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I. INTRODUCTION 
 

Millions of individuals worldwide suffer from 

diabetes mellitus, a chronic illness (IDF, 2021). In 

2021 the age-standardized prevalence of diabetes 

was 6 percent worldwide with higher rates seen in 

the Middle East and North Africa (International 

Diabetes Federation [IDF], 2021). When the body is 

unable to regulate blood sugar levels diabetes 

develops which can result in serious complications 

like kidney failure heart disease nerve damage and 

vision loss (World Health Organization [WHO], 2021). 

The aging population poor dietary habits modern 

lifestyles and decreased physical activity are some of 

the factors contributing to the rising prevalence of 

diabetes (IDF, 2021). This emphasizes how important 

it is to improve disease diagnosis monitoring and 

management techniques. 

The medical field now has more opportunities thanks 

to recent technological advancements especially in 

the application of artificial intelligence (AI) to 

improve patient care. Computers can now process 

large amounts of health data and use AI to make 

well-informed decisions (Jiang et al., 2017). Among 

the different areas of artificial intelligence Multi-

Agent Systems (MAS) have become a popular 
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method for managing challenging tasks in dynamic 

settings. MAS are composed of multiple intelligent 

agents that exchange information communicate and 

collaborate to resolve problems (Shakshuki & Reid, 

2015). 

MAS can support diabetes care through lifestyle 

management real-time patient monitoring 

personalized treatment plans and early diagnosis. 

Agents in a MAS for example can gather information 

from wearable technology identify irregular glucose 

patterns suggest treatments and remind patients 

about following their dietary or medication regimens 

(Diabetes Technology Society, 2020). These systems 

are particularly useful in remote healthcare 

environments where continuous monitoring and 

automated decision-making can help both patients 

and healthcare professionals. 

Multi-Agent Systems (MAS) driven by artificial 

intelligence (AI) have shown promising potential in 

enhancing patient outcomes when used in diabetes 

treatment. For instance 32 adults with type 2 

diabetes participated in a randomized controlled 

trial conducted by Nayak et al. (2023). The time to 

optimal insulin dose was found to be significantly 

shorter for participants who used a voice-based 

conversational AI application (median 15 days vs. 56 

days) as well as insulin compliance (83 percent vs. 

50%) compared to those in this randomized clinical 

trial who were given standard care. 

While considering the application of MAS, the 

challenges associated with data security and privacy 

must be addressed before MAS AI systems are 

implemented in the healthcare industry. Patients 

must give their express consent before any data 

processing can start in jurisdictions like the European 

Union where adherence to the General Data 

Protection Regulation (GDPR) is mandatory. Likewise 

adherence to the Health Insurance Portability and 

Accountability Act 

  

(HIPAA) is necessary for the protection of patient 

data in the United States. By employing HIPAA- 

compliant technologies and gaining participants 

informed consent certain MAS platforms like the 

voice-based AI system utilized in the Managing 

Insulin with Voice AI (MIVA) have integrated these 

regulations. 

Although the use of Multi-Agent Systems (MAS) in 

diabetes care have been proposed in several studies, 

there is currently no systematic review that compiles 

the various ways in which these systems are applied 

and their challenges. By reviewing existing studies on 

MAS in diabetes management this paper seeks to 

close that knowledge gap. It looks at the various 

MAS architectures commonly employed in diabetes 

care and focuses on how MAS can support patient 

monitoring diagnosis treatment and self-care. 

2020 PRISMA (Preferred Reporting Items for 

Systematic Reviews and Meta-Analyses) guidelines 

by Page et al., 2021 are adhered to in this review in 

order to guarantee a transparent and high-quality 

research process. It aims to give researchers, 

healthcare providers and technology developers 

useful information about the state of MAS in 

diabetes care today. In addition, it responds to the 

research question: How can type 2 diabetes be 

diagnosed and managed more efficiently using 

Multi-Agent Systems (MAS) to enhance patient 

outcomes and healthcare efficiency? 

 

II. METHODOLOGY 

 
To guarantee thorough and transparent reporting 

this review was carried out in accordance with the 

PRISMA 2020 guidelines (Page et al., 2021). 

Compiling and summarizing research on the 

application of Multi-Agent Systems (MAS) in 

diabetes care was the aim. 

Finding studies on the use of MAS in diabetes 

treatment was the aim of the review. The process 

followed PRISMA guidelines to ensure that the 

selection extraction and analysis of studies were 

transparent and systematic. 

IEEE Xplore, PubMed, and ScienceDirect were the 

three databases that were thoroughly searched. 

Included in the search were articles published from 

2010 to 2025. Among the search terms used are 

artificial intelligence, multi-agent systems, MAS 

healthcare system, and diabetes. Boolean operators 

(AND, OR) were used to combine these terms. 

Peer-reviewed studies published between 2010 and 

2025 were eligible for inclusion. Studies were only 

included if they were in English involved human 

subjects and concentrated on the application of MAS 

in diabetes management. Articles published before 
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2010 were excluded. Also, articles not related to 

diabetes or MAS AI were also excluded. 

The results of the search were imported into 

reference management software and duplicate 

articles were removed. To determine if they met the 

inclusion requirements the abstracts and titles were 

independently screened. After that, full-text 

publications were obtained and further investigated. 

A standardized form was used to extract important 

data from each study such as the study title, authors, 

year of publication, study design, AI/ML model, the 

use of MAS AI in diabetes management, and the 

main findings. With an emphasis on the various 

applications of MAS in diabetes care as well as the 

MAS AI/ML tools used was condensed into a 

narrative format as represented in table 2.0 

The study selection process is depicted in the 

PRISMA 2020 flow diagram which provides an 

overview of how studies were located evaluated and 

included in the review. 

 

III. RESULTS 

 
A total of 308 records were retrieved from the 

original database search. There were still 204 unique 

studies after duplicates were removed. Based on the 

set inclusion and exclusion criteria, 116 studies were 

removed during title screening and 19 more during 

abstract review. Out of the remaining 88 papers 

evaluated, 43 studies satisfied all eligibility criteria 

that were included in this review. 

 Fig. 1 depicts the complete selection procedure. 

 

Eight key domains for Multi-Agent Systems (MAS) to 

be used in diabetes diagnosis and treatment were 

determined after a qualitative analysis of the studies. 

These areas show how MAS technology can help 

provide diabetes patients with more precise effective 

and personalized care. 

The use of MAS to support personalized treatment 

plans is crucial in the management and treatment of 

diabetes. To forecast blood sugar levels and modify 

insulin dosages these systems analyze patient data 

in real time. The use of MAS in this field was the 

subject of 19 out of the 43 included studies. 

In the diagnostic and imaging domain MAS aids in 

improving the accuracy of medical imaging 

instruments used to identify diabetes-related 

disorders. According to Avanzo et al. (2021), this 

involves analyzing data from scans such as MRIs and 

retinal images which can aid in the early 

identification of problems. There were eight studies 

done in this area. 

Another important domain is health monitoring 

systems. Here MAS uses wearable technology such 

as continuous glucose monitors to continuously 

measure blood sugar levels. When blood glucose 

levels become unstable these systems can notify 

patients and caregivers allowing for quicker 

interventions (Vettoretti et al., 2020). Three studies 

addressed this topic. 

Through predictive modeling MAS forecasts the 

onset of diabetes or its complications based on 

patient histories and datasets. These models can 

help with better treatment planning and early 

prevention strategies (Nomura et al., 2021). Thirty-

three studies investigated this area. 

  

Applications in public health are another area where 

MAS are utilized to create risk prediction tools for 

large populations. Strategies to prevent stroke or 

other diabetes-related conditions can be guided by 

these tools (Guan et al., 2023). In this context MAS 

was covered in eight studies. 

Systems that help patients choose healthier foods 

and lifestyles are included in the Lifestyle and Diet 

Management domain. Based on patient habits and 

medical information MAS can personalize dietary 

recommendations (Li et al., 2020). Fifteen studies 

addressed the use of MAS in this area. 

Another important area in which MAS helps medical 

professionals is in clinical decision support where it 

sorts and analyzes patient data to recommend the 

best treatment choices. Clinical decisions can 

become more accurate and data-driven with the 

help of these systems (Alowais, 2023). There were 22 

studies that addressed this domain. 

Lastly systems that assist patients in continuing to 

participate in their own care are referred to as Patient 

Engagement and Self-Management. Reminders 

patient progress tracking and advice on how to 

improve treatment plan adherence can all be 

provided by MAS-based apps and platforms (Karan, 

2023). This domain was covered by twenty studies. 

Overall, medical professionals can also benefit from 

MASs assistance in clinical decision support where it 
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sorts and evaluates patient data to suggest the best 

course of action. Figure 2 and the Appendix Table 

display the eight domains that were identified. The 

eight identified domains are shown in Figure 2 and 

the Appendix Table. While Table 1 displays the 

distribution of studies across these domains. Figure 

3 details the specific contributions of MAS in the 

treatment of diabetes. 

 

Fig. 1. PRISMA flowchart of study selection and 

inclusion procedure 

 
 

 
Fig. 2. Eight Domains in which MAS AI Enhances 

Diabetes Management (Khalifa and Albadawy, 2024). 

 

 

 

 

 

 

 

Table 1: This table lists the eight areas where MAS 

AI improves diabetes care along with the number of 

studies covered by each of the 43 papers that were 

chosen. 

 
Domain Number of studies 

discussing each 

Developing Predictive Models 33 

Enhancing Clinical Decision Making 22 

Patient Engagement and Self-management 20 

Diabetes Management and Treatment 19 

Lifestyle and Dietary Management  15 

Public Health Interventions 8 

Diagnostics and Imaging Technologies 8 

Health Monitoring Systems 3 

 

 
 

Fig.3. MAS AI Contribution to Diabetes 

Management based on the selected studies. 

 

 
 

Fig. 4. Depicts interaction between core agents in 

MAS applications for management of diabetes. 
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Table 2: Author and Year of Publication, Outcome 

Measures, Population/Participants, Sample Size, 

Intervention/Exposure, and Findings. 

 

 

 

 

 
S

N 

Author and 

Year 

Aim Population/ 

Participants 

Sample 

Size 

Intervention/ 

Exposure 

Outcome 

Measures 

AI./ML 

Model 

Findings  

1 Roberts et al., 

2021 

To check the 

volumetric 

changes 

intra-retinal 

and sub-

retinal fluid 

in the DME 

in the course 

of anti-VEGF 

treatment 

using deep 

learning.  

DME 

patients 

570 Anti-VEGF 

treatment 

Changes in 

fluid volume, 

acuity 

Deep 

Learning 

Algorithms 

The presence of 

sub-retinal fluid 

was linked to a 

lower baseline 

visual acuity but 

a good response 

to treatment 

according to 

automated fluid 

segmentation in 

diabetic macular 

edema. 

2 Hong et al., 

2021 

To create a 

predictive 

model for 

urosepsis risk 

in patients 

with upper 

urinary tract 

calculi 

Patients with 

upper urinary 

tract calculi 

1716 Urinalysis  and 

ultrasonograph

y 

Prediction of 

urosepsis 

Artificial 

Neural 

Network 

(ANN) 

A model based 

on artificial 

intelligence 

learning was 

able to 

accurately 

predict the risk 

of urosepsis in 

patients with 

upper urinary 

tract calculi. 

3 Abraham et al., 

2021 

To identify 

biomarkers 

predicting 

response to 

Patients 

having 

diabetic 

24 Anti-VEGF 

therapy 

OCT imaging 

biomarkers 

expression of 

cytokines  

Optical 

coherence 

tomography 

machine 

learning 

Identified 

biomarkers that 

connect cytokine 

expression and 

OCT phenotype 
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anti-VEGF in 

DME 

muscular 

edema 

augmented 

segmentation 

platform 

to predict how 

diabetic macular 

edema patients 

will respond to 

antivascular 

endothelial 

growth factor 

treatment.  

4 Sun et al.,  To 

investigate 

how insulin 

resistance in 

T2D is 

influenced by 

exercise and 

vitamin D 

Type 2 

diabetic 

middle-aged 

adults  

61 Endurance 

exercise and 

supplementati

on of vitamin 

D 

Insulin 

resistance, 

plasma 

lipidome 

Dietary-

based AI 

management 

solution 

Used a 

continuous 

glucose 

monitoring 

system and an 

AI-based dietary 

management 

solution to 

examine the 

effectiveness of 

a digitally 

integrated 

healthcare 

platform in 

patients with 

type 2 diabetes. 

5 Nimri et al., 

2020 

To compare 

how 

physicians 

and AI-DSS 

youths with 

type 1 

diabetes 

adjust insulin 

dosages 

Youths with 

Type 1 

Diabetes 

108 AI-DSS for 

insulin 

adjustment 

Time within 

target glucose 

range 

Artificial 

Intelligence-

based DSS 

An automated 

artificial 

intelligence (AI) 

decision support 

system for 

optimizing 

insulin dosage 

was safe and 

successful in 
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within the 

target glucose 

range (AI-

DSS) 

treating type 1 

diabetes in 

young people. 

6 Sampedro et 

al., 2020 

To utilize ML 

to predict 

stent 

restenosis  

Patients with 

stent 

implantation 

263 Not specified Stent 

restenosis 

prediction 

Different ML 

classifiers 

Stent restenosis 

in patients 

following 

percutaneous 

coronary 

intervention was 

predicted by a 

machine 

learning model 

that performed 

better than 

current scores. 

7 Unsworth et 

al., 2023 

To assess the 

ABC4D 

system for 

insulin bolus 

doses in T1D 

Type 1 

Diabetic 

adults 

37 Insulin dosing 

ABC4D 

system 

Glycemic 

control 

Case-based 

reasoning 

techniques 

Insulin bolus 

doses can be 

safely adjusted 

with the 

Advanced Bolus 

Calculator for 

Type 1 Diabetes 

(ABC4D) which 

also offers the 

same degree of 

glycemic control 

as the 

nonadaptive 

bolus calculator.  
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8 Moyen et al., 

2022 

To evaluate 

the app 

Keenoas 

dietary 

assessment 

validity in 

comparison 

to ASA24. 

Adults with 

or without 

diabetes  

136 Keenoa app 

for dietary 

tracking 

Reported 

intake of 

nutrients and 

energy 

AI enhanced 

app 

When 

comparing the 

energy 

macronutrient 

and 

micronutrient 

intakes of 

diabetics and 

healthy adults to 

ASA24 showed 

moderate to 

strong validity 

according to the 

Keenoa app 

9 Benhamou et 

al., 2019 

To evaluate 

the 

effectiveness 

of digital 

health care 

platforms 

with AI-

based dietary 

management  

for T2D 

Type 1 

diabetic 

adults 

68 DBLG1 hybrid 

closed-loop 

system 

Glucose target 

range 

hypoglycemic 

episodes 

Machine 

Learning-

based 

algorithms 

The DBLG1 

system is 

superior to 

sensor-assisted 

insulin pumps in 

terms of glucose 

control and 

closed-loop 

insulin use. 

10 Zhao et., 2022 Utilizing 

ultrasound 

imaging 

examine how 

a 

comprehensi

ve nursing 

plan affects 

patients with 

Patients with 

diabetic 

kidney 

disease 

44 Comprehensiv

e nursing plan 

Quality of life, 

renal function 

and 

complication. 

K non-local-

means 

filtering 

algorithm for 

ultrasound i 

Patients with 

diabetic kidney 

disease can 

benefit greatly 

from nursing 

interventions 

that help them 

improve and 

control their 
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diabetic 

kidney 

disease. 

renal function 

and ultrasound 

images that 

employ a clever 

algorithm are 

able to recognize 

this 

dynamically. 

11 Du et al., 2022 To evaluate 

the impact of 

Fmri 

UNDER AI 

on diabetic 

nephropathy 

home nursing  

Patients with 

diabetic 

nephropathy 

64 PDCA home 

nursing  

Home nursing 

efficacy and 

nursing 

satisfaction 

Fuzzy C-

means 

clustering 

algorithm 

FCM algorithm 

detected 

activation 

regions in fMRI 

images more 

effectively 

reducing error 

and aiding in 

diagnosis. for 

food 

identification.. 

12 Alfonsi et al. 

2020 

To test the 

app’s 

usability and 

effect on 

carbohydrate 

counting 

accuracy 

Type 1 

diabetic 

youth 

22 iSpy 

carbohydrate 

counting app 

Accuracy of 

carbohydrate 

counting, 

HbA1c levels 

Machine 

learning for 

food 

identification 

The high 

acceptability of 

iSpy a new app 

for counting 

carbohydrates 

supports its use 

in the treatment 

of young 

individuals with 

type 1 diabetes. 

13 Han et al., 

2022 

To evaluate 

the 

effectiveness 

of a deep 

DME 

patients 

96 Deep learning 

3D 

convolutional 

neural network 

Quality of 

MRI image, 

3D-CNN The diagnostic 

accuracy of 

diabetic macular 

edema was 
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learning 

algorithm in 

diagnosing 

Diabetic 

Macular 

Edema 

(DME) 

(3D-CNN) 

algorithm for 

MRI images 

and diagnostic 

accuracy. 

greatly increased 

by deep learning 

algorithm-based 

MRI. 

14 Reddy et al., 

2019 

To develop 

algorithms to 

predict 

exercise-

related 

hypoglycemi

a in T1D 

Type 1 

diabetic 

adults 

43 Not specified Hypoglycemia 

prediction 

during 

exercise 

Decision tree 

and random 

forest models 

Two algorithms 

for predicting 

hypoglycemia in 

adults with Type 

1 Diabetes 

during physical 

activity were 

developed and 

evaluated. 

15 Liu et al., 2020 To test 

exercise-

induced 

alterations in 

gut 

microbiota 

and their 

impact on 

glucose 

homeostasis 

Pre-diabetic 

men 

39 Exercise Glucose 

homeostasis, 

insulin 

sensitivity 

Machine-

learning 

algorithm 

Changes in the 

gut microbiota 

brought on by 

exercise were 

linked to insulin 

sensitivity and 

glucose 

homeostasis in 

prediabetes. 

16 Oikonomou et 

al., 2022 

To develop 

an ML-based 

tool for 

personalized 

ASCVD 

Type 2 

diabetic 

patients 

4327 Canagliflozin Major adverse 

cardiovascular 

events 

Extreme 

gradient 

boosting 

algorithm 

The ability to 

biosynthesize 

short-chain fatty 

acids was 

improved in 

responders. A 

decision support 
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effects of 

canagliflozin 

tool based on 

machine 

learning to 

customize the 

benefits of 

canagliflozin for 

type 2 diabetes 

patients with 

atherosclerotic 

cardiovascular 

disease 

(ASCVD) was 

created. 

17 Zou et al., 2024 To check the 

effects of 

stratifying 

prediabetes 

patients by 

diabetes 

progression 

risks on their 

response to 

interventions 

Pre-diabetic 

patients 

2,558 Lifestyle 

and/or 

pioglitazone 

intervention 

Reversal of 

prediabetes 

and 

progression of 

diabetes 

Machine 

learning 

model 

(XGBoost) 

Patients’ 

response to 

different 

interventions 

were affected 

when they were 

stratified by 

diabetes 

progression risks 

using a machine 

learning-based 

model for 

prediabetes. 

18 Nayak et al., 

2023 

Examine the 

efficacy of a 

voice-based 

AI 

application in 

insulin 

titration 

Type 2 

diabetic 

patients 

32 Voice-based 

AI application 

for insulin 

management 

Optimal 

insulin dose, 

adherence, 

glycemic 

control 

Conversation

al AI 

application 

Comparing 

voice-based 

conversational 

AI to standard 

care the results 

showed 

significant 
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improvements in 

time to optimal 

insulin dose 

insulin 

adherence 

glycemic control 

and emotional 

distress related 

to diabetes. 

19 Varga et al., 

2021 

To compare 

the 

discriminativ

e utility of 

various 

biomarkers 

for diabetes 

prediction 

Prediabetic 

individuals 

2590 Not applicable Incident 

diabetes 

Machine 

learning 

algorithms 

NMR-derived 

biomarkers did 

not improve 

diabetes risk 

discrimination 

over 

conventional 

risk factors. 

20 Faruqui et al., 

2020 

To predict 

daily glucose 

levels in 

T2DM based 

on lifestyle 

data 

Type 2 

diabetic 

patients 

10 Mobile health 

lifestyle data 

Prediction of 

blood glucose 

level 

Long short-

term 

memory-

based RNNs 

Future glucose 

levels in patients 

with type 2 

diabetes were 

accurately 

predicted by a 

deep learning 

model based on 

mobile health 

data. 

21 Wet et al., 

2022 

To evaluate 

the use of 

environmenta

l chemical 

exposure in 

predicting 

General 

population 

8,501 Environmental 

chemical 

exposure 

Prediction of 

diabetes 

Random 

forest, 

LASSO 

regression 

Diabetes 

mellitus was 

accurately 

predicted by 

environmental 

chemical 
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diabetes 

mellitus 

exposure 

dynamics and 

machine 

learning 

highlighting the 

predictive power 

of common 

environmental 

chemicals for 

complex 

diseases. 

22 Popp et al., 

2022 

To compare 

the 

effectiveness 

of a 

personalized 

diet vs a low-

fat diet for 

weight loss in 

adults with 

abnormal 

glucose 

Adults with 

abnormal 

glucose 

metabolism 

and obesity 

204 Personalized 

diet vs low-fat 

diet 

Weight loss, 

body 

composition 

Machine 

learning 

algorithm 

At six months a 

customized diet 

aimed at 

lowering the 

postprandial 

glycemic 

response did not 

lead to more 

weight loss than 

a low-fat diet.  

23 Wang et al., 

2023 

To develop 

and validate 

an ML-based 

prediction 

model for 

heart failure 

risk in 

patients with 

prediabetes 

or diabetes 

Middle-aged 

and older 

individuals 

with 

prediabetes 

or diabetes 

54 Not applicable Heart failure 

risk prediction 

Various ML 

algorithms, 

including 

random 

forest 

The risk of heart 

failure in US 

people with 

diabetes or 

prediabetes was 

accurately 

predicted by a 

machine 

learning model. 
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24 Chauhan et al., 

2021 

To 

investigate a 

functional 

ingredient for 

glucose 

regulation in 

prediabetes 

Individuals 

with elevated 

HbA1c 

Not 

specifie

d 

NRT_N0G5IJ 

supplementati

on 

Glycated 

hemoglobin 

levels 

reduction 

AI for 

ingredient 

discovery 

AI was used to 

find a useful pea 

ingredient that 

was 

demonstrated to 

lower HbA1c in 

pre-diabetic 

individuals. 

25 Avari  et  al., 

2021 

To assess the 

safety and 

efficacy of 

the PEPPER 

system for 

personalized 

bolus advice 

in type 1 

diabetes 

Type 1 

diabetic 

individuals 

54 PEPPER 

system for 

bolus advice 

Glycemic 

outcomes, and 

safety 

Case-based 

reasoning AI 

While the 

PEPPER 

Adaptive Bolus 

Advisor and 

Safety System 

was safe it had 

no effect on type 

1 diabetes 

glycemic 

outcomes when 

compared to 

control. 

26 Ashrafi et al., 

2021 

To assess 

postprandial 

glucose 

concentration

s in patients 

post-bariatric 

surgery 

Morbidly 

obese 

patients 

undergoing 

surgery 

17 RYGB or 

OAGB surgery 

Glucose 

concentrations

, carbohydrate 

intake 

Machine 

learning 

model 

Explored the use 

of machine 

learning to 

model 

postprandial 

glucose levels in 

obese patients 

undergoing 

gastric bypass 

surgery. 

27 Sarici et al., 

2023 

To 

investigate 

quantitative 

Patients with 

diabetic 

44 Aflibercept 

injection or 

Changes in 

UWFA 

Machine 

learning-

enabled 

Quantitative 

ultra-wide field 

angiographic 
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UWFA 

parameters in 

DME 

treatment 

macular 

edema 

combined IAI/ 

nesvacumab 

parameters, 

OCT metrics 

feature 

extraction 

parameters for 

diabetic macular 

edema eyes 

treated with IAI 

with or without 

nesvacumab 

significantly 

improved.  

28 Khorraminezh

ad et al., 2021 

To 

investigate 

the effect of 

high dairy 

intake on gut 

microbiota 

and insulin 

resistance 

Adults with 

hyperglycem

ia 

10 High dairy 

intake 

Gut 

microbiota 

composition, 

insulin 

resistance 

Machine 

learning 

analyses 

In hyper-

insulinemic 

individuals, 

dairy 

consumption 

negatively 

correlates with 

insulin 

resistance and 

changes the gut 

microbiotas 

composition. 

29 Joshi et al., 

2023 

To evaluate 

the effect of 

DT-enabled 

personalized 

nutrition on 

T2D and 

MAFLD 

Patients with 

T2D 

319 Personalized 

meal plans by 

AI 

Change in 

HbA1c, liver 

fat scores 

Digital Twin 

technology 

Patients with 

type 2 diabetes 

who received 

individualized 

nutrition enabled 

by digital twins 

saw a significant 

improvement in 

fatty liver 

disease linked to 

metabolic 

dysfunction. 
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30 Saux et al., 

2023 

To develop a 

model for 

predicting 

individual 5- 

year weight 

loss 

trajectories 

after bariatric 

surgery 

Post-bariatric 

surgery 

patients 

10,231 Bariatric 

surgery 

(different 

types) 

5-year weight 

loss 

trajectories 

LASSO, 

CART 

algorithms 

A machine 

learning-based 

calculator 

successfully 

forecasted the 

weight 

trajectories of a 

multinational 

cohort five years 

following 

bariatric surgery. 

31 Popp et al., 

2019 

To evaluate 

two dietary 

interventions 

for weight 

loss in T2D 

Individuals 

with 

prediabetes 

and T2D 

Not 

specifie

d 

Low-fat diet 

and 

personalized 

diet using ML 

algorithm 

Changes in 

energy 

expenditure, 

body weight, 

and 

composition  

Machine 

learning for 

dietary 

response 

Two dietary 

interventions 

were used: a 

customized diet 

based on a 

machine-

learning 

algorithm and a 

low-fat diet.to 

help people with 

prediabetes and 

type 2 diabetes 

lose weight. 

32 Seethaler et al., 

2022 

To determine 

if the 

Mediterranea

n diet, via 

SCFAs, 

improves 

intestinal 

barrier 

integrity 

Women with 

intestinal 

barrier 

impairment 

260 Mediterranean 

diet 

SCFA 

concentrations

, intestinal 

permeability 

Machine-

learning 

algorithm 

By producing 

short-chain fatty 

acids the 

Mediterranean 

diet improved 

the intestinal 

barriers 

integrity. 
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33 Oikonomou et 

al., 2022 

To define 

personalized 

cardiovascula

r benefits of 

intensive 

systolic 

blood 

pressure 

controll 

Patients with 

hypertension 

Not 

specifie

d 

Intensive 

systolic blood 

pressure 

control 

Prediction of 

cardiovascular 

events 

XGBoost 

algorithm 

By applying 

machine 

learning to 

clinical trial data 

it was possible to 

successfully 

customize the 

cardiovascular 

benefits of 

rigorous systolic 

blood pressure 

control in 

patients with or 

without type 2 

diabetes. 

34 Zhang et al., 

2022 

To create an 

algorithm for 

machine 

learning that 

will forecast 

the likelihood 

that young 

adults with 

Type 1 

Diabetes will 

neglect their 

self-

management. 

Adolescents 

with Type 1 

Diabetes 

Not 

specifie

d 

Momentary 

assessment 

data, blood 

glucose data 

Self-

management 

behaviors 

Machine 

learning-

based 

filtering 

architecture 

Machine 

learning showed 

promise in 

forecasting type 

1 diabetes self-

management 

when combined 

with short-term 

assessment data. 

35 Habes et al., 

2023 

To assess 

brain age and 

AD-like 

atrophy in 

adults with 

Type 1 

diabetic 

adults 

416 Not applicable Cognitive 

performance, 

brain age, and 

atrophy 

Machine 

learning 

indices for 

brain age 

The study 

indicates that 

people with 

Type 1 Diabetes 

who do not 
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type 1 

diabetes. 

exhibit early 

symptoms of 

Alzheimer’s-

related 

neurodegenerati

on may have an 

accelerated rate 

of brain aging... 

36 Khanji et al., 

2019 

To look into 

therapeutic 

target 

prediction 

models for 

patients with 

cardiovascula

r disease who 

have 

dyslipidemia 

and 

hypertension. 

Patients with 

hypertension, 

dyslipidemia, 

diabetes 

870 Not specified Achieving 

therapeutic 

targets 

Lasso 

regression, 

machine 

learning 

Found five 

process 

indicators that 

have good 

predictive 

validity for 

intermediate 

outcomes 

pertaining to the 

prevention of 

cardiovascular 

disease. 

37 Gastaldelli et 

al., 2021 

To 

understand 

the effect of 

PPAR-γ 

agonists on 

steatohepatiti

s in NASH  

NASH 

patients 

55 PPAR-γ 

agonists 

(pioglitazone) 

Hepatic/viscer

al fat, 

adiponectin 

levels 

Machine 

learning 

techniques 

In NASH 

patients the 

histological 

benefits of 

PPAR-γ action 

are mediated by 

improved fat 

distribution 

reduced visceral 

fat and elevated 

adiponectin. 
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38 Park et al., 

2020 

To evaluate 

digital 

healthcare 

platform with 

AI-based 

dietary 

management 

for adults 

with type 2 

diabetes 

Type 2 

diabetic 

adults 

284 Digital 

healthcare 

platform with 

AI-based 

dietary 

management 

Change in 

HbA1c, 

weight loss 

AI-based 

dietary 

management 

solution 

Evaluated how 

well a digitally 

integrated 

healthcare 

platform treated 

patients with 

type 2 diabetes 

using an AI-

based dietary 

management 

tool and a 

continuous 

glucose 

monitoring 

system. 

39 Lopez et al., 

2019 

To forecast 

and 

understand 

the response 

to intensive 

insulin 

therapy in 

early type 2 

diabetes 

Adults with 

early type 2 

diabetes 

24 Short-term 

intensive 

insulin therapy 

Beta-cell 

function, 

postprandial 

glucose 

responses 

Random 

survival 

forest and 

Cox models 

Identified 

potential the 

pathophysiologi

c elements 

affecting the 

reversibility of 

beta-cell 

dysfunction and 

identified 

possible 

responders to 

intensive insulin 

therapy in early 

type 2 diabetes. 

40 Lee et al., 2023 To evaluate 

an integrated 

digital health 

care platform 

Type 2 

diabetic 

adults 

294 health care 

platform with 

AI-based 

Glycemic 

control, and 

weight loss 

AI-driven 

dietary 

management 

Adults with type 

2 diabetes who 

used an AI-

driven dietary 
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with AI-

based dietary 

management 

for type 2 

diabetes 

dietary 

management 

management 

system in 

conjunction with 

an integrated 

digital health 

care platform 

observed 

improved 

glycemia and 

increased weight 

loss. 

41 Ben-Yacov et 

al., 2023 

To assess a 

digital health 

care platform 

that 

combines AI-

powered type 

2 diabetes 

dietary 

management. 

Prediabetic 

adults 

200 Personalised 

postprandial 

targeting diet 

vs. 

Mediterranean 

diet 

Microbiome 

composition, 

cardiometabol

ic markers 

Machine 

learning for 

diet response 

prediction 

Supported the 

idea that the gut 

microbiota plays 

a role in 

controlling how 

dietary 

modifications 

affect cardio-

metabolic 

outcomes which 

in turn helps to 

reduce 

comorbidities in 

pre-diabetes. 

42 Wang et al., 

2022 

To evaluate 

the role of 

MRI data 

characteristic

s in 

evaluating 

compound 

skin graft 

Patients with 

diabetic foot 

78 Compound 

skin graft 

treatment 

Healing time, 

recurrence 

rate, scar score 

KNL-Means 

filtering 

algorithm for 

MRI 

With the use of 

deep learning 

algorithms and 

additional 

reference 

information 

from MRI image 

data 
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treatment for 

diabetic foot 

characteristics 

the effectiveness 

of compound 

skin 

transplantation 

for diabetic foot 

can be assessed. 

43 Rein et al., 

2022 

To 

investigate 

the effects of 

a 

personalized 

postprandial-

targeting diet 

on glycemic 

control in 

T2DM 

Newly 

diagnosed 

Type 2 

diabetic 

adults 

23 Personalized 

postprandial-

targeting diet 

Glycemic 

measures, 

metabolic 

health 

parameters 

Machine 

learning 

algorithm 

Glycemic 

control was 

better with 

personalized 

diets based on 

glycemic 

response 

prediction in 

individuals with 

newly diagnosed 

type 2 diabetes 

than with a 

Mediterranean-

style diet. 

 

 

 

IV. DISCUSSION 
 

The purpose of this systematic review was to 

investigate the use of Multi-Agent Systems (MAS) in 

the diagnosis and treatment of diabetes particularly 

type 2. The ability of MAS to handle massive volumes 

of data support early diagnosis and customize care 

for each patient has drawn interest in the healthcare 

industry. According to the reviewed studies MAS can 

significantly enhance the effectiveness and quality of 

diabetes care when paired with techniques like data 

analysis. 

One of MAS main advantages is its ability to gather 

and assess data from multiple sources such as 

patient reports electronic health records and blood 

glucose monitors to support better diagnosis and 

treatment decision-making (Huang et al., 2023; 

Contreras and Vehi, 2018; Vettoretti et al., 2020). For 

example Li et al. (2020), demonstrated how MAS 

could provide patients with real-time guidance and 

instruction for managing chronic conditions like 

diabetes. In addition Nomura et al. and Guan et al. 

(2021), discovered that through large-scale health 

data analysis MAS can assist in the detection of 

complications such as diabetic retinopathy and 

kidney disease enhancing patient outcomes and 

early intervention. 
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Support for individualized care is another important 

advantage of MAS. Unlike conventional fixed 

treatment plans these systems are adaptable enough 

to modify to each patient’s condition lifestyle and 

response to treatment (Rein et al., 2022; & Popp et 

al., 2022). This flexibility is essential for type 2 

diabetes management as each patient’s unique 

disease progression and health status require a 

personalized course of treatment. Joshi et al. for 

instance, in 2023, demonstrated that blood sugar 

levels in individuals with both diabetes and fatty liver 

disease were improved by a MAS intended to aid 

with nutrition. According to other research food-

related MAS improved long-term control and 

lessened blood sugar swings (Ben-Yacov et al., 2023 

& Lee et al., 2023). 

Additionally MAS are essential in enabling patients 

to take charge of their own health care. These 

systems use real-time data to give patients 

recommendations on diet exercise and insulin use 

(Karan, 2023; Alowais et al., 2023; & Park et al., 2020). 

Zhang et al. (2022), and Avari et al. (2021), discovered 

that MAS assisted patients in controlling their blood 

sugar levels and preventing crises. Additionally 

research indicates that younger individuals with type 

1 diabetes who utilized these systems expressed 

greater satisfaction and improved treatment plan 

adherence (Alfonsi et al., 2020). 

However, a number of challenges must be addressed 

before MAS can be applied extensively in clinical 

settings. According to research, many MAS are still 

in the research stage and have not yet been put to 

the test in actual hospital settings (Contreras and 

Vehi, 2018; Tahir & Farhan, 2023). This limits the 

findings applicability and raises doubts about their 

reliability and usefulness. Concerns have also been 

raised regarding these systems usability data privacy 

and compatibility with current medical equipment 

(Bajwa et al., 2021). It is also difficult to approve and 

widely adopt these systems since there are no clear 

standards for assessing their performance and safety 

(Salinari et al., 2023). 

It is also a problem how much patients and medical 

professionals can trust these systems particularly 

when it comes to making important medical 

decisions. Although MAS can provide useful 

recommendations some experts are concerned that 

a reliance on these systems may compromise clinical 

judgment by healthcare providers or patient-

physician trust (Davenport & Kalakota, 2019). 

Maintaining human expertise at the forefront of 

healthcare while using MAS for decision support will 

require striking a balance. 

This reviews studies demonstrated that the majority 

of Multi-Agent Systems (MAS) used to manage 

diabetes had a well-defined structure with distinct 

roles for each agent. Figure 4 shows the relationship 

between the primary agent types frequently found in 

MAS applications for diabetes management. First, 

the Monitoring Agent gathers information from a 

variety of sources including glucose sensors and 

mobile devices. This data is analyzed by the 

Diagnostic Agent to look for patterns or early 

warning signs of issues. Using this analysis the 

Advisory Agent creates personalized 

recommendations that are sent to the patient 

through the Communication Agent. This 

coordinated architecture supports patient 

engagement and ongoing adaptive care. 

Despite challenges MAS has shown promise in 

helping healthcare providers by automating 

repetitive tasks identifying health risks and 

suggesting treatments (Nomura et al., 2021; Hong et 

al., 2023 & Wang et al., 2023). This can reduce the 

workload for clinicians enhance the quality of care 

and enable more effective use of medical resources. 

This review concludes by pointing out that MAS may 

enhance diabetes diagnosis and treatment. Better 

results in the treatment of diabetes may result from 

MASs integration of various data sources 

individualized treatment and patient empowerment. 

More research in practical settings is necessary to 

address present issues and ensure that these 

systems can be safely and effectively used in clinical 

practice. 

 

V. CONCLUSION 

 
The review highlights how Multi-Agent Systems 

(MAS) can improve the diagnosis and treatment of 

diabetes especially type 2. There is great potential for 

enhancing diagnostic accuracy enabling 

individualized treatment plans and equipping 

patients with self-management resources through 

the integration of MAS into diabetes care. By 

analyzing complex data from various sources MAS 
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enables more accurate decision-making and offers 

patients individualized treatments that meet their 

particular requirements. There are still significant 

challenges to be addressed in spite of these 

advantages. To validate the results of recent studies 

and guarantee the dependability of the systems in 

clinical practice further research is essential 

especially in real-world contexts. In order to address 

concerns regarding patient privacy and system 

compatibility strong data security and privacy 

protocols are essential as is seamless integration 

with existing healthcare systems. In order to 

guarantee the safety and efficacy of MAS 

applications over time it is also essential to establish 

unambiguous regulatory frameworks and conduct 

ongoing monitoring. 

Cross-disciplinary cooperation will be essential to 

the development of MAS technology. To create tools 

that are not only technically sound but also useful 

and in line with the realities of clinical care healthcare 

professionals researchers and legislators must 

collaborate. Ensuring healthcare personnel have the 

required training to effectively use MAS and 

communicate its benefits and drawbacks to patients 

is also essential to the successful deployment of 

these systems 

Despite continuing obstacles MAS integration into 

diabetes care holds great promise for improving 

patient outcomes and streamlining healthcare 

delivery. Increased interdisciplinary collaboration in 

research and a focus on patient-centered design 

could make these systems a significant component 

of modern healthcare offering diabetics more 

effective care. 
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