Desmond Afoakwa, 2025, 13:2 ISSN (Online): 2348-4098 ISSN (Print): 2395-4752

An Open Access Journa

Multi-Agent System Applications in the Diagnosis of Diabetes: A Systematic Review

Desmond Afoakwa 1,2, Koshechkin Konstantin 3, Daniel Kofi Boakye 4

- 1. Department of Epidemiology and Evidence-based Medicine, First Moscow State Medical University named after I.M. Sechenov, Moscow, Russia
- 2. Faculty of Health Sciences, University of the People, Pasadena, USA
- 3. Center for Digital Medicine, First Moscow State Medical University named after I.M. Sechenov, Moscow, Russia
- 4. Department of Epidemiology and Evidence-based Medicine, First Moscow State Medical University named after I.M. Sechenov, Moscow, Russia

Corresponding Author: Desmond Afoakwa, adesmond.gh@gmail.com/desmond.afoakwa@uopeople.edu

Abstract- Diabetes prevalence is rising globally, demanding better management and treatment strategies. The use of artificial intelligence (AI), particularly Multi-Agent Systems (MAS), in healthcare is increasingly utilized. Multiple agents are used by MAS to gather information assist physicians and assist patients in managing their diabetes. This review article aims to explore the use of MAS in the treatment of diabetes. We looked for research on MAS and diabetes using the PRISMA guidelines, searching popular databases such as PubMed, IEEE Xplore, and ScienceDirect. We examined and evaluated studies that used MAS for diagnosis, treatment support, monitoring, and patient self-care after implementing inclusion and exclusion criteria. Our findings suggest that MAS can improve personalized treatment plans help patients stay engaged in their own care and improve the precision of diabetes diagnosis. However, there are still issues like data privacy system complexity and the need for real-world testing. This review shows how MAS can improve diabetes management and patient engagement. Keywords Multi-Agent System, Diabetes, Artificial Intelligence, Diagnosis, Management

I. INTRODUCTION

Millions of individuals worldwide suffer from diabetes mellitus, a chronic illness (IDF, 2021). In 2021 the age-standardized prevalence of diabetes was 6 percent worldwide with higher rates seen in the Middle East and North Africa (International Diabetes Federation [IDF], 2021). When the body is unable to regulate blood sugar levels diabetes develops which can result in serious complications like kidney failure heart disease nerve damage and vision loss (World Health Organization [WHO], 2021).

The aging population poor dietary habits modern lifestyles and decreased physical activity are some of the factors contributing to the rising prevalence of diabetes (IDF, 2021). This emphasizes how important it is to improve disease diagnosis monitoring and management techniques.

The medical field now has more opportunities thanks to recent technological advancements especially in the application of artificial intelligence (AI) to improve patient care. Computers can now process large amounts of health data and use AI to make well-informed decisions (Jiang et al., 2017). Among the different areas of artificial intelligence Multi-Agent Systems (MAS) have become a popular

© 2025 Md. Rakibul Hassan. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

method for managing challenging tasks in dynamic settings. MAS are composed of multiple intelligent agents that exchange information communicate and collaborate to resolve problems (Shakshuki & Reid, 2015).

MAS can support diabetes care through lifestyle management real-time patient monitoring personalized treatment plans and early diagnosis. Agents in a MAS for example can gather information from wearable technology identify irregular glucose patterns suggest treatments and remind patients about following their dietary or medication regimens (Diabetes Technology Society, 2020). These systems are particularly useful in remote healthcare environments where continuous monitoring and automated decision-making can help both patients and healthcare professionals.

Multi-Agent Systems (MAS) driven by artificial intelligence (AI) have shown promising potential in enhancing patient outcomes when used in diabetes treatment. For instance 32 adults with type 2 diabetes participated in a randomized controlled trial conducted by Nayak et al. (2023). The time to optimal insulin dose was found to be significantly shorter for participants who used a voice-based conversational AI application (median 15 days vs. 56 days) as well as insulin compliance (83 percent vs. 50%) compared to those in this randomized clinical trial who were given standard care.

While considering the application of MAS, the challenges associated with data security and privacy must be addressed before MAS AI systems are implemented in the healthcare industry. Patients must give their express consent before any data processing can start in jurisdictions like the European Union where adherence to the General Data Protection Regulation (GDPR) is mandatory. Likewise adherence to the Health Insurance Portability and Accountability Act

(HIPAA) is necessary for the protection of patient data in the United States. By employing HIPAA-compliant technologies and gaining participants informed consent certain MAS platforms like the voice-based AI system utilized in the Managing Insulin with Voice AI (MIVA) have integrated these regulations.

Although the use of Multi-Agent Systems (MAS) in diabetes care have been proposed in several studies, there is currently no systematic review that compiles the various ways in which these systems are applied and their challenges. By reviewing existing studies on MAS in diabetes management this paper seeks to close that knowledge gap. It looks at the various MAS architectures commonly employed in diabetes care and focuses on how MAS can support patient monitoring diagnosis treatment and self-care.

2020 PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines by Page et al., 2021 are adhered to in this review in order to guarantee a transparent and high-quality research process. It aims to give researchers, healthcare providers and technology developers useful information about the state of MAS in diabetes care today. In addition, it responds to the research question: How can type 2 diabetes be diagnosed and managed more efficiently using Multi-Agent Systems (MAS) to enhance patient outcomes and healthcare efficiency?

II. METHODOLOGY

To guarantee thorough and transparent reporting this review was carried out in accordance with the PRISMA 2020 guidelines (Page et al., 2021). Compiling and summarizing research on the application of Multi-Agent Systems (MAS) in diabetes care was the aim.

Finding studies on the use of MAS in diabetes treatment was the aim of the review. The process followed PRISMA guidelines to ensure that the selection extraction and analysis of studies were transparent and systematic.

IEEE Xplore, PubMed, and ScienceDirect were the three databases that were thoroughly searched. Included in the search were articles published from 2010 to 2025. Among the search terms used are artificial intelligence, multi-agent systems, MAS healthcare system, and diabetes. Boolean operators (AND, OR) were used to combine these terms.

Peer-reviewed studies published between 2010 and 2025 were eligible for inclusion. Studies were only included if they were in English involved human subjects and concentrated on the application of MAS in diabetes management. Articles published before

diabetes or MAS AI were also excluded.

The results of the search were imported into reference management software and duplicate articles were removed. To determine if they met the inclusion requirements the abstracts and titles were independently screened. After that, full-text publications were obtained and further investigated. A standardized form was used to extract important data from each study such as the study title, authors, year of publication, study design, AI/ML model, the use of MAS AI in diabetes management, and the main findings. With an emphasis on the various applications of MAS in diabetes care as well as the MAS AI/ML tools used was condensed into a narrative format as represented in table 2.0

The study selection process is depicted in the PRISMA 2020 flow diagram which provides an overview of how studies were located evaluated and included in the review.

III. RESULTS

A total of 308 records were retrieved from the original database search. There were still 204 unique studies after duplicates were removed. Based on the set inclusion and exclusion criteria, 116 studies were removed during title screening and 19 more during abstract review. Out of the remaining 88 papers evaluated, 43 studies satisfied all eligibility criteria that were included in this review.

Fig. 1 depicts the complete selection procedure.

Eight key domains for Multi-Agent Systems (MAS) to be used in diabetes diagnosis and treatment were determined after a qualitative analysis of the studies. These areas show how MAS technology can help provide diabetes patients with more precise effective and personalized care.

The use of MAS to support personalized treatment plans is crucial in the management and treatment of diabetes. To forecast blood sugar levels and modify insulin dosages these systems analyze patient data in real time. The use of MAS in this field was the subject of 19 out of the 43 included studies.

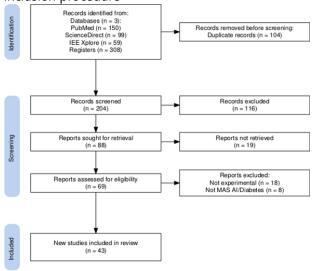
In the diagnostic and imaging domain MAS aids in improving the accuracy of medical imaging instruments used to identify diabetes-related

2010 were excluded. Also, articles not related to disorders. According to Avanzo et al. (2021), this involves analyzing data from scans such as MRIs and retinal images which can aid in the early identification of problems. There were eight studies done in this area.

> Another important domain is health monitoring systems. Here MAS uses wearable technology such as continuous glucose monitors to continuously measure blood sugar levels. When blood glucose levels become unstable these systems can notify patients and caregivers allowing for quicker interventions (Vettoretti et al., 2020). Three studies addressed this topic.

> Through predictive modeling MAS forecasts the onset of diabetes or its complications based on patient histories and datasets. These models can help with better treatment planning and early prevention strategies (Nomura et al., 2021). Thirtythree studies investigated this area.

> Applications in public health are another area where MAS are utilized to create risk prediction tools for large populations. Strategies to prevent stroke or other diabetes-related conditions can be guided by these tools (Guan et al., 2023). In this context MAS was covered in eight studies.


> Systems that help patients choose healthier foods and lifestyles are included in the Lifestyle and Diet Management domain. Based on patient habits and medical information MAS can personalize dietary recommendations (Li et al., 2020). Fifteen studies addressed the use of MAS in this area.

> Another important area in which MAS helps medical professionals is in clinical decision support where it sorts and analyzes patient data to recommend the best treatment choices. Clinical decisions can become more accurate and data-driven with the help of these systems (Alowais, 2023). There were 22 studies that addressed this domain.

> Lastly systems that assist patients in continuing to participate in their own care are referred to as Patient Engagement and Self-Management. Reminders patient progress tracking and advice on how to improve treatment plan adherence can all be provided by MAS-based apps and platforms (Karan, 2023). This domain was covered by twenty studies. Overall, medical professionals can also benefit from MASs assistance in clinical decision support where it

sorts and evaluates patient data to suggest the best **Table 1:** This table lists the eight areas where MAS course of action. Figure 2 and the Appendix Table display the eight domains that were identified. The eight identified domains are shown in Figure 2 and the Appendix Table. While Table 1 displays the distribution of studies across these domains. Figure 3 details the specific contributions of MAS in the treatment of diabetes.

Fig. 1. PRISMA flowchart of study selection and inclusion procedure

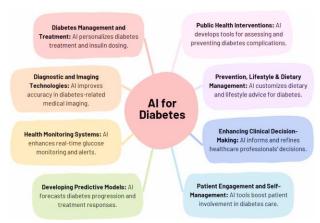


Fig. 2. Eight Domains in which MAS AI Enhances Diabetes Management (Khalifa and Albadawy, 2024).

Al improves diabetes care along with the number of studies covered by each of the 43 papers that were

Domain	Number of studies
	discussing each
Developing Predictive Models	33
Enhancing Clinical Decision Making	22
Patient Engagement and Self-management	20
Diabetes Management and Treatment	19
Lifestyle and Dietary Management	15
Public Health Interventions	8
Diagnostics and Imaging Technologies	8
Health Monitoring Systems	3

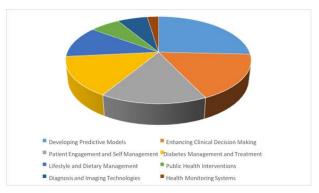


Fig.3. MAS ΑI Contribution **Diabetes** Management based on the selected studies.

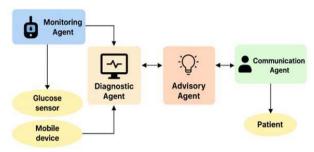


Fig. 4. Depicts interaction between core agents in MAS applications for management of diabetes.

Table 2: Author and Year of Publication, Outcome Measures, Population/Participants, Sample Size, Intervention/Exposure, and Findings.

S	Author and	Aim	Population/	Sample	Intervention/	Outcome	AI./ML	Findings
N	Year		Participants	Size	Exposure	Measures	Model	
1	Roberts et al.,	To check the	DME	570	Anti-VEGF	Changes in	Deep	The presence of
	2021	volumetric	patients		treatment	fluid volume,	Learning	sub-retinal fluid
		changes				acuity	Algorithms	was linked to a
		intra-retinal						lower baseline
		and sub-						visual acuity but
		retinal fluid						a good response
		in the DME						to treatment
		in the course						according to
		of anti-VEGF						automated fluid
		treatment						segmentation in
		using deep						diabetic macular
		learning.						edema.
2	Hong et al.,	To create a	Patients with	1716	Urinalysis and	Prediction of	Artificial	A model based
	2021	predictive	upper urinary		ultrasonograph	urosepsis	Neural	on artificial
		model for	tract calculi		y		Network	intelligence
		urosepsis risk					(ANN)	learning was
		in patients						able to
		with upper						accurately
		urinary tract						predict the risk
		calculi						of urosepsis in
								patients with
								upper urinary
								tract calculi.
3	Abraham et al.,	To identify	Patients	24	Anti-VEGF	OCT imaging	Optical	Identified
	2021	biomarkers	having		therapy	biomarkers	coherence	biomarkers that
		predicting	diabetic			expression of	tomography	connect cytokine
		response to				cytokines	machine	expression and
							learning	OCT phenotype

		anti-VEGF in	muscular				augmented	to predict how
		DME	edema				segmentation	diabetic macular
							platform	edema patients
								will respond to
								antivascular
								endothelial
								growth factor
								treatment.
4	Sun et al.,	То	Type 2	61	Endurance	Insulin	Dietary-	Used a
		investigate	diabetic		exercise and	resistance,	based AI	continuous
		how insulin	middle-aged		supplementati	plasma	management	glucose
		resistance in	adults		on of vitamin	lipidome	solution	monitoring
		T2D is			D			system and an
		influenced by						AI-based dietary
		exercise and						management
		vitamin D						solution to
								examine the
								effectiveness of
								a digitally
								integrated
								healthcare
								platform in
								patients with
								type 2 diabetes.
5	Nimri et al.,	To compare	Youths with	108	AI-DSS for	Time within	Artificial	An automated
	2020	how	Type 1		insulin	target glucose	Intelligence-	artificial
		physicians	Diabetes		adjustment	range	based DSS	intelligence (AI)
		and AI-DSS						decision support
		youths with						system for
		type 1						optimizing
		diabetes						insulin dosage
		adjust insulin						was safe and
		dosages						successful in

		within the						treating type 1
		target glucose						diabetes in
		range (AI-						young people.
		DSS)						
6	Sampedro et	To utilize ML	Patients with	263	Not specified	Stent	Different ML	Stent restenosis
	al., 2020	to predict	stent			restenosis	classifiers	in patients
		stent	implantation			prediction		following
		restenosis						percutaneous
								coronary
								intervention was
								predicted by a
								machine
								learning model
								that performed
								better than
								current scores.
7	Unaviorth at	To assess the	Type 1	27	Inculin docing	Glysamia	Casa basad	
7	Unsworth et	To assess the	Type 1	37	Insulin dosing	Glycemic	Case-based	Insulin bolus
7	Unsworth et al., 2023	ABC4D	Diabetic	37	ABC4D	Glycemic	reasoning	Insulin bolus doses can be
7		ABC4D system for		37		-		Insulin bolus doses can be safely adjusted
7		ABC4D system for insulin bolus	Diabetic	37	ABC4D	-	reasoning	Insulin bolus doses can be safely adjusted with the
7		ABC4D system for	Diabetic	37	ABC4D	-	reasoning	Insulin $bolus$ doses can be safely $adjusted$ with the $Advanced$ $Bolus$
7		ABC4D system for insulin bolus	Diabetic	37	ABC4D	-	reasoning	Insulin $bolus$ doses can be safely adjusted with the Advanced Bolus Calculator for
7		ABC4D system for insulin bolus	Diabetic	37	ABC4D	-	reasoning	Insulin bolus doses can be safely adjusted with the Advanced Bolus Calculator for Type 1 Diabetes
7		ABC4D system for insulin bolus	Diabetic	37	ABC4D	-	reasoning	Insulin bolus doses can be safely adjusted with the Advanced Bolus Calculator for Type 1 Diabetes (ABC4D) which
7		ABC4D system for insulin bolus	Diabetic	37	ABC4D	-	reasoning	Insulin bolus doses can be safely adjusted with the Advanced Bolus Calculator for Type 1 Diabetes (ABC4D) which also offers the
7		ABC4D system for insulin bolus	Diabetic	37	ABC4D	-	reasoning	Insulin bolus doses can be safely adjusted with the Advanced Bolus Calculator for Type 1 Diabetes (ABC4D) which also offers the same degree of
7		ABC4D system for insulin bolus	Diabetic	37	ABC4D	-	reasoning	Insulin bolus doses can be safely adjusted with the Advanced Bolus Calculator for Type 1 Diabetes (ABC4D) which also offers the same degree of glycemic control
7		ABC4D system for insulin bolus	Diabetic	37	ABC4D	-	reasoning	Insulin bolus doses can be safely adjusted with the Advanced Bolus Calculator for Type 1 Diabetes (ABC4D) which also offers the same degree of glycemic control as the
7		ABC4D system for insulin bolus	Diabetic	37	ABC4D	-	reasoning	Insulin bolus doses can be safely adjusted with the Advanced Bolus Calculator for Type 1 Diabetes (ABC4D) which also offers the same degree of glycemic control

8	Moyen et al.,	To evaluate	Adults with	136	Keenoa app	Reported	AI enhanced	When
	2022	the app	or without		for dietary	intake of	app	comparing the
		Keenoas	diabetes		tracking	nutrients and		energy
		dietary				energy		macronutrient
		assessment						and
		validity in						micronutrient
		comparison						intakes of
		to ASA24.						diabetics and
								healthy adults to
								ASA24 showed
								moderate to
								strong validity
								according to the
								Keenoa app
0	Benhamou et	To evaluate	T 1	68	DBLG1 hybrid	Character toward	Machine	The DBLG1
9			Type 1 diabetic	08	·	Glucose target	Machine	
	al., 2019	the effectiveness	adults		closed-loop	range	Learning-	system is
		of digital	aduns		system	hypoglycemic episodes	based algorithms	superior to sensor-assisted
		health care				episodes	argoriumis	
		platforms						insulin pumps in terms of glucose
		with AI-						control and
		based dietary						closed-loop
		management						insulin use.
		for T2D						msum use.
		IOI 12D						
10	Zhao et., 2022	Utilizing	Patients with	44	Comprehensiv	Quality of life,	K non-local-	Patients with
		ultrasound	diabetic		e nursing plan	renal function	means	diabetic kidney
		imaging	kidney			and	filtering	disease can
		examine how	disease			complication.	algorithm for	benefit greatly
		a					ultrasound i	from nursing
		comprehensi						interventions
		ve nursing						that help them
		plan affects						improve and
		patients with						control their

		diabetic						renal function
		kidney						and ultrasound
		disease.						images that
								employ a clever
								algorithm are
								able to recognize
								this
								dynamically.
11	Du et al., 2022	To evaluate	Patients with	64	PDCA home	Home nursing	Fuzzy C-	FCM algorithm
		the impact of	diabetic		nursing	efficacy and	means	detected
		Fmri	nephropathy			nursing	clustering	activation
		UNDER AI				satisfaction	algorithm	regions in fMRI
		on diabetic						images more
		nephropathy						effectively
		home nursing						reducing error
								and aiding in
								diagnosis. for
								food
								identification
12	Alfonsi et al.	To test the	Type 1	22	:C	Accuracy of	Machine	The high
12	2020		diabetic	22	iSpy carbohydrate	Accuracy of carbohydrate	learning for	-
	2020	app's usability and	youth		counting app	counting,	food	acceptability of iSpy a new app
		effect on	youtii		counting app	HbA1c levels	identification	for counting
		carbohydrate				HUATC levels	identification	carbohydrates
								•
		counting						supports its use
		accuracy						of young
								individuals with
								type 1 diabetes.
								type I diabetes.
13	Han et al.,	To evaluate	DME	96	Deep learning	Quality of	3D-CNN	The diagnostic
	2022	the	patients		3D	MRI image,		accuracy of
		effectiveness			convolutional			diabetic macular
		of a deep			neural network			edema was

		learning			(3D-CNN)	and diagnostic		greatly increased
		algorithm in			algorithm for	accuracy.		by deep learning
		diagnosing			MRI images			algorithm-based
		Diabetic						MRI.
		Macular						
		Edema						
		(DME)						
14	Reddy et al.,	To develop	Type 1	43	Not specified	Hypoglycemia	Decision tree	Two algorithms
	2019	algorithms to	diabetic			prediction	and random	for predicting
		predict	adults			during	forest models	hypoglycemia in
		exercise-				exercise		adults with Type
		related						1 Diabetes
		hypoglycemi						during physical
		a in T1D						activity were
								developed and
								evaluated.
15	Liu et al., 2020	To test	Pre-diabetic	39	Exercise	Glucose	Machine-	Changes in the
		exercise-	men			homeostasis,	learning	gut microbiota
		induced				insulin	algorithm	brought on by
		alterations in				sensitivity		exercise were
		gut						11.1.1.4.1.11
		C						linked to insulin
		microbiota						sensitivity and
		microbiota						sensitivity and
		microbiota and their						sensitivity and glucose
		microbiota and their impact on						sensitivity and glucose homeostasis in
16		microbiota and their impact on glucose homeostasis		4227			E.	sensitivity and glucose homeostasis in prediabetes.
16	Oikonomou et	microbiota and their impact on glucose homeostasis To develop	Type 2	4327	Canagliflozin	Major adverse	Extreme	sensitivity and glucose homeostasis in prediabetes.
16	Oikonomou et al., 2022	microbiota and their impact on glucose homeostasis To develop an ML-based	diabetic	4327	Canagliflozin	cardiovascular	gradient	sensitivity and glucose homeostasis in prediabetes. The ability to biosynthesize
16		microbiota and their impact on glucose homeostasis To develop an ML-based tool for		4327	Canagliflozin		gradient boosting	sensitivity and glucose homeostasis in prediabetes. The ability to biosynthesize short-chain fatty
16		microbiota and their impact on glucose homeostasis To develop an ML-based tool for personalized	diabetic	4327	Canagliflozin	cardiovascular	gradient	sensitivity and glucose homeostasis in prediabetes. The ability to biosynthesize short-chain fatty acids was
16		microbiota and their impact on glucose homeostasis To develop an ML-based tool for	diabetic	4327	Canagliflozin	cardiovascular	gradient boosting	sensitivity and glucose homeostasis in prediabetes. The ability to biosynthesize short-chain fatty acids was improved in
16		microbiota and their impact on glucose homeostasis To develop an ML-based tool for personalized	diabetic	4327	Canagliflozin	cardiovascular	gradient boosting	sensitivity and glucose homeostasis in prediabetes. The ability to biosynthesize short-chain fatty acids was

	effects of canagliflozin						tool based on machine learning to customize the benefits of canagliflozin for type 2 diabetes patients with atherosclerotic cardiovascular disease (ASCVD) was created.
17 Zou et al., 2024	To check the effects of stratifying prediabetes patients by diabetes progression risks on their response to interventions	Pre-diabetic patients	2,558	Lifestyle and/or pioglitazone intervention	Reversal of prediabetes and progression of diabetes	Machine learning model (XGBoost)	Patients' response to different interventions were affected when they were stratified by diabetes progression risks using a machine learning-based model for prediabetes.
18 Nayak et al., 2023	Examine the efficacy of a voice-based AI application in insulin titration	Type 2 diabetic patients	32	Voice-based AI application for insulin management	Optimal insulin dose, adherence, glycemic control	Conversation al AI application	Comparing voice-based conversational AI to standard care the results showed significant

								improvements in time to optimal insulin dose insulin adherence glycemic control and emotional distress related to diabetes.
19	Varga et al.,	To compare	Prediabetic	2590	Not applicable	Incident	Machine	NMR-derived
	2021	the	individuals			diabetes	learning	biomarkers did
		discriminativ					algorithms	not improve
		e utility of						diabetes risk
		various biomarkers						discrimination over
		for diabetes						conventional
		prediction						risk factors.
20	Faruqui et al.,	To predict	Type 2	10	Mobile health	Prediction of	Long short-	Future glucose
	2020	daily glucose	diabetic		lifestyle data	blood glucose	term	levels in patients
		levels in	patients			level	memory-	with type 2
		T2DM based					based RNNs	diabetes were
		on lifestyle						accurately
		data						predicted by a deep learning
								deep rearming
								model based on
								model based on mobile health
								mobile health
21	Wet et al.,	To evaluate	General	8,501	Environmental	Prediction of	Random	mobile health data. Diabetes
21	Wet et al.,	the use of	General population	8,501	chemical	Prediction of diabetes	forest,	mobile health data. Diabetes mellitus was
21	ŕ	the use of environmenta		8,501			forest, LASSO	mobile health data. Diabetes was accurately
21	ŕ	the use of environmenta 1 chemical		8,501	chemical		forest,	mobile health data. Diabetes was accurately predicted by
21	ŕ	the use of environmenta		8,501	chemical		forest, LASSO	mobile health data. Diabetes was accurately

diabetes

		diabetes						схрозите
		mellitus						dynamics and
								machine
								learning
								highlighting the
								predictive power
								of common
								environmental
								chemicals for
								complex
								diseases.
22	Popp et al.,	To compare	Adults with	204	Personalized	Weight loss,	Machine	At six months a
	2022	the	abnormal		diet vs low-fat	body	learning	customized diet
		effectiveness	glucose		diet	composition	algorithm	aimed at
		of a	metabolism					lowering the
		personalized	and obesity					postprandial
		diet vs a low-						glycemic
		fat diet for						response did not
		weight loss in						lead to more
		adults with						weight loss than
		abnormal						a low-fat diet.
		glucose						
23	Wang et al.,	To develop	Middle-aged	54	Not applicable	Heart failure	Various ML	The risk of heart
	2023	and validate	and older			risk prediction	algorithms,	failure in US
		an ML-based	individuals				including	people with
		prediction	with				random	diabetes or
		model for	prediabetes				forest	prediabetes was
		heart failure	or diabetes					accurately
		risk in						predicted by a
		patients with						machine
		prediabetes						learning model.
		or diabetes						

exposure

24	Chauhan et al.,	То	Individuals	Not	NRT_N0G5IJ	Glycated	AI for	AI was used to
	2021	investigate a	with elevated	specifie	supplementati	hemoglobin	ingredient	find a useful pea
		functional	HbA1c	d	on	levels	discovery	ingredient that
		ingredient for				reduction		was
		glucose						demonstrated to
		regulation in						lower HbA1c in
		prediabetes						pre-diabetic
								individuals.
2.5			m 1	5.4	DEDDED	Cl. :		777 1 d
25	Avari et al.,	To assess the	Type 1	54	PEPPER	Glycemic	Case-based	While the
	2021	safety and	diabetic individuals		system for	outcomes, and	reasoning AI	PEPPER
		efficacy of the PEPPER	individuals		bolus advice	safety		Adaptive Bolus Advisor and
		system for						Safety System
		personalized						was safe it had
		bolus advice						no effect on type
		in type 1						1 diabetes
		diabetes						glycemic
								outcomes when
								compared to
								control.
26	Ashrafi et al.,	To assess	Morbidly	17	RYGB or	Glucose	Machine	Explored the use
	2021	postprandial	obese		OAGB surgery	concentrations	learning	of machine
		glucose	patients			, carbohydrate	model	learning to
		concentration	undergoing			intake		model
		s in patients	surgery					postprandial
		post-bariatric						glucose levels in
		surgery						obese patients
								undergoing
								gastric bypass
								surgery.
27	Sarici et al.,	То	Patients with	44	Aflibercept	Changes in	Machine	Quantitative
	2023	investigate	diabetic		injection or	UWFA	learning-	ultra-wide field
		quantitative					enabled	angiographic

		UWFA	macular		combined IAI/	parameters,	feature	parameters	for
		parameters in	edema		nesvacumab	OCT metrics	extraction	diabetic macu	ular
		DME						edema e	eyes
		treatment						treated with	IAI
								with or with	out
								nesvacumab	
								significantly	
								improved.	
28	Khorraminezh	То	Adults with	10	High dairy	Gut	Machine	In hyp	per-
	ad et al., 2021	investigate	hyperglycem		intake	microbiota	learning	insulinemic	
		the effect of	ia			composition,	analyses	individuals,	
		high dairy				insulin		dairy	
		intake on gut				resistance		consumption	
		microbiota						negatively	
		and insulin						correlates w	vith
		resistance						insulin	
								resistance a	and
								changes the	gut
								microbiotas	
								composition.	
29	Joshi et al.,	To evaluate	Patients with	319	Personalized	Change in	Digital Twin	Patients v	vith
	2023	the effect of	T2D		meal plans by	HbA1c, liver	technology	type 2 diabe	etes
		DT-enabled			AI	fat scores		who receiv	ved
		personalized						individualized	d
		nutrition on						nutrition enab	oled
		T2D and						by digital tw	vins
		MAFLD						saw a signific	cant
								improvement	in
								fatty li	iver
								disease linked	d to
								metabolic	
								dysfunction.	

30	Saux et al., 2023	To develop a model for predicting individual 5-year weight loss	Post-bariatric surgery patients	10,231	Bariatric surgery (different types)	5-year weight loss trajectories	LASSO, CART algorithms	A machine learning-based calculator successfully forecasted the weight
		trajectories after bariatric surgery						trajectories of a multinational cohort five years following bariatric surgery.
31	Popp et al., 2019	To evaluate two dietary interventions for weight loss in T2D	Individuals with prediabetes and T2D	Not specifie d	Low-fat diet and personalized diet using ML algorithm	Changes in energy expenditure, body weight, and composition	Machine learning for dietary response	Two dietary interventions were used: a customized diet based on a machine-learning algorithm and a low-fat diet.to help people with prediabetes and type 2 diabetes lose weight.
32	Seethaler et al., 2022	To determine if the Mediterranea n diet, via SCFAs, improves intestinal barrier integrity	Women with intestinal barrier impairment	260	Mediterranean	SCFA concentrations , intestinal permeability	Machine- learning algorithm	By producing short-chain fatty acids the Mediterranean diet improved the intestinal barriers integrity.

33	Oikonomou et al., 2022	To define personalized cardiovascula r benefits of intensive systolic blood pressure controll	Patients with hypertension	Not specifie d	Intensive systolic blood pressure control	Prediction of cardiovascular events	XGBoost	By applying machine learning to clinical trial data it was possible to successfully customize the cardiovascular benefits of rigorous systolic
34	Zhang et al.,	To create an	Adolescents	Not	Momentary	Self-	Machine	control in patients with or without type 2 diabetes.
	2022	algorithm for machine learning that will forecast the likelihood that young adults with Type 1 Diabetes will neglect their self- management.	with Type 1 Diabetes	specifie d	assessment data, blood glucose data	management	learning- based filtering architecture	promise in forecasting type 1 diabetes self-management when combined with short-term assessment data.
35	Habes et al., 2023	To assess brain age and AD-like atrophy in adults with	Type 1 diabetic adults	416	Not applicable	Cognitive performance, brain age, and atrophy	Machine learning indices for brain age	The study indicates that people with Type 1 Diabetes who do not

		type 1 diabetes.						exhibit symptoms Alzheimer' related neurodeger on may ha accelerated of brain agi	nerati ive an I rate
36	Khanji et al., 2019	To look into therapeutic target prediction models for patients with cardiovascula r disease who have dyslipidemia and hypertension.	Patients with hypertension, dyslipidemia, diabetes	870	Not specified	Achieving therapeutic targets	Lasso regression, machine learning	Found process indicators have predictive validity intermediat outcomes pertaining prevention cardiovascu disease.	to the
37	Gastaldelli et al., 2021	To understand the effect of PPAR-γ agonists on steatohepatiti s in NASH	NASH patients	55	PPAR-γ agonists (pioglitazone)	Hepatic/viscer al fat, adiponectin levels	Machine learning techniques	In National patients histological benefits PPAR-γ are mediate improved distribution reduced viriat and electronic adiponecting the properties of the proper	of action ed by fat fat secenal

38	Park et al.,	To evaluate	Type 2	284	Digital	Change in	AI-based	Evaluated how		
	2020	digital	diabetic		healthcare	HbA1c,	dietary	well a digitally		
		healthcare	adults		platform with	weight loss	management	integrated		
		platform with			AI-based		solution	healthcare		
		AI-based			dietary			platform treated		
		dietary			management			patients with		
		management						type 2 diabetes		
		for adults						using an AI-		
		with type 2						based dietary		
		diabetes						management		
								tool and a		
								continuous		
								glucose		
								monitoring		
								system.		
39	Lopez et al.,	To forecast	Adults with	24	Short-term	Beta-cell	Random	Identified		
37	2019	and	early type 2	2.	intensive	function,	survival	potential the		
	201)	understand	diabetes		insulin therapy	postprandial	forest and	pathophysiologi		
		the response	anasses		mount morapy	glucose	Cox models	c elements		
		to intensive				responses		affecting the		
		insulin				1		reversibility of		
		therapy in						beta-cell		
		early type 2						dysfunction and		
		diabetes						identified		
								possible		
								responders to		
								intensive insulin		
								therapy in early		
								type 2 diabetes.		
40	Lee et al., 2023	To evaluate	Type 2	294	health care	Glycemic	AI-driven	Adults with type		
		an integrated	diabetic		platform with	control, and	dietary	2 diabetes who		
		digital health	adults		AI-based	weight loss	management	used an AI- driven dietary		

	with AI-based dietary management for type 2 diabetes			dietary			management system in conjunction with an integrated digital health care platform observed improved glycemia and increased weight loss.
den-Yacov et 1., 2023	To assess a digital health care platform that combines AI-powered type 2 diabetes dietary management.	Prediabetic adults	200	Personalised postprandial targeting diet vs. Mediterranean diet	Microbiome composition, cardiometabol ic markers	Machine learning for diet response prediction	Supported the idea that the gut microbiota plays a role in controlling how dietary modifications affect cardiometabolic outcomes which in turn helps to reduce comorbidities in pre-diabetes.
Vang et al., 022	To evaluate the role of MRI data characteristics in evaluating compound skin graft	Patients with diabetic foot	78	Compound skin graft treatment	Healing time, recurrence rate, scar score	KNL-Means filtering algorithm for MRI	With the use of deep learning algorithms and additional reference information from MRI image data

		treatment for							characteristics		
		diabetic foot							the effectiveness		
									of compound		ound
									skin		
									transpl	lantat	ion
									for dia	abetic	foot
									can be	asses	ssed.
		_									
43	Rein et al.,	То	Newly		23	Personalized	Glycemic	Machine	Glycei	mic	
	2022	investigate	diagnosed			postprandial-	measures,	learning	contro	1	was
		the effects of	Type	2		targeting diet	metabolic	algorithm	better		with
		a	diabetic				health		person	alized	d
		personalized	adults				parameters		diets based on		d on
		postprandial-							glycen	nic	
		targeting diet							respon	ise	
		on glycemic							predic	tion	in
		control in							individ	luals	with
		T2DM							newly	diagr	nosed
									type 2	2 dia	betes
									than	with	n a
									Medite	errane	ean-
									style d	iet.	

IV. DISCUSSION

The purpose of this systematic review was to investigate the use of Multi-Agent Systems (MAS) in the diagnosis and treatment of diabetes particularly type 2. The ability of MAS to handle massive volumes of data support early diagnosis and customize care for each patient has drawn interest in the healthcare industry. According to the reviewed studies MAS can significantly enhance the effectiveness and quality of diabetes care when paired with techniques like data analysis.

One of MAS main advantages is its ability to gather and assess data from multiple sources such as patient reports electronic health records and blood glucose monitors to support better diagnosis and treatment decision-making (Huang et al., 2023; Contreras and Vehi, 2018; Vettoretti et al., 2020). For example Li et al. (2020), demonstrated how MAS could provide patients with real-time guidance and instruction for managing chronic conditions like diabetes. In addition Nomura et al. and Guan et al. (2021), discovered that through large-scale health data analysis MAS can assist in the detection of complications such as diabetic retinopathy and kidney disease enhancing patient outcomes and early intervention.

Support for individualized care is another important advantage of MAS. Unlike conventional fixed treatment plans these systems are adaptable enough to modify to each patient's condition lifestyle and response to treatment (Rein et al., 2022; & Popp et al., 2022). This flexibility is essential for type 2 diabetes management as each patient's unique disease progression and health status require a personalized course of treatment. Joshi et al. for instance, in 2023, demonstrated that blood sugar levels in individuals with both diabetes and fatty liver disease were improved by a MAS intended to aid with nutrition. According to other research foodrelated MAS improved long-term control and lessened blood sugar swings (Ben-Yacov et al., 2023 & Lee et al., 2023).

Additionally MAS are essential in enabling patients to take charge of their own health care. These systems use real-time data to give patients recommendations on diet exercise and insulin use (Karan, 2023; Alowais et al., 2023; & Park et al., 2020). Zhang et al. (2022), and Avari et al. (2021), discovered that MAS assisted patients in controlling their blood sugar levels and preventing crises. Additionally research indicates that younger individuals with type 1 diabetes who utilized these systems expressed greater satisfaction and improved treatment plan adherence (Alfonsi et al., 2020).

However, a number of challenges must be addressed before MAS can be applied extensively in clinical settings. According to research, many MAS are still in the research stage and have not yet been put to the test in actual hospital settings (Contreras and Vehi, 2018; Tahir & Farhan, 2023). This limits the findings applicability and raises doubts about their reliability and usefulness. Concerns have also been raised regarding these systems usability data privacy and compatibility with current medical equipment (Bajwa et al., 2021). It is also difficult to approve and widely adopt these systems since there are no clear standards for assessing their performance and safety (Salinari et al., 2023).

It is also a problem how much patients and medical professionals can trust these systems particularly when it comes to making important medical decisions. Although MAS can provide useful recommendations some experts are concerned that a reliance on these systems may compromise clinical

Support for individualized care is another important judgment by healthcare providers or patient-advantage of MAS. Unlike conventional fixed physician trust (Davenport & Kalakota, 2019). treatment plans these systems are adaptable enough maintaining human expertise at the forefront of to modify to each patient's condition lifestyle and response to treatment (Rein et al., 2022; & Popp et require striking a balance.

This reviews studies demonstrated that the majority of Multi-Agent Systems (MAS) used to manage diabetes had a well-defined structure with distinct roles for each agent. Figure 4 shows the relationship between the primary agent types frequently found in MAS applications for diabetes management. First, the Monitoring Agent gathers information from a variety of sources including glucose sensors and mobile devices. This data is analyzed by the Diagnostic Agent to look for patterns or early warning signs of issues. Using this analysis the personalized Advisory Agent creates recommendations that are sent to the patient through the Communication Agent. This coordinated architecture supports patient engagement and ongoing adaptive care.

Despite challenges MAS has shown promise in helping healthcare providers by automating repetitive tasks identifying health risks and suggesting treatments (Nomura et al., 2021; Hong et al., 2023 & Wang et al., 2023). This can reduce the workload for clinicians enhance the quality of care and enable more effective use of medical resources. This review concludes by pointing out that MAS may enhance diabetes diagnosis and treatment. Better results in the treatment of diabetes may result from integration of various data sources MASs individualized treatment and patient empowerment. More research in practical settings is necessary to address present issues and ensure that these systems can be safely and effectively used in clinical practice.

V. CONCLUSION

The review highlights how Multi-Agent Systems (MAS) can improve the diagnosis and treatment of diabetes especially type 2. There is great potential for enhancing diagnostic accuracy enabling individualized treatment plans and equipping patients with self-management resources through the integration of MAS into diabetes care. By analyzing complex data from various sources MAS

enables more accurate decision-making and offers patients individualized treatments that meet their particular requirements. There are still significant challenges to be addressed in spite of these advantages. To validate the results of recent studies and guarantee the dependability of the systems in clinical practice further research is essential especially in real-world contexts. In order to address concerns regarding patient privacy and system compatibility strong data security and privacy protocols are essential as is seamless integration with existing healthcare systems. In order to guarantee the safety and efficacy of MAS applications over time it is also essential to establish unambiguous regulatory frameworks and conduct ongoing monitoring.

Cross-disciplinary cooperation will be essential to the development of MAS technology. To create tools that are not only technically sound but also useful and in line with the realities of clinical care healthcare professionals researchers and legislators must collaborate. Ensuring healthcare personnel have the required training to effectively use MAS and communicate its benefits and drawbacks to patients is also essential to the successful deployment of these systems

Despite continuing obstacles MAS integration into diabetes care holds great promise for improving patient outcomes and streamlining healthcare delivery. Increased interdisciplinary collaboration in research and a focus on patient-centered design could make these systems a significant component of modern healthcare offering diabetics more effective care.

Author Contributions

Desmond Afoakwa: Conceptualization, Methodology, Data curation, Writing- Original draft preparation, Visualization, Investigation. Konstantin Koshechkin: Supervision, Writing- Reviewing and Editing. Daniel Kofi Boakye: Validation.

REFERENCES

 Abraham, J. R., Wykoff, C. C., Arepalli, S., Lunasco, L., Yu, H. J., Hu, M., Reese, J., Srivastava, S., Brown, D. M., & Ehlers, J. P. (2020). Aqueous cytokine expression and

- higher Order OCT biomarkers: Assessment of the Anatomic-Biologic Bridge in the IMAGINE DME study. *American Journal of Ophthalmology*, 222, 328–339. https://doi.org/10.1016/j.ajo.2020.08.0
- Alfonsi, J. E., Choi, E. E. Y., Arshad, T., Sammott, S. S., Pais, V., Nguyen, C., Maguire, B. R., Stinson, J. N., & Palmert, M. R. (2020). Carbohydrate counting app using image recognition for youth with Type 1 Diabetes: pilot randomized control trial. *JMIR Mhealth and Uhealth*, 8(10), e22074. https://doi.org/10.2196/22074
- 3. Alowais, S.A. (2023). Revolutionizing healthcare: the role of artificial intelligence in clinical practice, *BMC Med. Educ.* 23 (1), 689. https://doi.org/10.1186/s12909-023-04698-z
- Ashrafi, R. A., Ahola, A. J., Rosengård-Bärlund, M., Saarinen, T., Heinonen, S., Juuti, A., Marttinen, P., & Pietiläinen, K. H. (2021). Computational modelling of self-reported dietary carbohydrate intake on glucose concentrations in patients undergoing Roux-en-Y gastric bypass versus one-anastomosis gastric bypass. *Annals of Medicine*, 53(1), 1885–1895. https://doi.org/10.1080/07853890.20 21.1964035
- Avanzo, M., Trianni, A., Botta, F., Talamonti, C., Stasi, M., & Iori, M. (2021). Artificial intelligence and the medical physicist: welcome to the machine. *Applied Sciences*, 11(4), 1691. https://doi.org/10.3390/app11041691
- 6. Avari, P., Leal, Y., Herrero, P., Wos, M., Jugnee, N., Arnoriaga-Rodríguez, Thomas, M., Liu, C., Massana, Q., Lopez, B., Nita, L., Martin, C., Fernández-Real, J. M., Oliver, N., Fernández-Balsells, M., & Reddy, M. (2020). Safety and feasibility of the PEPPER Adaptive BOLUS Advisor and Safety randomized control System: а Technology study. Diabetes & 175-Therapeutics, 23(3), 186. https://doi.org/10.1089/dia.2020.0301

 Bajwa, J., Munir, U., Nori, A., & Williams, B. (2021). Artificial intelligence in healthcare: transforming the practice of medicine. Future Healthcare Journal, 8(2), e188-

e194. https://doi.org/10.7861/fhj.2021-0095

- Benhamou, P., Franc, S., Reznik, Y., Thivolet, C., Schaepelynck, P., Renard, E., Guerci, B., Chaillous, L., Lukas-Croisier, C., Jeandidier, N., Hanaire, H., Borot, S., Doron, M., Jallon, P., Xhaard, I., Melki, V., Meyer, L., Delemer, B., Guillouche, M., . . . Charpentier, G. (2019). Closed-loop insulin delivery in adults with type 1 diabetes in real-life conditions: a 12-week multicentre, open-label randomised controlled crossover trial. *The Lancet Digital Health*, 1(1), e17–e25. https://doi.org/10.1016/s2589-7500(19)30003-2
- Ben-Yacov, O., Godneva, A., Rein, M., Shilo, S., Lotan-Pompan, M., Weinberger, A., & Segal, E. (2023). Gut microbiome modulates the effects of a personalised postprandial-targeting (PPT) diet on cardiometabolic markers: a diet intervention in prediabetes. *Gut*, 72(8), 1486–1496. https://doi.org/10.1136/gutjnl-2022-329201
- Chauhan, S., Kerr, A., Keogh, B., Nolan, S., Casey, R., Adelfio, A., Murphy, N., Doherty, A., Davis, H., Wall, A. M., & Khaldi, N. (2021). An Artificial-Intelligence-Discovered Functional Ingredient, NRT_N0G5IJ, Derived from Pisum sativum, Decreases HbA1c in a Prediabetic Population. *Nutrients*, *13*(5), 1635. https://doi.org/10.3390/nu13051635
- 11. Contreras, I., & Vehi, J. (2018). Artificial intelligence for diabetes management and decision support: literature review, *J. Med.* Internet Res. 20 (5), e10775
- 12. Davenport, T., & Kalakota, R. (2019). The potential for artificial intelligence in healthcare. *Future Healthcare Journal*, 6(2), 94–
 - 98. https://doi.org/10.7861/futurehosp.6-2-94
- 13. Diabetes Technology society. (2020). Diabetes Technology: The role of artificial

- *intelligence in Diabetes Care*. Retrieved from https://www.diabetestechnology.org
- Du, Q., Liang, D., Zhang, L., Chen, G., & Li, X. (2022). Evaluation of Functional Magnetic Resonance Imaging under Artificial Intelligence Algorithm on Plan-Do-Check-Action Home Nursing for Patients with Diabetic Nephropathy. Contrast Media & Molecular Imaging, 2022(1). https://doi.org/10.1155/2022/9882532
- 15. Faruqui, S. H. A., Du, Y., Meka, R., Alaeddini, A., Li, C., Shirinkam, S., & Wang, J. (2019). Development of a deep learning model for dynamic forecasting of blood glucose level for Type 2 diabetes mellitus: secondary analysis of a randomized controlled trial. *JMIR Mhealth and Uhealth*, 7(11), e14452. https://doi.org/10.2196/14452
- Gastaldelli, A., Sabatini, S., Carli, F., Gaggini, M., Bril, F., Belfort-DeAguiar, R., Positano, V., Barb, D., Kadiyala, S., Harrison, S., & Cusi, K. (2021). PPAR-γ-induced changes in visceral fat and adiponectin levels are associated with improvement of steatohepatitis in patients with NASH. *Liver International*, *41*(11), 2659–2670. https://doi.org/10.1111/liv.15005
- 17. Guan, Z., Li, H., Liu, R., Cai, C., Liu, Y., Li, J., & Sheng, B. (2023). Artificial intelligence in diabetes management: advancements, opportunities, and challenges. *Cell Reports Medicine*, *4*(10): 101213. doi: 10.1016/j.xcrm.2023.101213.
- 18. Habes, M., Jacobson, A. M., Braffett, B. H., Rashid, T., Ryan, C. M., Shou, H., Cui, Y., Davatzikos, C., Luchsinger, J. A., Biessels, G. J., Bebu, I., Gubitosi-Klug, R. A., Bryan, R. N., & Nasrallah, I. M. (2023). Patterns of regional brain atrophy and brain aging in Middle-and Older-Aged adults with Type 1 diabetes. *JAMA Network Open*, 6(6), e2316182. https://doi.org/10.1001/jamanet workopen.2023.16182
- Han, X., Tan, J., & He, Y. (2022). Deep Learning Algorithm-Based MRI image in the diagnosis of diabetic macular edema. Contrast Media & Molecular

- *Imaging*, *2022*, 9. https://doi.org/10.1155/2022/1035619
- 20. Hong, X., Liu, G., Chi, Z., Yang, T., & Zhang, Y. (2023). Predictive model for urosepsis in patients with Upper Urinary Tract Calculi based on ultrasonography and urinalysis using artificial intelligence learning. *International Braz J Urol*, 49(2), 221–232. https://doi.org/10.1590/s1677-5538.ibju.2022.0450
- Huang, J., Yeung, A. M., Armstrong, D. G., Battarbee, A. N., Cuadros, J., Espinoza, J. C., Kleinberg, S., Mathioudakis, N., Swerdlow, M. A., & Klonoff, D. C. (2022). Artificial intelligence for predicting and diagnosing complications of diabetes. *Journal of Diabetes Science and Technology*, 17(1), 224– 238. https://doi.org/10.1177/193229682211 24583
- Jiang, F., Jiang, Y., Zhi, H., Dong, Y., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H., Wang, Y. (2017). Artificial intelligence in healthcare: past, present and future. Seminars in Cancer Biology, 47, 107-118. https://doi.org/10.1016/j.semcancer.2017.0 4.002
- 23. Joshi, S., Shamanna, P., Dharmalingam, M., Vadavi, A., Keshavamurthy, A., Shah, L., Mechanick, J.I. (2023). Digital Twin-Enabled Personalized Nutrition Improves Metabolic Dysfunction-Associated Fatty Liver Disease in Type 2 Diabetes: Results of a 1-Year Randomized Controlled Study. *Endocr Pract.* 29(12):960-970. doi: 10.1016/j.eprac.2023.08.016
- 24. Karan, D. (2023). Al-Powered Patient Education: Transforming Type 2 Diabetes Management. *Indus Journal of Medical and Health Sciences*, *1*(01), 86–108. Retrieved from https://induspublishers.com/IJMHS/article/view/57
- 25. Khalifa, M., & Albadawy, M. (2024). Artificial intelligence for diabetes: Enhancing prevention, diagnosis, effective and management. Computer Methods and **Programs** in Biomedicine Update, 5,

- 100141. https://doi.org/10.1016/j.cmpbup.2 024.100141
- 26. Khanji, C., Lalonde, L., Bareil, C., Lussier, M., Perreault, S., & Schnitzer, M. E. (2018). LASSO regression for the prediction of intermediate outcomes related to cardiovascular disease prevention using the TRANSIT quality indicators. *Medical Care*, 57(1), 63–72. https://doi.org/10.1097/mlr.00000000000000001014
- Khorraminezhad, L., Leclercq, M., O'Connor, S., Julien, P., Weisnagel, S. J., Gagnon, C., Droit, A., & Rudkowska, I. (2020). Dairy product intake modifies gut microbiota composition among hyperinsulinemic individuals. *European Journal of Nutrition*, 60(1), 159–167. https://doi.org/10.1007/s00394-020-02226-z
- 28. Lee, Y., Kim, G., Jun, J. E., Park, H., Lee, W. J., Hwang, Y., & Kim, J. H. (2023). An integrated digital health care platform for diabetes management with Al-Based dietary management: 48-Week results from a randomized controlled trial. *Diabetes Care*, 46(5), 959–966. https://doi.org/10.2337/dc22-1929
- 29. Li, J., Huang, J., Zheng, L., Li, X. (2020). Application of Artificial Intelligence in Diabetes Education and Management: Present Status and Promising Prospect. *Front Public Health*. 29(8):173. doi: 10.3389/fpubh.2020.00173
- Liu, Y., Wang, Y., Ni, Y., Cheung, C. K., Lam, K. S., Wang, Y., Xia, Z., Ye, D., Guo, J., Tse, M. A., Panagiotou, G., & Xu, A. (2019). Gut microbiome fermentation determines the efficacy of exercise for diabetes prevention. *Cell Metabolism*, 31(1), 77-91.e5. https://doi.org/10.1016/j.cmet.2019.1 1.001
- Lopez, Y. O. N., Retnakaran, R., Zinman, B., Pratley, R. E., & Seyhan, A. A. (2018b). Predicting and understanding the response to short-term intensive insulin therapy in people with early type 2 diabetes. *Molecular Metabolism*, 20, 63–

- 78. https://doi.org/10.1016/j.molmet.2018.1 1.003
- 32. Magliano, D.J., Boyko, E.J. (2021). IDF Diabetes Atlas 10th edition scientific committee. IDF DIABETES ATLAS [Internet]. 10th edition. Brussels: International Diabetes Federation; Available from: https://www.ncbi.nlm.nih.gov/books/NBK58 1934/
- 33. Moyen, A., Rappaport, A. I., Fleurent-Grégoire, C., Tessier, A., Brazeau, A., & Chevalier, S. (2022). Relative validation of an Artificial Intelligence–Enhanced, Assisted mobile app for dietary assessment adults: randomized crossover study. Journal of Medical Internet Research, 24(11),
 - e40449. https://doi.org/10.2196/40449
- 34. Nayak, A., Vakili, S., Nayak, K., Nikolov, M., Chiu, M., Sosseinheimer, P., Talamantes, S., Testa, S., Palanisamy, S., Giri, V., & Schulman, K. (2023). Use of Voice-Based Conversational Artificial Intelligence for Basal Insulin Prescription Management Among Patients With Type 2 Diabetes: A Randomized Clinical Trial. JAMA Netw Open. 1;6(12):e2340232. doi: 10.1001/jamanetworkopen
- 35. Nimri, R., Battelino, T., Laffel, L. M., Slover, R. H., Schatz, D., Weinzimer, S. A., Dovc, K., Danne, T., Phillip, M., Phillip, M., Nimri, R., Shalitin, S., Bello, R., Nevo-Shenker, M., Fisch-Shvalb, N., Shiovitch-Mantzuri, G., Choresh, O., Drutz, I., Nava, Y., & Remus, K. (2020). Insulin dose optimization using an artificial intelligence-based automated decision support system in youths with type 1 diabetes. Nature Medicine, 26(9), 1380-1384. https://doi.org/10.1038/s41591-020-1045-7
- 36. Nomura A, Noguchi M, Kometani M, Furukawa K, Yoneda T. (2021). Artificial Current Intelligence in **Diabetes** Management and Prediction. Curr Diab Rep. 21(12):61. doi: 10.1007/s11892-021-01423-2
- 37. Oikonomou, E. K., Suchard, M. A., McGuire, D. K., & Khera, R. (2022). Phenomapping-Derived tool to individualize the effect of canagliflozin on cardiovascular risk in type 2

- diabetes. Diabetes 965-Care. 45(4). 974. https://doi.org/10.2337/dc21-1765
- 38. Page, M.J., McKenzie, J.E., Bossuyt, P.M., Boutron, I., Hoffmann, T.C., Mulrow, C.D., Shamseer, L., Tetzlaff, J.M., Akl, E.A., Brennan, S.E., Chou, R., Glanville, J., Grimshaw, J.M., Hróbjartsson, A., Lalu, M.M., Li, T., Loder, E.W., Mayo-Wilson, E., McDonald, S., McGuinness, L.A., Stewart, L.A., Thomas, J., Tricco, A.C., Welch, V.A., Whiting, P., Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. PLOS Med. 18(3). e1003583. https://doi.org/10.1371/journal.p med.1003583
- 39. Park, S. W., Kim, G., Hwang, Y., Lee, W. J., Park, H., & Kim, J. H. (2020). Validation of the effectiveness of a digital integrated healthcare platform utilizing an Al-based dietary management solution and a realtime continuous glucose monitoring system for diabetes management: a randomized controlled trial. BMC Medical Informatics and Decision
 - Making, 20(1). https://doi.org/10.1186/s129 11-020-01179-x
- 40. Popp, C. J., Hu, L., Kharmats, A. Y., Curran, M., Berube, L., Wang, C., Pompeii, M. L., Illiano, P., St-Jules, D. E., Mottern, M., Li, H., Williams, N., Schoenthaler, A., Segal, E., Godneva, A., Thomas, D., Bergman, M., Schmidt, A. M., & Sevick, M. A. (2022). Effect of a Personalized Diet to Reduce Postprandial Glycemic Response vs a Low-fat Diet on Weight Loss Adults With Abnormal Glucose Metabolism and Obesity. JAMA Network Open, 5(9),
 - e2233760. https://doi.org/10.1001/jamanet workopen.2022.33760
- 41. Popp, C. J., St-Jules, D. E., Hu, L., Ganguzza, L., Illiano, P., Curran, M., Li, H., Schoenthaler, A., Bergman, M., Schmidt, A. M., Segal, E., Godneva, A., & Sevick, M. A. (2019). The rationale and design of the personal diet study, a randomized clinical trial evaluating a personalized approach to weight loss in individuals with pre-diabetes and earlystage type 2 diabetes. Contemporary Clinical

- *Trials*, *79*, 80–88. https://doi.org/10.1016/j.cct.2019.03.00
- 42. Reddy, R., Resalat, N., Wilson, L. M., Castle, J. R., Youssef, J. E., & Jacobs, P. G. (2019). Prediction of hypoglycemia during aerobic exercise in adults with type 1 diabetes. *Journal of Diabetes Science and Technology*, *13*(5), 919–927. https://doi.org/10.1177/193229681882 3792
- 43. Rein, M., Ben-Yacov, O., Godneva, A., Shilo, S., Zmora, N., Kolobkov, D., Cohen-Dolev, N., Wolf, B., Kosower, N., Lotan-Pompan, M., Weinberger, A., Halpern, Z., Zelber-Sagi, S., Elinav, E., & Segal, E. (2022). Effects of personalized diets by prediction of glycemic responses on glycemic control and metabolic health in newly diagnosed T2DM: a randomized dietary intervention pilot trial. BMC Medicine, 20(1). https://doi.org/10.1186/s12
- 44. Roberts, P. K., Vogl, W., Gerendas, B. S., Glassman, A. R., Bogunovic, H., Jampol, L. M., & Schmidt-Erfurth, U. M. (2020). Quantification of fluid resolution and visual acuity gain in patients with diabetic macular edema using deep learning. *JAMA Ophthalmology*, 138(9), 945. https://doi.org/10.1001/jamaophthalmol.2020.2457

916-022-02254-v

- Salinari, A., Machì, M., Diaz, Y. A., Cianciosi, D., Qi, Z., Yang, B., Cotorruelo, M. S. F., Villar, S. G., Lopez, L. a. D., Battino, M., & Giampieri, F. (2023c). The Application of digital technologies and Artificial intelligence in Healthcare: An Overview on nutrition assessment. *Diseases*, 11(3), 97. https://doi.org/10.3390/diseases110300 97
- 46. Sampedro-Gómez, J., Dorado-Díaz, P. I., Vicente-Palacios, V., Sánchez-Puente, A., Jiménez-Navarro, M., Roman, J. a. S., Galindo-Villardón, P., Sanchez, P. L., & Fernández-Avilés, F. (2020). Machine learning to predict stent restenosis based on daily demographic, clinical, and

- angiographic characteristics. *Canadian Journal of Cardiology*, *36*(10), 1624–1632. https://doi.org/10.1016/j.cjca.2020.01.
- Sarici, K., Yordi, S., Martin, A., Lunasco, L., Mugnaini, C., Chu, K., Moini, H., Vitti, R., Srivastava, S. K., & Ehlers, J. P. (2023). Longitudinal Quantitative Ultrawide-field fluorescein angiography Dynamics in the RUBY Diabetic Macular Edema Study. *Ophthalmology Retina*, 7(6), 543–552. https://doi.org/10.1016/j.oret.2023.01. 018
- 48. Saux, P., Bauvin, P., Raverdy, V., Teigny, J., Verkindt, H., Soumphonphakdy, T., Debert, M., Jacobs, A., Jacobs, D., Monpellier, V., Lee, P. C., Lim, C. H., Andersson-Assarsson, J. C., Carlsson, L., Svensson, P., Galtier, F., Dezfoulian, G., Moldovanu, M., Andrieux, S., & Pattou, F. (2023). Development and validation of an interpretable machine learning-based calculator for predicting 5year weight trajectories after bariatric surgery: a multinational retrospective cohort SOPHIA study. The Digital Lancet Health, 5(10), e692e702. https://doi.org/10.1016/s2589-7500(23)00135-8
- 49. Seethaler, B., Nguyen, N. K., Basrai, M., Kiechle, M., Walter, J., Delzenne, N. M., & Bischoff, S. C. (2022). Short-chain fatty acids are key mediators of the favorable effects of the Mediterranean diet on intestinal barrier integrity: data from the randomized controlled LIBRE trial. *American Journal of Clinical Nutrition*, 116(4), 928–942. https://doi.org/10.1093/ajcn/nqac175
- 50. Shakshuki, E., & Reid, M. (2015). Multi-Agent System Applications in Healthcare: Current technology and future roadmap. *Procedia Computer Science*, *52*, 252–261. https://doi.org/10.1016/j.procs.2015.05.071
- 51. Sun, X., Yan, T., Li, Z., Zhou, S., Peng, W., Cui, W., Xu, J., Cao, Z., Shi, L., & Wang, Y. (2023). Effects of Endurance Exercise and Vitamin D Supplementation on Insulin Resistance and Plasma Lipidome in Middle-Aged Adults

- with Type 2 Diabetes. *Nutrients*, *15*(13), 3027. https://doi.org/10.3390/nu15133027
- 52. Wang, Y., Hou, R., Ni, B., Jiang, Y., & Zhang, Y. (2023). Development and validation of a prediction model based on machine learning algorithms for predicting the risk of heart failure in middle-aged and older US people with prediabetes or diabetes. *Clinical Cardiology*, 46(10), 1234–1243. https://doi.org/10.1002/clc.24104
- 53. Wang, C., Yu, X., Sui, Y., Zhu, J., Zhang, B., & Su, Y. (2022). Magnetic resonance imaging data features to evaluate the efficacy of compound skin graft for diabetic foot. *Contrast Media & Molecular Imaging*, 2022(1). https://doi.org/10.1155/2022/5707231
- 54. Wei, H., Sun, J., Shan, W., Xiao, W., Wang, B., Ma, X., Hu, W., Wang, X., & Xia, Y. (2021). Environmental chemical exposure dynamics and machine learning-based prediction of diabetes mellitus. *The Science of the Total Environment*, 806, 150674. https://doi.org/10.1016/j.scitotenv. 2021.150674
- 55. World Health Organization (WHO). (2024, November 14). *Diabetes*. World Health Organization. Retrieved from https://www.who.int/news-room/fact-sheets/detail/diabetes
- Unsworth, R., Armiger, R., Jugnee, N., Thomas, M., Herrero, P., Georgiou, P., Oliver, N., Reddy, M. (2022). Safety and Efficacy of an Adaptive Bolus Calculator for Type 1 Diabetes: A Randomized Controlled Crossover Study. *Diabetes Technol Ther*. 25(6):414-425. doi: 10.1089/dia.2022.0504
- 57. Varga, T. V., Liu, J., Goldberg, R. B., Chen, G., Dagogo-Jack, S., Lorenzo, C., Mather, K. J., Pi-Sunyer, X., Brunak, S., & Temprosa, M. (2021). Predictive utilities of lipid traits, lipoprotein subfractions and other risk factors for incident diabetes: a machine approach in the learning Diabetes Prevention Program. BMJ Open Diabetes Research & Care, 9(1), e001953. https://doi.org/10.1136/bmjdrc-2020-001953

- 58. Vettoretti, M., Cappon, G., & Facchinetti, A. (2020). Advanced diabetes management using artificial intelligence and continuous glucose monitoring sensors, Sensors *20* (14) (2020), 3870. https://doi.org/10.3390/s20143870
- 59. Zhang, P., Fonnesbeck, C., Schmidt, D. C., White, J., Kleinberg, S., & Mulvaney, S. A. (2021). Using momentary assessment and machine learning to identify barriers to self-management in Type 1 diabetes: observational study. *JMIR Mhealth and Uhealth*, *10*(3), e21959. https://doi.org/10.2196/21959
- 60. Zhao, C., Shi, Q., Ma, F., Yu, J., & Zhao, A. Intelligent Algorithm-Based (2022).Ultrasound Image for Evaluating the Effect of Comprehensive Nursing Scheme on Patients with Diabetic Kidney Disease. Computational and Mathematical Methods in Medicine, 2022, 1-9. https://doi.org/10.1155/2022/6440138
- 61. Zou, X., Luo, Y., Huang, Q., Zhu, Z., Li, Y., Zhang, X., Zhou, X., & Ji, L. (2023). Differential effect of interventions in patients with prediabetes stratified by a machine learning-based diabetes progression prediction model. *Diabetes Obesity and Metabolism*, 26(1), 97–107. https://doi.org/10.1111/dom.15291