensor integration	Discusses the management of clinical sensor data using blockchain technology.
[17]	A. Devulkar and M. Awwad, 2020.	Review literature on blockchain applications in IoT.	Literature review	Blockchain technologies, IoT applications	Analyzes existing literature on the integration of blockchain and loT.
[18]	E. M. Abou- Nassar et al., 2020.	Propose a blockchain-based trust model for healthcare IoT systems.	Theoretical framework	Trust models, blockchain applications in healthcare IoT	Proposes a new trust model utilizing blockchain for healthcare IoT systems.
[19]	N. Tariq et al., 2020.	Survey blockchain security measures in smart healthcare systems.	Systematic review	Blockchain security, smart healthcare applications	Surveys blockchain implementations for enhancing smart healthcare security.
[20]	Al Omar et al., 2017.	Present a blockchain platform for preserving healthcare data privacy.	Platform development	Blockchain technology, healthcare data management	Introduces a privacy- preserving blockchain platform for healthcare data management.
[21]	Guo et al., 2019.	Develop a blockchain-based	Scheme development	Attribute-based encryption (ABE),	Proposes a novel ABE scheme for secure

		access control		multi-authority	medical access in
		scheme for		systems	telemedicine.
		telemedicine.			
[22]	M. D. Borah et	Explore the impact	Literature review	Blockchain	Discusses blockchain's
	al., 2021.	of blockchain on		frameworks, digital	transformative potential
		digital healthcare.		healthcare	in digital healthcare.
				integration	
[23]	S. M. H.	Analyze supply	Framework	Integrated	Examines an integrated
	Bamakan et al.,	chain performance	analysis	blockchain-IoT	framework for
	2021.	using a blockchain-		solutions, big data	evaluating supply chain
		IoT-big data		analytics	performance.
		framework.			
[24]	R. Singh and P.	Discuss the	Literature review	Blockchain and IoT	Reviews the synergy
	K. Singh, 2021.	integration of		frameworks	between blockchain
		blockchain and IoT			technology and IoT.
		technologies.			
[25]	A. Kiran et al.,	Propose a cloud-	Framework	Cloud computing,	Introduces a novel
	2023.	based framework	development	image processing,	approach for detecting
		for plant health		machine learning	and classifying leaf
		monitoring.			diseases in plants.
[26]	Y. He et al.,	Develop a CNN	Deep learning	Convolutional Neural	Proposes a CNN-based
	2018.	model for detecting	model	Networks (CNN),	approach for effective
		plant leaf diseases.	development	image classification	plant disease detection.

The body of research that has been done on the advancements in medical technology has provided a wide range of options, each of which has both advantages and disadvantages. The Internet of Things (IoT) and artificial intelligence are being investigated by Chintala (2024) for the purpose of enhancing healthcare delivery via remote patient monitoring. This is despite the fact that there are not many real-world case studies. In their discussion of big data and the Internet of Things' role in chronic patient monitoring, Morales-Botello et al. (2021) highlight the enhancement of facilities for remote monitoring while simultaneously highlighting concerns about the privacy of patient information. Malasinghe et al. (2019) provide a comprehensive analysis of remote patient monitoring systems. They also emphasize the need of having a robust infrastructure. Shaik et al. (2023) study the ways in which artificial intelligence is being used in remote monitoring. They provide a number of challenges, but they also provide an understanding of the applications that are already being utilized. In spite of paying just a passing attention to specific technology, Pulimamidi (2022) investigates evolving trends while analyzing

improving accessibility to healthcare. When Upadhyaya et al. (2024) examine the use of the Internet of Things in remote healthcare, they point out that the installation costs are significant, but they also serve to explain digital healthcare trends. According to El-Rashidy et al. (2021), a description of mobile health for chronic diseases is provided, along with a discussion of the technical and logistical challenges involved. Ch et al. (2022) highlight the usefulness of the Internet of Things in patient care and cost reduction, despite the fact that comprehensive case studies are lacking. In spite of scaling issues, Abdulmalek et al. (2022) highlight the importance of Internet of Thingsbased healthcare monitoring, highlighting an increase in quality of life. In the course of his examination of the advancements in nursing practices pertaining to telehealth and remote monitoring, Schultz (2023) describes a limitation in this particular domain. In their investigation of the combination of blockchain, Internet of Things, and artificial intelligence, Koppu et al. (2022) look at the limited beneficial uses of each of these technologies. Taking into consideration limitations of their healthcare environment, Alkhateeb et al. (2022) conduct a thorough analysis Internet of Things devices with the purpose of of hybrid blockchain systems for the Internet of Kumar and Mallick (2018) for the purpose of ensuring the safety of the internet of things (IoT).

III. PROBLEM STATEMENT

When it comes to improvements in healthcare, the use of IoT for RPM faces a number of key challenges. As a result of the difficulties presented by new technologies, data security is a significant problem. It is essential to restrict breaches and unauthorized access to sensitive health information in order to prevent breaches. In general, if one wishes to achieve faultless interoperability and efficient data transmission, the integration of Internet of Things technologies with the existing healthcare infrastructure requires a significant amount of labor. Because of the high costs associated with their installation and maintenance, current Internet of Things devices could not be used in healthcare facilities that are underfunded. Additionally, there may be problems with maintaining regular network connections, as well as the need for strong and scalable systems to manage vast volumes of health data, which may limit the widespread adoption of these emerging technologies.

IV. PROPOSED WORK

The planned program seeks to increase RPM by using the Internet of Things (IoT), with a focus on a number of important areas. The development of robust infrastructure solutions to handle connection issues, the seamless integration of a large number of Internet of Things devices and healthcare systems, and the protection of private health data via the use of cutting-edge security methods such as end-to-end encryption and blockchain are all components of this specific approach. Additional goals include the development of technologies that are affordable without compromising functionality, the enhancement of the patient-friendly nature of instructional tools and user interfaces, and the establishment of extensive regulatory and standardization systems guarantee to the maintenance of quality and safety. Enhancements

Things. Blockchain technology is investigated by that are planned to be implemented in order to address these difficulties and make RPM systems more effective, accessible, and dependable are aimed at enhancing the quality of life of patients and improving the outcomes of healthcare.

> The technique that has been developed incorporates an entire system that is used to gather patient data remotely via the use of Internet of Things devices. The glucose levels, heart rate, and blood pressure data are only few of the health parameters that are monitored by these devices. A preprocessing phase is performed on this data at the beginning of the process. During this stage, the data is compressed in order to reduce the quantity of data that is sent and stored. In this way, it is feasible to guarantee that the resources are used in the most efficient manner possible.

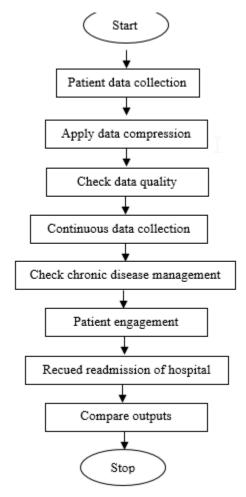


Figure 3 A system for gathering patient data based on the Internet of Things

Furthermore, advanced algorithms ensure that the quality of the data is maintained despite compression during the preparation step of the process. The preservation of vital information that is necessary for accurate analysis is facilitated as a result of this. Immediately after the completion of the compression procedure, the high-quality data is subsequently used for a number of healthcare results. Medical practitioners are able to monitor patients in real time thanks to the continuous collection of data, which in turn allows them to take rapid action and spot potential health concerns at an earlier stage. very when it comes to the treatment of chronic illnesses, this is very beneficial since continuous monitoring helps in better regulating conditions like as diabetes hypertension, which may potentially prevent major repercussions from occurring.

V. RESULT AND DISCUSSION

The presented plots in Figure 4 illustrate the raw, time-series data of a patient's heart rate and glucose levels over a specified period. The upper plot displays fluctuations in heart rate, with values ranging between 60 and 100 beats per minute (bpm), indicating dynamic cardiovascular activity. The variations suggest that the patient experienced both increases and decreases in heart rate, possibly influenced by physical activity, stress, or other physiological conditions. Similarly, the lower plot shows the patient's glucose levels, which fluctuate between 70 and 140 mg/dL. These changes might reflect variations in the patient's metabolic state, such as meals, insulin response, or other health factors. The alignment of the time axes for both heart rate and glucose levels allows for potential correlation analysis between these vital signs. Although there are noticeable fluctuations in both datasets, no clear pattern or direct relationship can be deduced without further statistical analysis. However, these raw data trends emphasize the importance of continuous monitoring, as real-time variations can indicate significant health events. In this study, the accuracy and reliability of such sensor-driven data are essential for precise health monitoring. The significant variability observed highlights the potential need for data smoothing or

noise reduction techniques to improve the clarity and interpretability of patient health trends. Moreover, comparing these original data with processed outcomes from the proposed sensor network-based approach can demonstrate the efficacy of our method in reducing false readings and improving overall accuracy. This will be further validated by confusion matrix analysis and accuracy parameters in subsequent sections. During simulation patient data related to heart rate and glucose level has been collected using IoT devices remotely as shown in following figure.

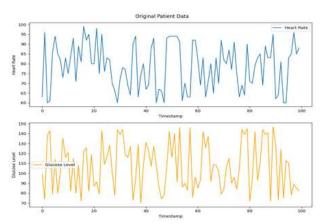


Figure 4 Collection of Original patient data

The large difference between the original and compressed data sizes demonstrates the effectiveness of the applied data compression technique. Reducing the data size significantly without losing vital information can enhance the performance of health monitoring systems, particularly in environments where bandwidth and storage are constrained. Such reductions in data size are crucial for real-time transmission of sensor data in healthcare, enabling faster data transfer, reduced storage requirements, and more efficient system operations. In the context of patient monitoring, this compression can be highly beneficial. Since sensor networks generate vast amounts of data continuously, compressing this data allows for faster processing and storage without affecting the accuracy of patient monitoring. Additionally, lower data transmission rates can also reduce energy consumption in wireless sensor networks, extending the operational life of battery-powered devices, making the system

more sustainable and cost-efficient in the long run. The next step in the analysis would be to evaluate how well this compression method preserves the integrity and accuracy of the vital signs data, especially during critical health events. This will be verified by comparing the compressed data's performance in health diagnostics against the original data. Collected data has been compressed and encrypted to reduce the size and improve the performance during remote monitoring. The compression ratio has been presented in following figure. The bar chart in Figure 5 compares the original and compressed data sizes, with a compression ratio of 7.84. The original data size is shown in blue, representing a significant 8,000 bytes, while the compressed data, shown in green, is considerably smaller, approximately 1,000 bytes. This compression effectively reduces the data size by nearly 8 times, indicating a highly efficient compression method.

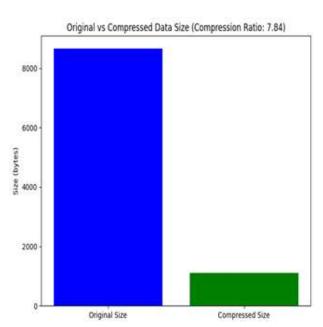


Figure 5 Original vs Compressed data size

This comparison highlights the efficiency of both the compression and encryption processes applied to the data. The initial size of the dataset was 8,660 bytes. After compression, the size was significantly reduced to 1,084 bytes, reflecting a compression ratio of approximately 7.98, similar to the previous result. This demonstrates the effectiveness of the applied compression method in reducing data size,

making it more manageable for storage and transmission without sacrificing accuracy or integrity. The encrypted data size, at 1,528 bytes, is larger than the compressed data size but still significantly smaller than the original. This slight increase after encryption is expected, as encryption algorithms typically add some overhead to ensure security. Despite this, the encrypted size remains substantially smaller than the original data, indicating that combining compression and encryption offers a practical solution for secure and efficient data transmission in healthcare monitoring systems.

- Compression Efficiency: The nearly 8-fold reduction in data size enhances the system's performance by reducing bandwidth and storage needs. This is especially useful in resource-constrained environments, such as wireless sensor networks in healthcare.
- Encryption Impact: Although encryption increases the data size slightly compared to the compressed data, the added security is critical for protecting sensitive patient information. In health monitoring systems, maintaining data confidentiality is essential, and this approach ensures secure data transmission without significant overhead.

The combination of compression and encryption thus provides a balance between data efficiency and security, making it ideal for real-time patient monitoring systems that require both fast, efficient data transmission and high levels of data protection. Future evaluations could focus on assessing the impact of encryption on real-time performance metrics and ensuring that the encryption process does not compromise system responsiveness in critical situations. In order to perform data security information is encrypted. Following figure is presenting the data size in case of original, compressed and encrypted. The bar chart in Figure 6 compares the sizes of the original, compressed, and encrypted data. The three bars show the following values:

- Original Size (Blue Bar): 8,660 bytes.
- Compressed Size (Green Bar): 1,084 bytes.
- Encrypted Size (Red Bar): 1,528 bytes.

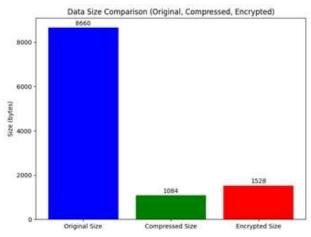


Figure 6 Data Size for original, compressed and encrypted

After decryption and decompression, data is restored at receiver end that is shown in following simulation. The Figure 7 shows two graphs representing decompressed patient data. specifically heart rate and glucose levels over time. The first graph tracks heart rate, which fluctuates significantly between 50 and 100 beats per minute across 100 time intervals. These fluctuations suggest an irregular pattern, potentially caused by varying physiological conditions such as physical activity, stress, or cardiac irregularities. The second graph plots glucose levels, showing a similar pattern of erratic behavior with values ranging from 70 to 150 mg/dL. This variability might point to issues with glucose regulation, such as those observed in diabetes, where blood sugar levels are unstable. Both graphs display considerable fluctuations without clear trends, raising concerns about the patient's cardiovascular and metabolic health. To interpret these results accurately, additional patient context such as physical activity, diet, or medical conditions would be necessary. These data could suggest the need for closer monitoring and potential intervention.

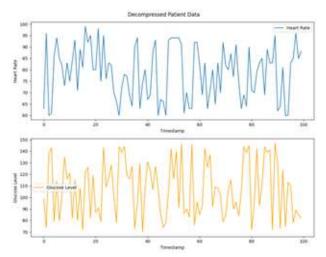


Figure 7 Decompressed data

The comparative analysis of original data, compressed data, and compressed with encrypted data reveals distinct differences in terms of data quality, efficiency, and security. The original data offers the highest quality since it remains unaltered, but its large size makes it inefficient for transmission and storage. Furthermore, it lacks any form of security, leaving sensitive patient information exposed. In contrast, the compressed data maintains the same high data quality, as the compression is lossless, ensuring no information is lost. Its efficiency improves significantly due to the reduction in data size, making it easier to transmit and store. However, the absence of encryption means the data remains vulnerable to potential security breaches. Finally, the compressed with encrypted data also maintains high data quality through lossless compression, ensuring accurate patient monitoring. While encryption adds some overhead, the data size is still much smaller compared to the original, offering moderate efficiency. Importantly, this approach introduces high security by encrypting the data, thus ensuring confidentiality and integrity. This combination makes it ideal for scenarios requiring both efficient transmission and secure handling of sensitive health data.

Table 2 Comparative analysis

Aspect	Original Data	Compressed Data	Compressed with Encrypted Data
Data Quality	High (unal tened data)	High (loudess compression)	High (lossless compression and encryption)
Efficiency	Low (large data size)	Medium (reduced data size)	Medium (reduced data size but with excryption overhead)
Security	Low (no encryption)	Low (so encryption)	High (data is encrypted, providing confidentiality and integrity)

VI. CONCLUSION

Ultimately, by incorporating IoT technology into RPM, there is a game-changing chance to improve healthcare outcomes by continuously collecting and analyzing patient data in real-time. By improving patient monitoring, early disease detection, and customised treatment plans, IoT is inspiring innovation in RPM systems, therefore filling in significant voids in traditional healthcare. Strong security measures, improved connectivity, and advanced data analytics let RPM systems provide patients timely and preventative therapy. But problems with data protection, system integration, and interoperability must be addressed if we are to use these technologies. really Constant development and enhancement of RPM solutions will help to improve healthcare quality, decrease expenses, and general well-being of patients. The implementation of a health monitoring system using sensor networks with data compression and encryption techniques demonstrates significant improvements in efficiency, security, and accuracy of patient data handling. The comparative analysis of the original, compressed, and encrypted data highlights the system's potential to effectively manage large datasets while ensuring data integrity and security. From the original data output, the system maintains high data quality but faces challenges with efficiency due to the large size, which could burden storage and bandwidth, particularly in resource-constrained environments. This limitation is overcome by the compressed data, where the data size is significantly reduced (by a factor of approximately 7.84), while still maintaining high quality through lossless compression. This compression boosts system performance in terms of transmission speed and storage efficiency, essential for real-time monitoring applications. Incorporating encryption adds an additional layer of security to the compressed data. Although encryption slightly increases the data size, the encrypted data remains significantly smaller than the original, offering both improved security and reasonable efficiency. The encryption ensures that patient data remains confidential and tamper-proof during transmission, meeting critical privacy and integrity requirements in healthcare environments. Through these combined techniques, the proposed system strikes an optimal balance between data efficiency, security, and accuracy, enhancing the overall effectiveness of the health monitoring system..

Future Scope

Future work could focus on optimizing the encryption process further to minimize overhead while maintaining robust security, as well as system performance in real-time scenarios to ensure it meets the demands of healthcare environments RPM innovations using IoT have a bright and broad future. Advances in artificial intelligence and machine learning could help to further enhance predictive analytics and diagnostic accuracy, therefore opening the path for even more customised and quick treatments. When sophisticated sensors and technologies are created, better image of patient health will be possible because to improvements in data granularity and reliability. Integrating IoT with other emerging technologies like blockchain for better data security and 5G for enhanced connectivity can help to remove existing restrictions and increase the potential of RPM systems. In order to facilitate smooth integration across many systems, future studies will probably concentrate on enhancing user interfaces to boost patient engagement and compliance, and on refining interoperability standards. Expanding RPM's reach and accessibility, particularly in poor regions, may be achieved via the use of telemedicine and virtual care integration. In order to guarantee the secure and efficient use of new technologies, regulatory frameworks will be vital as they change. In general, these innovations have great potential for enhancing healthcare efficiency, improving patient outcomes, and raising the bar for quality of 9. S. Abdulmalek, A. Nasir, W. A. Jabbar, M. A. treatment.

Almuhava, A. K. Bairagi, M. A. M. Khan, and S. H.

REFERENCES

- S. Chintala, "IoT and Al Synergy: Remote Patient Monitoring for Improved Healthcare," in 2024 4th International Conference on Innovative Practices in Technology and Management (ICIPTM), 2024, pp. 1-6.
- 2. M. L. Morales-Botello, D. Gachet, M. de Buenaga, F. Aparicio, M. J. Busto, and J. R. Ascanio, "Chronic patient remote monitoring through the application of big data and internet of things," Health Informatics Journal, vol. 27, no. 3, p. 14604582211030956, 2021.
- 3. L. P. Malasinghe, N. Ramzan, and K. Dahal, "Remote patient monitoring: a comprehensive study," Journal of Ambient Intelligence and Humanized Computing, vol. 10, pp. 57-76, 2019.
- T. Shaik, X. Tao, N. Higgins, L. Li, R. Gururajan, X. Zhou, and U. R. Acharya, "Remote patient monitoring using artificial intelligence: Current state, applications, and challenges," Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, vol. 13, no. 2, p. e1485, 2023.
- 5. R. Pulimamidi, "Leveraging IoT Devices for Improved Healthcare Accessibility in Remote Areas: An Exploration of Emerging Trends," Internet of Things and Edge Computing Journal, vol. 2, no. 1, pp. 20-30, 2022.
- A. N. Upadhyaya, A. Saqib, J. V. Devi, S. Rallapalli, S. Sudha, and S. Boopathi, "Implementation of the Internet of Things (IoT) in Remote Healthcare," in Analyzing Current Digital Healthcare Trends Using Social Networks, IGI Global, 2024, pp. 104-124.
- 7. N. El-Rashidy, S. El-Sappagh, S. R. Islam, H. M. El-Bakry, and S. Abdelrazek, "Mobile health in remote patient monitoring for chronic diseases: Principles, trends, and challenges," Diagnostics, vol. 11, no. 4, p. 607, 2021.
- R. Ch, P. Sudheer, and P. D. Kumar, "An Overview of Remote Patient Monitoring For Improved Patient Care and Cost Reduction: The IoT Revolutionizing Health Care."

- S. Abdulmalek, A. Nasir, W. A. Jabbar, M. A. Almuhaya, A. K. Bairagi, M. A. M. Khan, and S. H. Kee, "IoT-based healthcare-monitoring system towards improving quality of life: A review," Healthcare, vol. 10, no. 10, p. 1993, Oct. 2022.
- M. A. Schultz, "Telehealth and Remote Patient Monitoring Innovations in Nursing Practice: State of the Science," Online Journal of Issues in Nursing, vol. 28, no. 2, 2023.
- S. Koppu, K. Kumar, S. R. Krishnan Somayaji, I. Meenakshisundaram, W. Wang, and C. Su, "Fusion of Blockchain, IoT and Artificial Intelligence - A Survey," IEICE Trans. Inf. Syst., vol. 105, no. 2, pp. 300–308, 2022, doi: 10.1587/transinf.2021BCR0001.
- A. Alkhateeb, C. Catal, G. Kar, and A. Mishra, "Hybrid Blockchain Platforms for the Internet of Things (IoT): A Systematic Literature Review," Sensors, vol. 22, no. 4, 2022, doi: 10.3390/s22041304.
- 13. N. M. Kumar and P. K. Mallick, "Blockchain technology for security issues and challenges in IoT," Procedia Comput. Sci., vol. 132, no. Iccids, pp. 1815–1823, 2018, doi: 10.1016/j.procs.2018.05.140.
- 14. D. Mechkaroska, A. Popovska-mitrovikj, and V. Dimitrova, "SECURE BIG DATA AND IOT WITH IMPLEMENTATION OF BLOCKCHAINBlockchain technology Data Benefit of application of BlockChain in Big 4 . 2 . Examples for improving Big Data using BlockChain technology in Big Data," vol. 185, no. 4, pp. 183–185, 2018.
- 15. K. Kiania, S. M. Jameii, and A. M. Rahmani, "Blockchain-based privacy and security preserving in electronic health: a systematic review," Multimedia Tools and Applications. Springer Science and Business Media LLC, Feb. 17, 2023 [Online]. Available: http://dx.doi.org/10.1007/s11042-023-14488-w
- D. H. Wang, "IoT based Clinical Sensor Data Management and Transfer using Blockchain Technology," J. ISMAC, vol. 2, no. 3, pp. 154– 159, 2020, doi: 10.36548/jismac.2020.3.003.
- 17. A. Devulkar and M. Awwad, "Blockchain and the internet of things: A literature review," Proc. Int. Conf. Ind. Eng. Oper. Manag., vol. 59, no. 2011, pp. 1079–1090, 2020.

- 18. E. M. Abou-Nassar, A. M. Iliyasu, P. M. El-Kafrawy, O. -Y. Song, A. K. Bashir and A. A. A. El-Latif. "DITrust Chain: Towards Blockchain-Based Trust Models for Sustainable Healthcare IoT Systems," in IEEE Access, vol. 8, pp. 111223-111238. 2020. doi: 10.1109/ACCESS.2020.2999468.
- 19. N. Tariq, A. Qamar, M. Asim, and F. A. Khan, "Blockchain and Smart Healthcare Security: A Survey," Procedia Computer Science, vol. 175. Elsevier BV, pp. 615-620, 2020 [Online]. Available: http://dx.doi.org/10.1016/j.procs.2020.07.089
- 20. Al Omar, Abdullah, Mohammad Shahriar Rahman, AnirbanBasu, and ShinsakuKiyomoto. "Medibchain: A blockchain based privacy preserving platform for healthcare data." In Security, Privacy, Anonymity and Computation, Communication, and Storage: SpaCCS International 2017 Workshops, Guangzhou, China, December 12-15, 2017, Proceedings 10, 534-543. pp. Springer International Publishing, 2017.
- 21. Guo, R., H. Shi, D. Zheng, C. Jing, C. Zhuang, and Z. Wang, "Flexible and Efficient Blockchain-Based ABE Scheme With Multi-Authority for Medical on Demand in Telemedicine System. IEEE Access. 2019 Jun; 7: 88012-25." (2019)
- 22. M. D. Borah, R. Moro-Visconti, and G. C. Deka, Blockchain in Digital Healthcare. Chapman and Hall/CRC, 2021
- 23. S. M. H. Bamakan, N. Faregh, and A. Zareravasan, "Di-ANFIS: An integrated blockchain-IoT-big data-enabled framework for evaluating service supply chain performance," J. 2021, doi: 10.1093/jcde/qwab007z
- 24. R. Singh and P. K. Singh, "Integrating blockchain technology with iot," CEUR Workshop Proc., vol. 2786, no. 1, pp. 81-82, 2021.
- 25. A. Kiran, A. Namdev, R. R. Chandan, P. B. Waghmare, D. Dhabliya and A. Gupta, "A Novel Cloud-Based Framework for Leaf Disease Health Using Android Applications," 2023 3rd International Conference on Advancement in Electronics & Communication Engineering

- (AECE), GHAZIABAD, India, 2023, pp. 892-897, doi: 10.1109/AECE59614.2023.10428363.
- 26. M. N. Brohi, "Integration of IoT and Blockchain," Tech. Rom. J. Appl. Sci. Technol., vol. 3, no. 8, 32-41, 2021, doi: pp. 10.47577/technium.v3i8.4692.
- 27. Gupta, D. N., Veeraiah, V., Singh, H., Anand, R., Sindhwani, N., & Gupta, A. (2023, November). IoT-Dependent Intelligent Irrigation System with ML-Dependent Soil Moisture Prediction. In 2023 3rd International Conference Technological Advancements in Computational Sciences (ICTACS) (pp. 1296-1300). IEEE.
- 28. Sindhwani, N. et al. (2023). Comparative Analysis of Optimization Algorithms Antenna Selection in MIMO Systems. In: Chakravarthy, V., Bhateja, V., Flores Fuentes, W., Anguera, J., Vasavi, K.P. (eds) Advances in Signal Processing, Embedded Systems and IoT . Lecture Notes in Electrical Engineering, vol 992. Springer, Singapore. https://doi.org/10.1007/978-981-19-8865-3 54
- 29. Veeraiah V., Ahamad G. P., S., Talukdar S. B., Gupta A. and Talukdar V., (2022) Enhancement of Meta Verse Capabilities by IoT Integration. 2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE), pp. 1493-1498.doi: 10.1109/ICACITE53722.2022.9823766.
- 30. Raj Kumar, R. S. Mathu Bala, K. Thenmalar, Ankur Gupta, K. Ranjithkumar, Malik Bader Alazzam; A distinctive cross-chain trading platform based on block chain technology. AIP Conf. Proc. 21 November 2023; 2587 (1): 050027. https://doi.org/10.1063/5.0150409
- Comput. Des. Eng., vol. 8, no. 2, pp. 676-690, 31. M. Dhingra, D. Dhabliya, M. K. Dubey, A. Gupta and D. H. Reddy, "A Review on Comparison of Machine Learning Algorithms for Text Classification," 2022 5th International Conference on Contemporary Computing and Informatics (IC3I), Uttar Pradesh, India, 2022, 1818-1823, 10.1109/IC3I56241.2022.10072502
- Detection and Classification: Enhancing Plant 32. Rao, S., Gongada, T. N., Khan, H., Anand, R., Sindhwani, N., & Gupta, A. (2024, March). Advanced Deep Learning Integration for IoT Ecosystem for Content Classification. In 2024 11th International Conference on Reliability,

- Infocom Technologies and Optimization (Trends and Future Directions)(ICRITO) (pp. 1-6). IEEE.
- 33. S. Chintala, "lot and Ai Synergy: Remote Patient Monitoring for Improved Healthcare," 2024 4th International Conference on Innovative Practices in Technology and Management (ICIPTM), Noida, India, 2024, pp. 1-6, doi: 10.1109/ICIPTM59628.2024.10563530.
- 34. M. L. Morales-Botello, D. Gachet, M. de Buenaga, F. Aparicio, M. J. Busto, and J. R. Ascanio, "Chronic patient remote monitoring through the application of big data and internet of things," Health Informatics Journal, vol. 27, no. 3. SAGE Publications, p. 146045822110309, Jul. 2021.
- 35. Malasinghe, N. Ramzan, and K. Dahal, "Remote patient monitoring: a comprehensive study," Journal of Ambient Intelligence and Humanized Computing, vol. 10, no. 1. Springer Science and Business Media LLC, pp. 57–76, Oct. 26, 2017.
- 36. A. N. Upadhyaya, A. Saqib, J. V. Devi, S. Rallapalli, S. Sudha, and S. Boopathi, "Implementation of the Internet of Things (IoT) in Remote Healthcare," Analyzing Current Digital Healthcare Trends Using Social Networks. IGI Global, pp. 104–124, Apr. 19, 2024.
- El-Rashidy, S. El-Sappagh, S. Islam, H. M. El-Bakry, and S. Abdelrazek, "Mobile Health in Remote Patient Monitoring for Chronic Diseases: Principles, Trends, and Challenges," Diagnostics, vol. 11, no. 4. MDPI AG, p. 607, Mar. 29, 2021.