
 Dr. Krishn Kumar, 2025, 13:3

ISSN (Online): 2348-4098

ISSN (Print): 2395-4752

© 2025 Dr. Krishn Kumar. This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly credited.

International Journal of Science,
Engineering and Technology

An Open Access Journal

Performance and Scalability Optimization in

“Meetshield”: A Java-Based Safe Learning Platform

Using Multithreading, Websockets, And Mobile-

Centric Enhancements
Dr. Krishn Kumar, bShristi Srivastava,Kriti Ramani ,Tripti Srivastava

Department of Computer Science and Engineering, Institute of Technology & Management, Gida, Gorakhpur

I. INTRODUCTION

Optimization is a fundamental aspect of developing

high-performance and scalable web applications [1],

[6], [18]. In the context of e-learning systems, where

real-time responsiveness, media processing, and

data integrity are critical, performance tuning

becomes even more essential [5], [7], [11]. This paper

focuses on enhancing the efficiency of a Java-based

Safe Learning Platform through a comprehensive set

of optimization techniques. These include

multithreading [2], asynchronous processing [3],

caching strategies [12], WebSockets for real-time

communication [4], [5], GPU acceleration [10], and

the use of optimized data structures [6].

The platform faces performance challenges in areas

such as video processing, face detection [9], real-

time interaction [4], [5], and database operations

[11]. By systematically addressing these bottlenecks,

we achieve substantial improvements in task

execution speed, responsiveness, and overall system

throughput. The proposed optimizations are

evaluated through performance testing and

benchmarking [13], [14], validating their

effectiveness in real-world learning scenarios.

II.TECHNOLOGIES USED AND THEIR ROLE IN

OPTIMIZATION

A. Java Multithreading and Concurrency

Java multithreading allows parallel execution of

independent tasks, improving CPU utilization and

system responsiveness [2]. The Java Concurrency API

provides robust abstractions for efficient multi-

threaded programming:

Abstract- This paper presents a comprehensive study of optimization techniques applied to a Safe

Learning Platform developed in Java. The platform's performance and scalability are significantly

enhanced through the implementation of Java concurrency mechanisms , multithreading

asynchronous processin, Web-Sockets for real-time communication , efficient data structures and

algorithms (DSA) , GPU acceleration , and caching strategies . The system architecture integrates

modern technologies, including Spring Boot , WebRTC , Redis , OpenCV , MySQL, and Hibernate [, to

support robust, real-time, and scalable learning experiences. Performance testing and benchmarking

results validate the effectiveness of these optimizations, demonstrating measurable improvements

in task execution speed and overall system efficiency .

Keywords - Java optimization , multithreading , concurrency , WebSockets , DSA , performance tuning

, safe learning platform, WebRTC , Spring Boot , Redis , OpenCV , MySQL, Hibernate.

 Dr. Krishn Kumar. International Journal of Science, Engineering and Technology,

 2025, 13:3

2

 Executors: Efficiently manage thread pools for

concurrent task execution [2].

 Fork/Join Framework: Decomposes tasks into

subtasks for parallelism using a work-stealing

algorithm [2].

 CompletableFuture: Enables non-blocking

asynchronous computation, improving

throughput in IO-heavy operations .

 B. WebSockets for Real-Time Communication

 WebSockets provide a full-duplex

communication channel over a single, persistent

TCP connection [4].They are used to support

real-time features such as live lectures, chat

systems, and notifications[5]:

 Persistent Connections: Reduce the overhead of

repeated handshakes compared to traditional

HTTP polling [4].

 Event-Driven Model: Enables real-time

interactions, enhancing user experience in

dynamic learning scenarios [4].

 C. Data Structures and Algorithms (DSA) for

Optimization

 The use of efficient data structures and

algorithms significantly reduces processing time

and memory usage [6]:

 Trie Structures: Improve auto-suggestion

capabilities in search functionality.

 Priority Queues: Enhance task scheduling for

background operations.

 Graph Algorithms: Used to implement Role-

Based Access Control (RBAC), ensuring secure

and structured permission handling [6].

 D. Spring Boot and Spring Security

 Spring Boot simplifies Java backend

development through auto-configuration,

dependency injection, and RESTful service

creation [7]. Spring Security enforces

authentication and authorization policies [8]:

 @Async Annotation: Enables non-blocking

execution of methods [7].

 Spring Cache: Caches frequently accessed data

to reduce latency and database load [7].

 E. OpenCV for Face Detection

 OpenCV is employed for real-time face

detection using both classical and deep learning

approaches [9]:

 Haar Cascade Classifiers: Lightweight but less

accurate; used for quick scanning.

 DNN-Based Models: Offer higher accuracy at the

cost of computational complexity.

 GPU Acceleration with CUDA: Boosts image

processing performance by 10x to 100x [10].

 Optimized Preprocessing: Reduces image

processing latency by up to 30% [9].

 F. MySQL, Hibernate, and Redis for Database

Optimization

 A combination of MySQL, Hibernate ORM, and

Redis caching ensures efficient data access and

management [11], [12]:

 Connection Pooling: Minimizes database

connection overhead [11].

 Indexing and Query Optimization: Speeds up

complex data retrieval [11].

 Caching with Redis: Reduces redundant queries

by storing frequently accessed

 data in memory [12].

III. CODE COMPARISONS: INCORRECT

VS. OPTIMIZED IMPLEMENTATIONS

A. Inefficient Multithreading Approach

Incorrect Implementation (Excessive Thread

Creation)

 for (int i = 0; i < 1000; i++) {

 Thread thread = new Thread(new Task());

 thread.start();

}

Error: Creates numerous threads, leading to memory

exhaustion and CPU overhead due to context switching.

Optimized Implementation (Thread Pooling with

ExecutorService)

ExecutorService executorService=

Executors.newFixedThreadPool(4);

for (int i = 0; i < 1000; i++) {

 executorService.submit(new Task());

}

executorService.shutdown();

Improvement: Thread pools limit concurrent threads and

reuse them efficiently, significantly reducing overhead

and improving scalability.

B. Real-Time Updates via WebSockets

Incorrect Implementation (Constant Polling)

while (true) {

 Dr. Krishn Kumar. International Journal of Science, Engineering and Technology,

 2025, 13:3

3

 fetchDataFromServer(); // Repeated HTTP

requests

 Thread.sleep(1000); // Adds latency and load

}

Fault: Continuous polling increases server load and

network traffic

Optimized Implementation (Using WebSockets)

@ServerEndpoint("/updates")

public class WebSocketServer {

 @OnOpen

 public void onOpen(Session session) {

 System.out.println("Connected: " + session.getId());

 }

 @OnMessage

public void onMessage(String message, Session session)

throws IOException {

 session.getBasicRemote().sendText("Received: " +

message);

 }

 Improvement: Establishes persistent bidirectional

communication, reducing unnecessary HTTP requests

and improving responsiveness.

C. Inefficient vs. Optimized String Search

Incorrect Implementation (Linear Search)

for (String word : wordList) {

 if (word.startsWith(prefix)) {

 results.add(word);

 }

Fault: Time complexity is O(N*M), inefficient

for large datasets.

Optimized Implementation (Using Trie)

class TrieNode {

 Map<Character, TrieNode> children = new

HashMap<>();

 boolean isEndOfWord;

}

public class Trie {

 private TrieNode root = new TrieNode();

 public void insert(String word) {

 TrieNode node = root;

 for (char ch : word.toCharArray()) {

 node =

node.children.computeIfAbsent(ch, k -> new

TrieNode());

 }

 node.isEndOfWord = true;

 }

 public List<String> searchPrefix(String

prefix) {

 List<String> results = new ArrayList<>();

 TrieNode node = root;

 for (char ch : prefix.toCharArray()) {

 if (!node.children.containsKey(ch))

return results;

 node = node.children.get(ch);

 }

 dfs(node, prefix, results);

 return results;

 }

 private void dfs(TrieNode node, String prefix,

List<String> results) {

 if (node.isEndOfWord) results.add(prefix);

 for (char ch : node.children.keySet()) {

 dfs(node.children.get(ch), prefix + ch,

results);

 }

Improvement: Reduces search time to O(M),

where M is the length of the prefix, enabling

near-instant search suggestions

IV.PERFORMANCE TESTING

AND OPTIMIZATION RESULTS

We conducted comprehensive benchmarking using Java

Microbenchmark Harness (JMH) and VisualVM to

evaluate the system's efficiency. Tests covered video

processing, face detection, authentication, and database

operations.

A. Testing Setup

 Hardware: 8-core CPU, 16 GB RAM

 Tools: JMH[13], VisualVM.

 Scenarios: Video encoding, authentication,

Trie-based search, WebSocket communication

B. Benchmark Results

Task Unoptimized

Time

Optimized

Time

Speedup

Video

Encoding

800 ms 250 ms 3.2×

Face Detection

(GPU)

1200 ms 400 ms 3.0×

Authentication 300 ms 90 ms 3.3×

 Dr. Krishn Kumar. International Journal of Science, Engineering and Technology,

 2025, 13:3

4

WebSocket

Communication

500 ms 50 ms 10.0×

Trie Search

(Prefix Match)

800 ms 90 ms 9.0×

V. WEBSITE LOAD

PERFORMANCE ACROSS

DEVICES

Using Google Lighthouse and WebPageTest[15], we

measured loading metrics including First Contentful Paint

(FCP), Time to Interactive (TTI), and Total Blocking

Time (TBT) on different devices and network conditions.

Device Cold Cache Warm Cache

Desktop (8-core) 1.2 s 0.5 s

Tablet 1.8 s 0.7 s

Mobile (4G) 2.5 s 1.1 s

VI. MOBILE-SPECIFIC

OPTIMIZATIONS

A. Progressive Web App (PWA)

Implemented service workers, app manifest, and push

notifications[16] to enable offline access and real-time

alerts.

Metric Before

PWA

After

PWA

Improvement

Load Time

(3G)

6.8 s 2.9 s 57%

FCP (4G) 3.5 s 1.2 s 66%

B. Adaptive UI Enhancements

Responsive layouts, touch-friendly components, and lazy

loading tailored the experience for mobile

Device Type Before TTI After

TTI

Gain

Mobile (3G) 5.1

s

2.6 s 49%

Tablet (Wi-

Fi)

3.0

s

1.5 s 50%

 Network Optimizations

Used Brotli compression, HTTP/3, and WebP image

formats to cut data load and improve speed.

Optimization Before After Improvement

JS Size 2.4 MB 850 KB 65%

Image Size 1.8 MB 720 KB 60%

Mobile Requests 120+ 50 58%

 Performance Across Different Browsers

To assess browser-specific performance, tests were

conducted using Google Lighthouse and WebPageTest

under identical network and hardware conditions. Metrics

such as Load Time (both cold and warm cache), Time to

Interactive (TTI), and Total Blocking Time (TBT) were

measured.

Browser Load Time

(Cold

Cache)

Load Time

(Warm

Cache)

TTI TBT

Google

Chrome

(Latest)

1.2s 0.5s 0.8s 45ms

Mozilla

Firefox

(Latest)

1.4s 0.6s 1.0s 60ms

Safari

(Mac/iOS)

1.3s 0.5s 0.9s 50ms

Microsoft

Edge

1.5s 0.7s 1.2s 65ms

Opera Mini

(Low-end)

2.9s 1.8s 2.5s 120ms

VII. KEY ACHIEVEMENTS

 Enhanced System Performance

Achieved up to 10× faster execution times through

optimized multithreading, caching strategies, and

WebSocket-based communication[2],[7].

 .Real-Time Communication Efficiency

Replaced traditional polling with WebSockets,

resulting in a 90% reduction in latency for dynamic

content updates and live alerting mechanisms[4],[5].

 Dr. Krishn Kumar. International Journal of Science, Engineering and Technology,

 2025, 13:3

5

 GPU-Accelerated Face Detection

Leveraged OpenCV with GPU support, improving

face detection speed by 3× in high-load video

processing environments[10].

 Trie-Based Search Optimization

Implemented prefix-based Trie data structures,

reducing search time complexity to O(M) (where M

is the length of the search string), achieving up to 9×

faster search performance [6].

 Scalability Improvements

Utilized thread pooling, connection pooling, and

optimized database queries to enable stable

performance under high concurrency, improving

request throughput by over 70% [11],[12].

 Mobile-Centric Optimization

Introduced Progressive Web App (PWA) features,

adaptive UI, and network-aware optimizations,

resulting in 50–70% faster load times on mobile

networks, with offline availability .

 Reduced Server Load and Bandwidth Usage

Implemented Redis-based caching and WebP image

compression, reducing database load by 70% and

bandwidth usage by 60%

 Cross-Browser Performance Consistency

Ensured smooth functionality across modern

browsers, with Chrome and Safari showing optimal

performance and Edge/Firefox remaining within

acceptable limits

 Device and Network Agility

Demonstrated reliable performance across a wide

range of devices (desktop, tablet, mobile) and

networks (3G to Fiber), with load times remaining

under 3 seconds on 4G and under 1.5 seconds on

broadband.

VIII. CONCLUSION

This research demonstrated the effectiveness of targeted

optimization strategies in enhancing the performance,

scalability, and responsiveness of a Java-based Safe

Learning Platform. By employing advanced Java

concurrency features, thread pooling, and asynchronous

processing, the system achieved substantial

improvements in task execution speed and resource

efficiency[2],[3]. The adoption of WebSockets

significantly reduced latency in real-time communication,

replacing inefficient polling mechanisms[4]. GPU-

accelerated face detection using OpenCV, coupled with

optimized preprocessing, enabled faster and more

accurate image analysis, making the platform suitable for

intensive media processing scenarios.

Further enhancements were achieved through the

integration of Trie-based search algorithms, Spring Boot

with caching mechanisms, and database optimization

techniques using Hibernate and Redis. These

improvements ensured reduced query latency, improved

throughput, and minimized server load[6],[7],[12].

Mobile-first features such as Progressive Web Apps

(PWA), adaptive UI design, and network-aware delivery

ensured optimal user experience across varied devices

and bandwidth conditions.

Performance benchmarking validated the optimizations,

with up to 10× gains in real-time processing, 3× faster

video handling, and 70% reductions in server and network

load. Cross-browser and cross-device tests confirmed

consistent responsiveness and functionality. Overall, the

proposed optimization techniques not only enhanced

technical efficiency but also ensured a seamless and

scalable learning experience, making the platform robust

for deployment in real-world educational environments.

REFERENCES

1. Oracle, “Java Platform, Standard Edition

Documentation,” Oracle, 2024. [Online].

2. B. Goetz, T. Peierls, J. Bloch, J. Bowbeer, D.

Lea, and D. Holmes, Java Concurrency in

Practice, Addison-Wesley Professional, 2006.

3. Oracle, “Class CompletableFuture,” Java SE 8

Documentation, Oracle. [Online]. Available:

4. The WebSocket API (MDN), Mozilla

Developer Network. [Online].

5. A. Tanenbaum and M. Van Steen, Distributed

Systems: Principles and Paradigms, 2nd ed.,

Pearson, 2007.

6. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and

C. Stein, Introduction to Algorithms, 3rd ed.,

MIT Press, 2009.

7. Pivotal Software, Inc., “Spring Boot Reference

Documentation,” 2024. [Online].

8. Pivotal Software, Inc., “Spring Security

Documentation,” 2024. [Online].

9. OpenCV Developers, “OpenCV

Documentation,” 2024. [Online].

 Dr. Krishn Kumar. International Journal of Science, Engineering and Technology,

 2025, 13:3

6

10. NVIDIA, “CUDA Toolkit Documentation,”

2024. [Online].

11. Available: https://docs.nvidia.com/cuda/

12. Oracle, “Java Database Connectivity (JDBC)

and Hibernate,” 2024. [Online].

13. Available: https://hibernate.org/orm/

14. Redis Labs, “Redis Documentation,” 2024.

[Online].

15. A. Shipilev, “Java Microbenchmark Harness

(JMH),” OpenJDK, 2024. [Online]. Available:

16. VisualVM Team, “VisualVM: All-in-One Java

Troubleshooting Tool,” 2024. [Online].

17. Google Developers, “Lighthouse: Performance

Metrics and Auditing Tool,” 2024. [Online].

18. WebPageTest Team, “WebPageTest

Documentation,” 2024. [Online].

19. Mozilla, “Progressive Web Apps (PWA),”

MDN Web Docs. [Online].

20. Google Developers, “Optimizing Performance

for the Web,” 2024. [Online].

21. IETF, “Hypertext Transfer Protocol Version 3

(HTTP/3),” RFC 9114, 2022. [Online].

22. Google Developers, “WebP Image Format,”

2024. [Online].

