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Abstract- Diabetes prevalence is rising globally, demanding better management and treatment strategies. The
use of artificial intelligence (Al), particularly Multi-Agent Systems (MAS), in healthcare is increasingly utilized.
Multiple agents are used by MAS to gather information assist physicians and assist patients in managing their
diabetes. This review article aims to explore the use of MAS in the treatment of diabetes. We looked for research
on MAS and diabetes using the PRISMA guidelines, searching popular databases such as PubMed, IEEE Xplore,
and ScienceDirect. We examined and evaluated studies that used MAS for diagnosis, treatment support,
monitoring, and patient self-care after implementing inclusion and exclusion criteria. Our findings suggest that
MAS can improve personalized treatment plans help patients stay engaged in their own care and improve the
precision of diabetes diagnosis. However, there are still issues like data privacy system complexity and the need

for real-world testing. This review shows how MAS can improve diabetes management and patient engagement.
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The aging population poor dietary habits modern
l. INTRODUCTION lifestyles and decreased physical activity are some of
the factors contributing to the rising prevalence of
diabetes (IDF, 2021). This emphasizes how important
it is to improve disease diagnosis monitoring and
management techniques.
The medical field now has more opportunities thanks
to recent technological advancements especially in

Millions of individuals worldwide suffer from
diabetes mellitus, a chronic illness (IDF, 2021). In
2021 the age-standardized prevalence of diabetes
was 6 percent worldwide with higher rates seen in
the Middle East and North Africa (International

Diabetes Federation [IDF], 2021). When the body is .the applica’Fion of artificial intelligence (Al to
unable to regulate blood sugar levels diabetes improve patient care. Computers can now process

. . . o large amounts of health data and use Al to make
develops which can result in serious complications

like kidney failure heart disease nerve damage and well-informed decisions (liang et al, 2017). Among

vision loss (World Health Organization [WHO, 2021). the different areas of artificial intelligence Multi-
Agent Systems (MAS) have become a popular
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method for managing challenging tasks in dynamic
settings. MAS are composed of multiple intelligent
agents that exchange information communicate and
collaborate to resolve problems (Shakshuki & Reid,
2015).

MAS can support diabetes care through lifestyle
management  real-time  patient  monitoring
personalized treatment plans and early diagnosis.
Agents in a MAS for example can gather information
from wearable technology identify irregular glucose
patterns suggest treatments and remind patients
about following their dietary or medication regimens
(Diabetes Technology Society, 2020). These systems
are particularly useful in remote healthcare
environments where continuous monitoring and
automated decision-making can help both patients
and healthcare professionals.

Multi-Agent Systems (MAS) driven by artificial
intelligence (Al) have shown promising potential in
enhancing patient outcomes when used in diabetes
treatment. For instance 32 adults with type 2
diabetes participated in a randomized controlled
trial conducted by Nayak et al. (2023). The time to
optimal insulin dose was found to be significantly
shorter for participants who used a voice-based
conversational Al application (median 15 days vs. 56
days) as well as insulin compliance (83 percent vs.
50%) compared to those in this randomized clinical
trial who were given standard care.

While considering the application of MAS, the
challenges associated with data security and privacy
must be addressed before MAS Al systems are
implemented in the healthcare industry. Patients
must give their express consent before any data
processing can start in jurisdictions like the European
Union where adherence to the General Data
Protection Regulation (GDPR) is mandatory. Likewise
adherence to the Health Insurance Portability and
Accountability Act

(HIPAA) is necessary for the protection of patient
data in the United States. By employing HIPAA-
compliant technologies and gaining participants
informed consent certain MAS platforms like the
voice-based Al system utilized in the Managing
Insulin with Voice Al (MIVA) have integrated these
regulations.

Although the use of Multi-Agent Systems (MAS) in
diabetes care have been proposed in several studies,
there is currently no systematic review that compiles
the various ways in which these systems are applied
and their challenges. By reviewing existing studies on
MAS in diabetes management this paper seeks to
close that knowledge gap. It looks at the various
MAS architectures commonly employed in diabetes
care and focuses on how MAS can support patient
monitoring diagnosis treatment and self-care.

2020 PRISMA (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses) guidelines
by Page et al.,, 2021 are adhered to in this review in
order to guarantee a transparent and high-quality
research process. It aims to give researchers,
healthcare providers and technology developers
useful information about the state of MAS in
diabetes care today. In addition, it responds to the
research question: How can type 2 diabetes be
diagnosed and managed more efficiently using
Multi-Agent Systems (MAS) to enhance patient
outcomes and healthcare efficiency?

Il. METHODOLOGY

To guarantee thorough and transparent reporting
this review was carried out in accordance with the
PRISMA 2020 guidelines (Page et al, 2021).
Compiling and summarizing research on the
application of Multi-Agent Systems (MAS) in
diabetes care was the aim.

Finding studies on the use of MAS in diabetes
treatment was the aim of the review. The process
followed PRISMA guidelines to ensure that the
selection extraction and analysis of studies were
transparent and systematic.

IEEE Xplore, PubMed, and ScienceDirect were the
three databases that were thoroughly searched.
Included in the search were articles published from
2010 to 2025. Among the search terms used are
artificial intelligence, multi-agent systems, MAS
healthcare system, and diabetes. Boolean operators
(AND, OR) were used to combine these terms.
Peer-reviewed studies published between 2010 and
2025 were eligible for inclusion. Studies were only
included if they were in English involved human
subjects and concentrated on the application of MAS
in diabetes management. Articles published before
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2010 were excluded. Also, articles not related to
diabetes or MAS Al were also excluded.

The results of the search were imported into
reference  management software and duplicate
articles were removed. To determine if they met the
inclusion requirements the abstracts and titles were
independently screened. After that, full-text
publications were obtained and further investigated.
A standardized form was used to extract important
data from each study such as the study title, authors,
year of publication, study design, Al/ML model, the
use of MAS Al in diabetes management, and the
main findings. With an emphasis on the various
applications of MAS in diabetes care as well as the
MAS AI/ML tools used was condensed into a
narrative format as represented in table 2.0

The study selection process is depicted in the
PRISMA 2020 flow diagram which provides an
overview of how studies were located evaluated and
included in the review.

I1l. RESULTS

A total of 308 records were retrieved from the
original database search. There were still 204 unique
studies after duplicates were removed. Based on the
set inclusion and exclusion criteria, 116 studies were
removed during title screening and 19 more during
abstract review. Out of the remaining 88 papers
evaluated, 43 studies satisfied all eligibility criteria
that were included in this review.

Fig. 1 depicts the complete selection procedure.

Eight key domains for Multi-Agent Systems (MAS) to
be used in diabetes diagnosis and treatment were
determined after a qualitative analysis of the studies.
These areas show how MAS technology can help
provide diabetes patients with more precise effective
and personalized care.

The use of MAS to support personalized treatment
plans is crucial in the management and treatment of
diabetes. To forecast blood sugar levels and modify
insulin dosages these systems analyze patient data
in real time. The use of MAS in this field was the
subject of 19 out of the 43 included studies.

In the diagnostic and imaging domain MAS aids in
improving the accuracy of medical imaging
instruments used to identify diabetes-related

disorders. According to Avanzo et al. (2021), this
involves analyzing data from scans such as MRIs and
retinal images which can aid in the early
identification of problems. There were eight studies
done in this area.

Another important domain is health monitoring
systems. Here MAS uses wearable technology such
as continuous glucose monitors to continuously
measure blood sugar levels. When blood glucose
levels become unstable these systems can notify
patients and caregivers allowing for quicker
interventions (Vettoretti et al., 2020). Three studies
addressed this topic.

Through predictive modeling MAS forecasts the
onset of diabetes or its complications based on
patient histories and datasets. These models can
help with better treatment planning and early
prevention strategies (Nomura et al., 2021). Thirty-
three studies investigated this area.

Applications in public health are another area where
MAS are utilized to create risk prediction tools for
large populations. Strategies to prevent stroke or
other diabetes-related conditions can be guided by
these tools (Guan et al., 2023). In this context MAS
was covered in eight studies.

Systems that help patients choose healthier foods
and lifestyles are included in the Lifestyle and Diet
Management domain. Based on patient habits and
medical information MAS can personalize dietary
recommendations (Li et al., 2020). Fifteen studies
addressed the use of MAS in this area.

Another important area in which MAS helps medical
professionals is in clinical decision support where it
sorts and analyzes patient data to recommend the
best treatment choices. Clinical decisions can
become more accurate and data-driven with the
help of these systems (Alowais, 2023). There were 22
studies that addressed this domain.

Lastly systems that assist patients in continuing to
participate in their own care are referred to as Patient
Engagement and Self-Management. Reminders
patient progress tracking and advice on how to
improve treatment plan adherence can all be
provided by MAS-based apps and platforms (Karan,
2023). This domain was covered by twenty studies.
Overall, medical professionals can also benefit from
MASs assistance in clinical decision support where it
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sorts and evaluates patient data to suggest the best
course of action. Figure 2 and the Appendix Table
display the eight domains that were identified. The
eight identified domains are shown in Figure 2 and
the Appendix Table. While Table 1 displays the

Identification

Table 1: This table lists the eight areas where MAS
Al improves diabetes care along with the number of
studies covered by each of the 43 papers that were
chosen.

Screening

distribution of studies across these domains. Figure ~ Domain Number of studies
3 details the specific contributions of MAS in the : — discussing each
treat t of diabet Developing Predictive Models 33
reatment ot diabetes. Enhancing Clinical Decision Making 22
Patient Engagement and Self-management 20
Fig. 1. PRISMA flowchart of study selection and  Diabetes Management and Treatment 19
inclusion procedure Lifestyle and Dietary Management 15
ocorce ot trom Public Health Interventions 8
Databases (n = 3: ) — — _ Diagnostics and Imaging Technologies 8
Ul n= ecords remove jore screening:
ScumceDm‘aclln: !;91 4-| Duplicate records (n = 104) ¢ Health Monitoring Systems 3
|IEE Xplore (n = 59)
Regislers (n = 308)
‘ Recz::t ;cor:)ensd Recc&:d: t]a:rg;.lm ‘
‘ Reports 5::;g.halé?r retrieval Hemﬂ(s“r:mlI ;;}Ineuzd ‘
l A Reporls excluded:
Reports assessed for eligbility Not experimental (n = 18
{ n=69) N“lu'l‘“:‘g:‘”[)m""; ""1= 333 ® Developing Predictive Models ® Enhancing Clinical Decision Making

g New studies included in review
3 (n=43)
Diabetes Management and

Treatment: Al personalizes diabetes
treatment and insulin dosing.

Diagnostic and Imaging
Technologies: Al improves
accuracy in diabetes-related
medical imaging.

Public Health Interventions: Al
develops tools for assessing and
preventing diabetes complications.

Prevention, Lifestyle & Dietary
Management: Al customizes dietary
and lifestyle advice for diabetes.

Al for

Diabetes

Health Monitoring Systems: Al
enhances real-time glucose
monitoring and alerts.

Developing Predictive Models: Al
forecasts diabetes progression and
treatment responses.

Enhancing Clinical Decision-
Making: Al informs and refines

Patient Engagement and Self-
Management: Al tools boost patient
involvement in diabetes care.

Fig. 2. Eight Domains in which MAS Al Enhances
Diabetes Management (Khalifa and Albadawy, 2024).

® patient Eng: and Self 8¢ Diabetes M. it and Treatment

® |ifestyle and Dietary Management ® public Health Interventions

® Diagnosis and Imaging Technologies ® Health Monitoring Systems

Fig.3. MAS Al Contribution to Diabetes
Management based on the selected studies.

Monitoring
Agent

A oB): @ Communication
'Q’ @&  Agent

Diagnostic Advisory
Glucose Agent Agent
sensor
Mobile Patient
device

Fig. 4. Depicts interaction between core agents in
MAS applications for management of diabetes.
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Table 2: Author and Year of Publication, Outcome
Measures, Population/Participants, Sample Size,
Intervention/Exposure, and Findings.

S Author and Aim Population/ Sample  Intervention/ Outcome AlL/ML Findings

N Year Participants  Size Exposure Measures Model

1 Roberts et al., To check the DME 570 Anti-VEGF Changes in  Deep The presence of

2021 volumetric patients treatment fluid volume, Learning sub-retinal fluid

changes acuity Algorithms was linked to a
intra-retinal lower baseline
and sub- visual acuity but
retinal  fluid a good response
in the DME to treatment
in the course according to
of anti-VEGF automated fluid
treatment segmentation in
using  deep diabetic macular
learning. edema.

2 Hong et al, To create a Patients with 1716 Urinalysis and  Prediction of  Artificial A model based

2021 predictive upper urinary ultrasonograph  urosepsis Neural on artificial

model for  tract calculi y Network intelligence
urosepsis risk (ANN) learning was
in  patients able to
with  upper accurately
urinary tract predict the risk
calculi of urosepsis in

patients with

upper urinary

tract calculi.
3 Abrahametal., To identify Patients 24 Anti-VEGF OCT imaging  Optical Identified
2021 biomarkers having therapy biomarkers coherence biomarkers that
predicting diabetic expression of  tomography connect cytokine
response  to cytokines machine expression and
learning OCT phenotype
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anti-VEGF in  muscular augmented to predict how
DME edema segmentation  diabetic macular

platform edema patients
will respond to
antivascular
endothelial
growth  factor
treatment.

4 Sunetal., To Type 2 61 Endurance Insulin Dietary- Used a
investigate diabetic exercise and  resistance, based Al continuous
how insulin  middle-aged supplementati plasma management glucose
resistance in  adults on of vitamin  lipidome solution monitoring
T2D is D system and an
influenced by Al-based dietary
exercise and management
vitamin D solution to

examine the
effectiveness of
a digitally
integrated

healthcare

platform in
patients with
type 2 diabetes.

5 Nimri et al, To compare Youths with 108 AI-DSS  for Time within  Artificial An  automated

2020 how Type 1 insulin target glucose Intelligence- artificial
physicians Diabetes adjustment range based DSS intelligence (Al)
and AI-DSS decision support
youths  with system for
type 1 optimizing
diabetes insulin  dosage
adjust insulin was safe and
dosages successful in
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within  the treating type 1
target glucose diabetes in
range  (Al- young people.
DSS)
6 Sampedro et Toutilize ML  Patients with 263 Not specified Stent Different ML Stent restenosis
al., 2020 to predict  stent restenosis classifiers in patients
stent implantation prediction following
restenosis percutaneous
coronary
intervention was
predicted by a
machine
learning  model
that performed
better than
current scores.
7 Unsworth et  To assess the  Type 1 37 Insulin dosing  Glycemic Case-based Insulin bolus
al., 2023 ABC4D Diabetic ABC4D control reasoning doses can be
system  for adults system techniques safely adjusted
insulin bolus with the
doses in T1D Advanced Bolus

Calculator  for
Type 1 Diabetes
(ABC4D) which
also offers the
same degree of
glycemic control
as the
nonadaptive

bolus calculator.
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8 Moyen et al.,
2022

9 Benhamou et

10

al., 2019

Zhao et., 2022

To evaluate
the app
Keenoas
dietary
assessment
validity  in
comparison

to ASA24.

To evaluate
the
effectiveness
of digital
health  care
platforms
with Al-
based dietary
management

for T2D

Utilizing
ultrasound
imaging
examine how
a
comprehensi
ve  nursing
plan affects

patients with

Adults  with
or  without
diabetes
Type 1
diabetic
adults

Patients with
diabetic
kidney

disease

136

68

44

Keenoa  app
for dietary

tracking

DBLG1 hybrid
closed-loop

system

Comprehensiv

e nursing plan

Reported

intake of

nutrients and

energy

Glucose target
range
hypoglycemic

episodes

Quality of life,
renal function
and

complication.

Al enhanced

app

Machine
Learning-
based

algorithms

K non-local-
means
filtering
algorithm for

ultrasound i

When
comparing the
energy
macronutrient
and
micronutrient
intakes of
diabetics  and
healthy adults to
ASA24 showed
moderate to
strong validity

according to the

Keenoa app

The DBLG1
system is
superior to

sensor-assisted
insulin pumps in
terms of glucose
control and
closed-loop

insulin use.

Patients with

diabetic kidney

disease can
benefit  greatly
from nursing

interventions
that help them
improve and

control their
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diabetic renal  function
kidney and ultrasound
disease. images that
employ a clever
algorithm  are
able to recognize
this
dynamically.
11 Duetal,2022 To evaluate Patients with 64 PDCA home Home nursing Fuzzy C- FCM algorithm
the impact of  diabetic nursing efficacy and means detected
Fmri nephropathy nursing clustering activation
UNDER Al satisfaction algorithm regions in fMRI
on diabetic images more
nephropathy effectively
home nursing reducing  error
and aiding in
diagnosis.  for
food
identification..
12 Alfonsi et al. To test the Type 1 22 iSpy Accuracy of  Machine The high
2020 app’s diabetic carbohydrate carbohydrate learning for  acceptability of
usability and  youth counting app counting, food iSpy a new app
effect on HbALc levels identification  for counting
carbohydrate carbohydrates
counting supports its use
accuracy in the treatment
of young
individuals with
type 1 diabetes.
13 Han et al, To evaluate DME 96 Deep learning  Quality of 3D-CNN The diagnostic
2022 the patients 3D MRI  image, accuracy of

effectiveness convolutional diabetic macular

of a deep neural network edema was
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14 Reddy et al,
2019

15 Liuetal., 2020

16  Oikonomou et

al., 2022

learning
algorithm in
diagnosing
Diabetic
Macular
Edema

(DME)

To develop
algorithms to
predict
exercise-
related
hypoglycemi

ainT1D

To test
exercise-
induced
alterations in
gut
microbiota
and their
impact on
glucose

homeostasis

To develop
an ML-based
tool for

personalized

ASCVD

(3D-CNN)

algorithm  for

MRI images

Type 1 43 Not specified
diabetic

adults

Pre-diabetic 39 Exercise

men

Type 2 4327 Canagliflozin
diabetic

patients

and diagnostic

accuracy.

Hypoglycemia
prediction
during

exercise

Glucose
homeostasis,
insulin

sensitivity

Major adverse
cardiovascular

events

Decision tree
and random

forest models

Machine-
learning

algorithm

Extreme
gradient
boosting

algorithm

greatly increased
by deep learning
algorithm-based

MRI.

Two algorithms
for  predicting
hypoglycemia in
adults with Type
1 Diabetes
during physical
activity  were
developed and

evaluated.

Changes in the
gut microbiota
brought on by
exercise  were
linked to insulin
sensitivity and
glucose

homeostasis in

prediabetes.

The ability to
biosynthesize

short-chain fatty
acids was
improved in
responders. A

decision support
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effects of tool based on
canagliflozin machine

learning to
customize  the
benefits of
canagliflozin for
type 2 diabetes
patients with
atherosclerotic
cardiovascular
disease
(ASCVD) was
created.

17  Zouetal., 2024 To check the Pre-diabetic 2,558 Lifestyle Reversal ~ of  Machine Patients’
effects of  patients and/or prediabetes learning response to
stratifying pioglitazone and model different
prediabetes intervention progression of  (XGBoost) interventions
patients by diabetes were  affected
diabetes when they were
progression stratified by
risks on their diabetes
response  to progression risks
interventions using a machine

learning-based
model for
prediabetes.

18 Nayak et al, Examine the Type 2 32 Voice-based Optimal Conversation ~ Comparing

2023 efficacy of a  diabetic Al application insulin dose, al Al voice-based
voice-based patients for insulin  adherence, application conversational
Al management glycemic Al to standard
application in control care the results
insulin showed

titration significant
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improvements in
time to optimal
insulin dose
insulin
adherence
glycemic control
and  emotional
distress  related
to diabetes.
19 Varga et al, To compare Prediabetic 2590 Not applicable  Incident Machine NMR-derived
2021 the individuals diabetes learning biomarkers did
discriminativ algorithms not improve
e utility of diabetes risk
various discrimination
biomarkers over
for diabetes conventional
prediction risk factors.
20  Faruqui et al., To predict Type 2 10 Mobile health  Prediction of Long short- Future glucose
2020 daily glucose diabetic lifestyle data blood glucose term levels in patients
levels in  patients level memory- with  type 2
T2DM based based RNNs diabetes  were
on lifestyle accurately
data predicted by a
deep  learning
model based on
mobile  health
data.
21  Wet et al, To evaluate General 8,501 Environmental ~ Prediction of Random Diabetes
2022 the use of population chemical diabetes forest, mellitus was
environmenta exposure LASSO accurately
I chemical regression predicted by
exposure in environmental

predicting chemical



Desmond Afoakwa. International Journal of Science, Engineering and Technology,

2025, 13:1

22 Popp et al,
2022

23  Wang et al,
2023

diabetes

mellitus

To compare
the

effectiveness
of a
personalized
diet vs a low-
fat diet for
weight loss in
adults  with

abnormal

glucose

To develop
and validate
an ML-based
prediction
model for
heart failure
risk in
patients with
prediabetes

or diabetes

Adults with 204 Personalized Weight  loss,
abnormal diet vs low-fat  body

glucose diet composition
metabolism

and obesity

Middle-aged 54 Not applicable  Heart failure

and older risk prediction
individuals
with

prediabetes

or diabetes

Machine
learning

algorithm

Various ML
algorithms,
including
random

forest

exposure
dynamics and
machine

learning

highlighting the
predictive power
of common
environmental
chemicals  for
complex

diseases.

At six months a
customized diet
aimed at
lowering the
postprandial
glycemic
response did not
lead to more

weight loss than

a low-fat diet.

The risk of heart

failure in US
people with
diabetes or

prediabetes was
accurately
predicted by a
machine

learning model.
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24

25

26

27

Chauhan et al.,

2021

Avari

2021

et al,

Ashrafi et al.,

2021

Sarici

2023

et al,

To Individuals

investigate a

with elevated

functional HbAlc
ingredient for

glucose

regulation in

prediabetes

To assess the  Type 1
safety and diabetic
efficacy of individuals
the PEPPER

system  for
personalized

bolus advice

in type 1

diabetes

To assess  Morbidly
postprandial obese
glucose patients
concentration  undergoing
s in patients  surgery
post-bariatric

surgery

To Patients with
investigate diabetic

quantitative

Not NRT_NOG51J
specifie  supplementati
d on

54 PEPPER

system for

bolus advice
17 RYGB or

OAGB surgery
44 Aflibercept

injection  or

Glycated Al

hemoglobin ingredient

levels discovery

reduction

Glycemic Case-based

outcomes, and  reasoning Al

safety

Glucose Machine

concentrations  learning

, carbohydrate  model

intake

Changes in  Machine

UWFA learning-
enabled

Al was used to
find a useful pea
ingredient  that
was
demonstrated to
lower HbAlc in
pre-diabetic

individuals.

While the
PEPPER

Adaptive Bolus
Advisor and
Safety  System
was safe it had
no effect on type
1 diabetes
glycemic

outcomes when
compared to

control.

Explored the use

of machine
learning to
model

postprandial
glucose levels in
obese  patients
undergoing
gastric  bypass

surgery.

Quantitative
ultra-wide field

angiographic

10
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28

29

Khorraminezh

ad etal., 2021
Joshi et al,
2023

UWFA
parameters in
DME

treatment

To
investigate
the effect of
high  dairy
intake on gut
microbiota

and insulin

resistance

To evaluate
the effect of
DT-enabled

personalized

nutrition on
T2D and
MAFLD

macular

edema

Adults  with
hyperglycem

ia

Patients with

T2D

combined 1AI/
nesvacumab
10 High dairy
intake
319 Personalized

meal plans by

Al

parameters, feature

OCT metrics extraction
Gut Machine
microbiota learning
composition, analyses
insulin

resistance

Change in  Digital Twin
HbAlc, liver technology
fat scores

parameters  for
diabetic macular
edema eyes
treated with 1Al
with or without
nesvacumab

significantly

improved.

In hyper-
insulinemic
individuals,
dairy
consumption
negatively
correlates  with
insulin
resistance  and
changes the gut

microbiotas

composition.

Patients  with
type 2 diabetes
who  received
individualized

nutrition enabled
by digital twins
saw a significant
improvement in
fatty liver
disease linked to

metabolic

dysfunction.

11
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30 Saux et al,
2023

31 Popp et al,
2019

32  Seethaler etal.,

2022

To develop a
model for
predicting
individual 5-
year weight
loss
trajectories

after bariatric

surgery

To evaluate
two dietary
interventions

for  weight

lossin T2D

To determine
if the
Mediterranea
n diet, via
SCFAs,
improves
intestinal
barrier

integrity

Post-bariatric
surgery

patients

Individuals
with
prediabetes

and T2D

Women with
intestinal
barrier

impairment

10,231

Not
specifie

d

260

Bariatric
surgery
(different

types)

Low-fat diet
and
personalized
diet using ML

algorithm

Mediterranean

diet

5-year weight
loss

trajectories

Changes in
energy
expenditure,
body weight,
and

composition

SCFA
concentrations
, intestinal

permeability

LASSO,
CART

algorithms

Machine
learning  for
dietary

response

Machine-
learning

algorithm

A machine
learning-based
calculator
successfully
forecasted  the
weight
trajectories of a
multinational
cohort five years
following

bariatric surgery.

Two dietary
interventions
were used: a
customized diet
based on a
machine-
learning
algorithm and a
low-fat  diet.to
help people with
prediabetes and

type 2 diabetes

lose weight.

By  producing
short-chain fatty
acids the
Mediterranean
diet  improved
the intestinal
barriers

integrity.

12



Desmond Afoakwa. International Journal of Science, Engineering and Technology,

2025, 131

33

34

35

Oikonomou et

al., 2022

Zhang et al.,

2022

Habes et al.,

2023

To define
personalized
cardiovascula
r benefits of
intensive
systolic

blood
pressure

controll

To create an
algorithm for
machine

learning that
will forecast
the likelihood
that  young
adults  with
Type 1

Diabetes will

neglect their

self-
management.
To assess

brain age and

AD-like
atrophy in
adults  with

Patients with  Not Intensive

hypertension  specifie  systolic blood
d pressure
control
Adolescents Not Momentary
with Type 1  specifie  assessment
Diabetes d data, blood
glucose data
Type 1 416 Not applicable
diabetic
adults

Prediction of
cardiovascular

events

Self-
management

behaviors

Cognitive
performance,
brain age, and

atrophy

XGBoost

algorithm

Machine
learning-
based
filtering

architecture

Machine
learning
indices  for

brain age

By  applying
machine
learning to

clinical trial data
it was possible to
successfully
customize  the
cardiovascular
benefits of
rigorous systolic
blood pressure
control in
patients with or
without type 2

diabetes.

Machine
learning showed
promise in
forecasting type
1 diabetes self-
management
when combined
with  short-term

assessment data.

The study
indicates  that
people with

Type 1 Diabetes

who do not
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36  Khanji et al,
2019

37  Gastaldelli
al., 2021

type 1
diabetes.
To look into

therapeutic
target
prediction
models  for
patients with
cardiovascula
r disease who
have
dyslipidemia
and

hypertension.

To
understand
the effect of
PPAR-y
agonists  on
steatohepatiti

sin NASH

Patients with
hypertension,
dyslipidemia,

diabetes

NASH

patients

870

55

Not specified

PPAR-y
agonists

(pioglitazone)

Achieving
therapeutic

targets

Hepatic/vis
al
adiponectin

levels

cer

fat,

Lasso
regression,
machine

learning

Machine
learning

techniques

exhibit early
symptoms of
Alzheimer’s-
related
neurodegenerati
on may have an
accelerated rate

of brain aging...

Found five
process

indicators  that

have good
predictive
validity for

intermediate
outcomes
pertaining to the
prevention  of
cardiovascular

disease.

In NASH
patients the
histological

benefits of
PPAR-y action
are mediated by
improved fat
distribution

reduced visceral
fat and elevated

adiponectin.
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38 Park et al,
2020

39 Lopez et al,
2019

40  Leeetal., 2023

To evaluate
digital
healthcare
platform with
Al-based
dietary
management
for adults
with type 2

diabetes

To forecast
and
understand
the response
to intensive
insulin
therapy in

early type 2

diabetes

To evaluate
an integrated
digital health

care platform

Type 2
diabetic

adults

Adults  with
early type 2

diabetes

Type 2
diabetic

adults

284

24

294

Digital
healthcare
platform with
Al-based
dietary

management

Short-term
intensive

insulin therapy

health care
platform with

Al-based

Change in
HbAlc,

weight loss

Beta-cell
function,
postprandial
glucose

responses

Glycemic
control, and

weight loss

Al-based
dietary
management

solution

Random
survival
forest and

Cox models

Al-driven
dietary

management

Evaluated how
well a digitally
integrated
healthcare
platform treated
patients with
type 2 diabetes
using an Al-
based  dietary
management
tool and a
continuous
glucose

monitoring

system.

Identified
potential the
pathophysiologi
c elements
affecting the
reversibility — of
beta-cell
dysfunction and
identified
possible
responders  to
intensive insulin
therapy in early

type 2 diabetes.

Adults with type
2 diabetes who
used an Al-

driven  dietary
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41

42

Ben-Yacov et

al., 2023

Wang et al,

2022

with Al-
based dietary
management
for type 2

diabetes

To assess a
digital health
care platform
that
combines Al-
powered type
2 diabetes
dietary

management.

To evaluate
the role of
MRI data
characteristic
S in
evaluating

compound

skin graft

dietary

management

Prediabetic 200 Personalised

adults postprandial
targeting diet

VS.

Mediterranean

diet
Patients with 78 Compound
diabetic foot skin graft
treatment

Microbiome
composition,
cardiometabol

ic markers

Healing time,
recurrence

rate, scar score

Machine
learning  for
diet response

prediction

KNL-Means
filtering
algorithm for

MRI

management
system in
conjunction with
an integrated
digital health
care  platform
observed

improved

glycemia  and

increased weight

loss.

Supported  the
idea that the gut
microbiota plays
a role in
controlling how
dietary
modifications
affect  cardio-
metabolic
outcomes which
in turn helps to
reduce

comorbidities in

pre-diabetes.

With the use of
deep  learning
algorithms and
additional
reference
information

from MRI image

data
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treatment for

diabetic foot

43 Rein et al, To Newly 23
2022 investigate diagnosed
the effects of  Type 2
a diabetic
personalized adults

postprandial-

targeting diet

on glycemic
control in
T2DM

characteristics
the effectiveness
of  compound
skin
transplantation
for diabetic foot

can be assessed.

Personalized Glycemic Machine Glycemic
postprandial- measures, learning control was
targeting diet metabolic algorithm better with
health personalized
parameters diets based on
glycemic
response
prediction in

individuals with
newly diagnosed
type 2 diabetes
than  with a

Mediterranean-

style diet.

IV. DISCUSSION

The purpose of this systematic review was to
investigate the use of Multi-Agent Systems (MAS) in
the diagnosis and treatment of diabetes particularly
type 2. The ability of MAS to handle massive volumes
of data support early diagnosis and customize care
for each patient has drawn interest in the healthcare
industry. According to the reviewed studies MAS can
significantly enhance the effectiveness and quality of
diabetes care when paired with techniques like data
analysis.

One of MAS main advantages is its ability to gather
and assess data from multiple sources such as
patient reports electronic health records and blood
glucose monitors to support better diagnosis and
treatment decision-making (Huang et al, 2023;
Contreras and Vehi, 2018; Vettoretti et al., 2020). For
example Li et al. (2020), demonstrated how MAS
could provide patients with real-time guidance and
instruction for managing chronic conditions like
diabetes. In addition Nomura et al. and Guan et al.
(2021), discovered that through large-scale health
data analysis MAS can assist in the detection of
complications such as diabetic retinopathy and
kidney disease enhancing patient outcomes and
early intervention.
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Support for individualized care is another important
advantage of MAS. Unlike conventional fixed
treatment plans these systems are adaptable enough
to modify to each patient’s condition lifestyle and
response to treatment (Rein et al., 2022; & Popp et
al, 2022). This flexibility is essential for type 2
diabetes management as each patient's unique
disease progression and health status require a
personalized course of treatment. Joshi et al. for
instance, in 2023, demonstrated that blood sugar
levels in individuals with both diabetes and fatty liver
disease were improved by a MAS intended to aid
with nutrition. According to other research food-
related MAS improved long-term control and
lessened blood sugar swings (Ben-Yacov et al., 2023
& Lee et al,, 2023).

Additionally MAS are essential in enabling patients
to take charge of their own health care. These
systems use real-time data to give patients
recommendations on diet exercise and insulin use
(Karan, 2023; Alowais et al.,, 2023; & Park et al., 2020).
Zhang et al. (2022), and Avari et al. (2021), discovered
that MAS assisted patients in controlling their blood
sugar levels and preventing crises. Additionally
research indicates that younger individuals with type
1 diabetes who utilized these systems expressed
greater satisfaction and improved treatment plan
adherence (Alfonsi et al., 2020).

However, a number of challenges must be addressed
before MAS can be applied extensively in clinical
settings. According to research, many MAS are still
in the research stage and have not yet been put to
the test in actual hospital settings (Contreras and
Vehi, 2018; Tahir & Farhan, 2023). This limits the
findings applicability and raises doubts about their
reliability and usefulness. Concerns have also been
raised regarding these systems usability data privacy
and compatibility with current medical equipment
(Bajwa et al., 2021). It is also difficult to approve and
widely adopt these systems since there are no clear
standards for assessing their performance and safety
(Salinari et al., 2023).

It is also a problem how much patients and medical
professionals can trust these systems particularly
when it comes to making important medical
decisions. Although MAS can provide useful
recommendations some experts are concerned that
a reliance on these systems may compromise clinical

judgment by healthcare providers or patient-
physician trust (Davenport & Kalakota, 2019).
Maintaining human expertise at the forefront of
healthcare while using MAS for decision support will
require striking a balance.

This reviews studies demonstrated that the majority
of Multi-Agent Systems (MAS) used to manage
diabetes had a well-defined structure with distinct
roles for each agent. Figure 4 shows the relationship
between the primary agent types frequently found in
MAS applications for diabetes management. First,
the Monitoring Agent gathers information from a
variety of sources including glucose sensors and
mobile devices. This data is analyzed by the
Diagnostic Agent to look for patterns or early
warning signs of issues. Using this analysis the
Advisory Agent creates personalized
recommendations that are sent to the patient
through  the  Communication  Agent.  This
coordinated  architecture  supports  patient
engagement and ongoing adaptive care.

Despite challenges MAS has shown promise in
helping healthcare providers by automating
repetitive tasks identifying health risks and
suggesting treatments (Nomura et al., 2021; Hong et
al, 2023 & Wang et al., 2023). This can reduce the
workload for clinicians enhance the quality of care
and enable more effective use of medical resources.
This review concludes by pointing out that MAS may
enhance diabetes diagnosis and treatment. Better
results in the treatment of diabetes may result from
MASs integration of various data sources
individualized treatment and patient empowerment.
More research in practical settings is necessary to
address present issues and ensure that these
systems can be safely and effectively used in clinical
practice.

V. CONCLUSION

The review highlights how Multi-Agent Systems
(MAS) can improve the diagnosis and treatment of
diabetes especially type 2. There is great potential for
enhancing diagnostic accuracy enabling
individualized treatment plans and equipping
patients with self-management resources through
the integration of MAS into diabetes care. By
analyzing complex data from various sources MAS

2



Desmond Afoakwa. International Journal of Science, Engineering and Technology,

2025, 131

enables more accurate decision-making and offers
patients individualized treatments that meet their
particular requirements. There are still significant
challenges to be addressed in spite of these
advantages. To validate the results of recent studies
and guarantee the dependability of the systems in
clinical practice further research is essential
especially in real-world contexts. In order to address
concerns regarding patient privacy and system
compatibility strong data security and privacy
protocols are essential as is seamless integration
with existing healthcare systems. In order to
guarantee the safety and efficacy of MAS
applications over time it is also essential to establish
unambiguous regulatory frameworks and conduct
ongoing monitoring.

Cross-disciplinary cooperation will be essential to
the development of MAS technology. To create tools
that are not only technically sound but also useful
and in line with the realities of clinical care healthcare
professionals researchers and legislators must
collaborate. Ensuring healthcare personnel have the
required training to effectively use MAS and
communicate its benefits and drawbacks to patients
is also essential to the successful deployment of
these systems

Despite continuing obstacles MAS integration into
diabetes care holds great promise for improving
patient outcomes and streamlining healthcare
delivery. Increased interdisciplinary collaboration in
research and a focus on patient-centered design
could make these systems a significant component
of modern healthcare offering diabetics more
effective care.
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