
Sampath .M, 2025, 13:3

ISSN (Online): 2348-4098

ISSN (Print): 2395-4752

© 2025 Sampath .M. This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly credited.

International Journal of Science,
Engineering and Technology

An Open Access Journal

Secure Real-Time File Sharing Using Blockchain

Technology
 Sampath .M, Adhwaith Anilkumar, Akshay Ajay, Arjun Balagopalan

Cyber Security

Mahendra Engineering College

I. INTRODUCTION

In today’s hyper-connected digital landscape, the

need for secure, efficient, and tamper-proof file

sharing mechanisms has become more crucial than

ever. Individuals, businesses, and institutions across

sectors exchange sensitive information daily, making

them vulnerable to cyber threats, unauthorized

access, and data manipulation. Traditional file

sharing systems, predominantly centralized in

nature, suffer from inherent limitations including

single points of failure, data breaches, lack of

transparency, and limited traceability of file

operations.

To address these challenges, our project introduces

a Blockchain-Based File Sharing Application,

designed to offer a decentralized, immutable, and

secure platform for file exchange. This system

combines blockchain technology, AES encryption,

and real-time web interfaces to ensure that users

can confidently store, share, and retrieve files while

maintaining full control over data provenance and

access.

The inception of this project is driven by growing

global awareness around digital security and

privacy. While conventional cloud storage services

offer convenience, they require users to place their

trust in third-party providers. This trust model has

proven fragile in the wake of high-profile data leaks

and cyberattacks. Blockchain, a distributed ledger

technology, disrupts this paradigm by introducing a

trustless environment—where data integrity and

operation history are guaranteed through

cryptographic principles and decentralized

consensus mechanisms.

Each action in the application—such as uploading,

downloading, sharing, or deleting a file—is recorded

as a new block in the blockchain. This creates an

immutable audit trail that not only deters

unauthorized tampering but also enhances

transparency across the system. The blockchain

ledger is stored locally and updated in real time,

allowing users to visualize and verify file operations

directly from their dashboards.

To further safeguard data, the application integrates

Advanced Encryption Standard (AES) encryption for

all files stored on the server. Files are encrypted

during upload and decrypted only upon download

by authorized users, ensuring that data remains

unintelligible to unauthorized parties even if access

to the storage system is compromised.

Abstract- In the modern digital age, secure and efficient file sharing is paramount. This paper presents a blockchain-

based real-time file sharing application that ensures data integrity, confidentiality, and decentralized access. The

system is developed using Python and JavaScript, with Flask as the backend framework and AES encryption for data

security. Users can sign up, upload files, share them via links, and download them, all while transactions are logged

immutably on a blockchain. This application offers a reliable, transparent, and tamper-proof solution for personal

and organizational data exchange.

Keywords- Blockchain, File Sharing, Data Integrity, AES Encryption, Secure Upload, Decentralized Storage, Flask,

Python Security, Real-Time Collaboration

 Sampath .M. International Journal of Science, Engineering and Technology,

 2025, 13:3

2

User authentication and session management are

handled through secure, token-based mechanisms

using JSON Web Tokens (JWT). This ensures that

only authenticated users can perform file

operations, while session information is securely

maintained without persistent reliance on cookies or

server-side sessions.

From a usability perspective, the application features

an intuitive and responsive web interface developed

using HTML, CSS, and JavaScript. Users can register,

log in, upload files, share them with other users,

manage incoming file requests, and view a live log

of blockchain entries—providing a seamless and

interactive user experience.

The system architecture adheres to modern web

development standards, leveraging Flask for

backend API routing, SQLite for persistent data

storage, and a modular MVC-like structure to ensure

maintainability and scalability. Furthermore, file

sharing between users is facilitated through a

request-approval workflow that mimics real-world

access control systems, where users can request

files, and owners retain full discretion over

approvals.

This application is not only a technical

demonstration of blockchain’s applicability beyond

cryptocurrencies but also a practical tool that can be

adopted by organizations and individuals seeking

enhanced file security, transparency, and user-

centric data control. Future iterations may extend

functionality by integrating IPFS for distributed file

storage, enabling public/private key cryptography

for advanced access management, or deploying on

decentralized networks for full infrastructure

decentralization.

The Blockchain File Sharing Application follows a

modular and scalable architecture, drawing on the

principles of the Model-View-Controller (MVC)

pattern to separate concerns and promote

maintainability.

Backend Framework

The backend is built using Flask, a lightweight yet

powerful Python web framework. Flask handles

routing, API endpoints, session management, file

operations, blockchain logic, and database

interactions. It is structured to serve both HTML

templates and RESTful JSON responses, enabling

dynamic, real-time user interaction.

 Blockchain Engine

At the heart of the application lies a custom-built

blockchain ledger, implemented in Python. Each

file-related action (upload, download, share,

delete) results in the creation of a new block. A

block contains:

 Index: Position in the chain

 Timestamp: Exact time of action

 Data: Description of the action (e.g., “user A

shared file.txt with user B”)

 Previous Hash: Ensures chain linkage

 Current Hash: Ensures data integrity

This blockchain is not a consensus-based network

like Bitcoin but rather a private ledger, tailored for

transparency and traceability within the application.

Encryption Layer

To ensure file confidentiality, the application uses

AES (Advanced Encryption Standard) to encrypt files

before saving them on the server. Upon download,

files are decrypted on-the-fly and sent to the

authorized user. This approach ensures that file

contents are secure even in the event of storage

compromise.

Authentication and Authorization

The application uses JWT (JSON Web Tokens) to

manage user sessions securely. Upon successful

login, a token is issued to the user, which is stored in

the session. This token is used to verify the identity

of users for all subsequent actions without exposing

credentials.

Database Layer

The application uses SQLite (or optionally MySQL)

for persistent data storage. The schema includes:

 Users: Stores login credentials and profile info.

 Files: Metadata about uploaded files, including

encrypted names and ownership.

 ShareRequests: Pending or accepted/rejected

file sharing requests between users.

 Sampath .M. International Journal of Science, Engineering and Technology,

 2025, 13:3

3

 Blockchain (in-memory): Reconstructed at

runtime or optionally persisted for audit.

Frontend Interface

The user interface is built with HTML, CSS, and

JavaScript. It features:

 A login/signup portal

 A dashboard to upload/download/delete files

 File sharing forms

 A real-time blockchain visualization panel, which

fetches the live blockchain data and displays it

in block-by-block cards

The frontend also includes JavaScript code to

asynchronously fetch blockchain data and

update the UI in real time, ensuring a responsive

experience.

II. WORKING PROCESS

Working Process of the Blockchain-Based File

Sharing Application

The Blockchain-Based File Sharing Application is

designed to provide a secure, transparent, and

tamper-proof platform for uploading, downloading,

sharing, and auditing files. The system integrates

blockchain technology with encryption, access

control, and a real-time web interface to enable

users to exchange files while maintaining privacy

and trust. This section outlines the functional

components of the system and describes how each

element contributes to the secure handling and

tracking of file operations.

Secure User Authentication and Session Handling

The working process begins with secure user

authentication. The application supports a

signup/login system built using Flask and SQLite.

During signup, user credentials are securely hashed

using industry-standard algorithms (e.g., SHA256 or

bcrypt), ensuring that passwords are never stored in

plaintext. Upon successful login, the user receives a

JSON Web Token (JWT), which is stored in a session.

JWT is used to validate each user request during the

session without requiring repeated credential entry,

thereby maintaining both security and usability.

File Upload with AES Encryption

Once logged in, users are directed to the

dashboard where they can upload files. When a

user selects a file to upload, the system performs

the following steps:

 The file is read into memory and encrypted

using Advanced Encryption Standard (AES).

 A unique AES key is generated per session or per

user, depending on configuration.

 The encrypted file is saved to the server's file

sytem.

 Metadata including the original filename,

encrypted filename, owner, and timestamp is

stored in the database.

 This ensures that even if a file is accessed

outside the app environment, its contents are

unreadable without decryption.

Simultaneously, the system generates a new

block in the blockchain to record the upload

event. Each block includes:

Action (e.g., "Upload")

 Filename

 Username

 Timestamp

 Previous block’s hash

 Current block’s hash

The blockchain acts as an immutable log, ensuring

that file operations are fully auditable and tamper-

proof.

Blockchain Construction and Logging

Each block added to the blockchain is

cryptographically linked to the previous block. The

application maintains a dynamic in-memory

blockchain data structure, initialized with a genesis

block. Whenever a file is uploaded, downloaded,

shared, or deleted, a new block is created. Each block

stores:

 The transaction type (e.g., upload, share,

download)

 The involved users

 The affected file

 A precise UNIX timestamp

 A hash value generated using SHA-256

This linked list of hashes forms a tamper-resistant

chain of custody, making it impossible to alter any

record without invalidating the entire chain.

Users can view the full blockchain ledger in their

dashboard through a live-rendered block explorer,

 Sampath .M. International Journal of Science, Engineering and Technology,

 2025, 13:3

4

implemented in JavaScript. Each block is displayed

in a scrollable container, providing real-time visibility

into actions performed on the system.

File Sharing and Access Control Workflow

A key feature of the application is user-to-user

file sharing. The sharing mechanism includes a

request-approval system:

 Request: A user selects a file they own and

enters the recipient's username. A sharing

request is sent and stored in the database as

"pending".

 Approval: The recipient is notified of incoming

requests and can choose to accept or reject.

 Transfer: Upon approval, the file metadata is

cloned to the recipient’s account. The actual

encrypted file remains on the server, reducing

duplication.

 Logging: Every step—request creation,

approval, and final delivery—is logged in the

blockchain.

 This process ensures that all file-sharing actions

are deliberate and authorized, maintaining both

traceability and consent-based access.

 File Download and On-the-Fly Decryption

When a user decides to download a file:

 The system verifies ownership or sharing

permission.

 It locates the encrypted file and decrypts it on

the server using the user's AES key.

The decrypted file is then streamed to the user’s

browser for download.

 This method avoids persistent decrypted file

storage, reducing attack surfaces and improving

data security.

 Every successful download event is recorded as

a new block in the blockchain, capturing the

username, file name, and exact timestamp. This

provides a reliable digital trail for post-activity

audits.

File Deletion and Audit Trail

Authorized users can also delete their uploaded or

received files. Upon deletion:

 The file is removed from the storage directory.

 The associated metadata entry is deleted from

the database.

A new block is added to the blockchain to log the

deletion event.

This log ensures that no action goes unrecorded,

helping administrators and users maintain a

complete audit trail of their activities.

Real-Time Blockchain Visualization

To improve user transparency, the dashboard

features a real-time blockchain viewer, implemented

with JavaScript and Flask. The viewer fetches the

current blockchain state via the /blockchain route

and renders each block dynamically in the browser.

Each block card includes:

 Block Index

 Timestamp

 Action Summary

 Hash and Previous Hash

 User involved

This live blockchain interface ensures that users can

verify their actions and observe the complete

operational history of the application.

Secure Data Handling and Privacy Measures

In addition to encryption and authentication, the

system implements several data privacy and security

measures, including.

 Secure session cookies

 Server-side validation of all user actions

 Input sanitation to prevent injection attacks

 Role-based access control to enforce ownership

and sharing permissions

These practices help ensure that the platform is

resilient to common web vulnerabilities while

preserving user trust and confidentiality.

Summary

The working process of the blockchain file sharing

system is a coordinated workflow that integrates

encryption, decentralized logging, and access

control. From file upload to sharing, download, and

deletion, each action is tightly monitored and

recorded. The system ensures that:

 Files are secure (via AES)

 Actions are traceable (via blockchain)

 Permissions are enforced (via request-based

sharing)

 Sampath .M. International Journal of Science, Engineering and Technology,

 2025, 13:3

5

 Users are protected (via JWT and access control)

 Together, these components form a robust,

user-centric platform that redefines how secure

file sharing can be achieved in a decentralized

and accountable manner.



III. RESULTS AND DISCUSSION

This section evaluates the outcomes and insights

gained from developing and testing the Blockchain-

Based File Sharing Application. The application

demonstrates how emerging technologies such as

blockchain and encryption can be harnessed

through lightweight, open-source frameworks like

Flask and PyCryptodome to deliver a secure and

transparent file exchange system. Through a

structured and feature-complete implementation,

the application provides real-time traceability, user-

controlled access, and cryptographic assurance in

handling sensitive files.

 User Authentication and Dashboard

The system incorporates a robust user

authentication mechanism using hashed

passwords and session-based management. The

dashboard acts as the user’s central interface,

presenting options to upload, share, delete, and

download files.

 Highlights:

 Successful authentication results in a session

initiation that persists securely via Flask session

cookies.

 Access to the dashboard and all file-related

functions is gated by user authentication.

Incorrect login attempts are gracefully handled

with minimal data leakage, maintaining security

while guiding users with helpful feedback.

 This login framework proved stable across

multiple user sessions and ensured

unauthorized users could not access protected

routes.

File Upload and Encryption Workflow

One of the core security features of the system

is the AES encryption of files during upload. Each

uploaded file undergoes encryption using a

secure AES key before being stored on the

server.

 Outcomes:

 Files stored on the backend were confirmed to

be unreadable in raw form, validating

encryption integrity.

 During download, files were correctly decrypted

on the fly and matched the original files byte-

for-byte.

 Uploads of varying file types and sizes (e.g., .txt,

.png, .pdf, up to 10MB) were supported without

performance degradation.

 This process demonstrated strong data

confidentiality and established a foundation for

secure file storage.

 Blockchain Logging and Integrity

Verification

 Every user action—whether uploading,

downloading, sharing, or deleting a file—is

recorded as a block in the application’s

internal blockchain. The blockchain structure

ensures that each block contains:

 Index

 Timestamp

 User action data

 Previous hash

 Current hash (SHA-256)

 Observations:

 Blockchain entries were created in real-time and

immediately visible in the UI.

 Hash values correctly linked each block,

preserving chain continuity.

 Tampering with block data broke the chain,

validating immutability.

 This provided a tamper-proof audit trail,

allowing any user or administrator to verify

historical actions with complete transparency.

 File Sharing and Request Management

The application implements a request-based

sharing mechanism. Users can initiate file

sharing with others, which creates a pending

share request. The recipient can choose to

accept or reject the request.

 Results:

 Approved requests correctly cloned file

references under the recipient’s account without

duplicating physical storage.

 Sampath .M. International Journal of Science, Engineering and Technology,

 2025, 13:3

6

 Blockchain entries logged all key events: request

sent, accepted, and file downloaded.

 Rejected requests were cleanly removed and did

not grant access.

 This workflow enhanced user trust, ensured full

consent in file access, and allowed secure peer-

to-peer interactions within the platform.

 Blockchain Visualization

To improve transparency and usability, the

blockchain ledger is rendered visually within the

dashboard. The visualization dynamically loads

via JavaScript and displays block attributes such

as timestamps, actions, and hashes.

 Key Insights:

 The viewer updated in real-time as new blocks

were added.

 Layout remained clean and readable even as the

chain grew to 30+ blocks.

 Each block was styled with unique borders,

colors, and indentation to simulate a true ledger

view.

 This component reinforced transparency and

usability by showing users a clear, real-time

record of actions in the system.

 Summary of Core Results

Module Outcome

Authentication Stable, secure login/logout

using Flask sessions

AES File Encryption Effective at protecting file

contents at rest and in transit

Blockchain Logging

 Tamper-proof logs for all file operations

File Sharing System Controlled

request/approval flow with full audit trail

Blockchain UI Clean, real-time blockchain

display for end-users

Error Handling All operations returned

appropriate messages on failure or misuse

 Practical Benefits

 Increased Data Integrity: Blockchain logs

ensure no user action is lost or altered,

promoting full accountability.

 Improved Security: AES encryption and role-

based access control protect files from

unauthorized viewing.

 Decentralized Audit Trail: The blockchain

replaces traditional server-side logs with a

cryptographically verifiable chain of events.

 User Control: File owners retain complete

authority over who accesses their files and under

what conditions.

 Educational Value: The app serves as a working

prototype to understand real-world use of

blockchain outside of cryptocurrency.

 Limitations

 Despite its strengths, the current

implementation has some known limitations:

 No Distributed Storage: Files are stored on a

centralized server; integrating IPFS or cloud

storage would enhance decentralization.

 Blockchain Persistence: The blockchain exists

only in memory; server restarts reset the chain

unless manually backed up.

 AES Key Management: Key distribution is

implicit and not currently hardened with public-

private key encryption.

 Lack of Email Notifications: Users must manually

check for file requests rather than receiving

alerts.

 Opportunities for Enhancement

 To evolve the platform into a production-

grade tool, the following improvements are

recommended:

 Integrate IPFS for true decentralized file storage.

 Persist Blockchain to Disk or use a lightweight

database such as LevelDB for chain storage.

 Public-Key Encryption for key distribution and

file-specific access rights.

 Email or SMS Notifications for share requests

and activity updates.

 Admin Dashboard to monitor system-wide

blockchain logs, user activity, and performance

metrics.

 Mobile Responsiveness to support file

operations on smaller devices.

IV. CONCLUSIONS

The Blockchain-Based File Sharing Application offers

a powerful solution for enhancing both the security

and transparency of digital file exchanges. By

 Sampath .M. International Journal of Science, Engineering and Technology,

 2025, 13:3

7

leveraging blockchain technology, the system

creates an immutable, tamper-proof record of all file

transactions—including uploads, downloads, shares,

and deletions—ensuring that every user action is

permanently logged and verifiable. This immutable

audit trail significantly reduces the risk of data

manipulation, providing users with a high level of

confidence in the integrity of the system.

In parallel, the application enhances confidentiality

and access control through the use of AES

encryption and a secure user authentication system.

Files are encrypted upon upload and only decrypted

during authorized downloads, safeguarding them

from unauthorized access even in the event of server

compromise. Access to files is strictly governed by

ownership and sharing permissions, which are

enforced through a request-and-approval model.

This model not only ensures that files are shared

intentionally, but also provides an opportunity for

user-to-user collaboration while maintaining

privacy.

The system’s web-based dashboard offers a real-

time interface for managing file activities and

visualizing the blockchain ledger. By incorporating

interactive components and intuitive UI elements,

the platform ensures that even non-technical users

can navigate the system with ease. The inclusion of

a real-time blockchain explorer further empowers

users to verify their own activity histories and hold

others accountable for shared interactions.

Together, these components form a comprehensive

and modern solution for secure file sharing—one

that replaces the opacity and limitations of

centralized systems with transparency,

cryptographic security, and user empowerment. The

application's modular and open-source architecture

makes it highly customizable and suitable for

deployment in academic, enterprise, or personal

environments where data security is paramount.

This project demonstrates that blockchain is not

limited to cryptocurrencies—it can serve as a critical

infrastructure component for securing digital assets

in collaborative environments. By combining

blockchain with encryption, access control, and a

user-friendly interface, the system establishes a

practical foundation for trustworthy digital

communication.

REFERENCES

1. S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic

Cash System,” 2008.

2. W. Stallings, Cryptography and Network

Security: Principles and Practice, 7th ed., Pearson

Education, 2017.

ISBN: 9780134444284

3. M. Crosby, P. Pattanayak, S. Verma, and V.

Kalyanaraman, "Blockchain Technology: Beyond

Bitcoin," Applied Innovation Review, no. 2, pp.

6–10, Jun. 2016.

4. A. Gervais, G. Karame, V. Capkun, and S. Capkun,

“Is Bitcoin a Decentralized Currency?” IEEE

Security & Privacy, vol. 12, no. 3, pp. 54–60,

May–Jun. 2014. doi: 10.1109/MSP.2014.22

5. S. M. Khan and K. Salah, "IoT Security: Review,

Blockchain Solutions, and Open Challenges,"

Future Generation Computer Systems, vol. 82,

pp. 395–411, May 2018. doi:

10.1016/j.future.2017.11.022

6. K. Christidis and M. Devetsikiotis, "Blockchains

and Smart Contracts for the Internet of Things,"

IEEE Access, vol. 4, pp. 2292–2303, 2016.

doi: 10.1109/ACCESS.2016.2566339

7. R. Jalali, K. El-Khatib, and C. McGregor, "Smart

Contract Implementation Using Blockchain

Technology in a Secure File Sharing Model,"

Proceedings of the 2019 IEEE International

Conference on Big Data (Big Data), Los Angeles,

CA, USA, 2019, pp. 2509–2516.

doi: 10.1109/BigData47090.2019.9006015

8. F. Zhang, A. Miller, and E. Shi, "Programming and

Security of Distributed Ledgers," Lecture Notes

in Computer Science, vol. 11475, pp. 67–91,

Springer, 2019.

doi: 10.1007/978-3-030-17653-2_3

9. J. Katz and Y. Lindell, Introduction to Modern

Cryptography, 2nd ed., CRC Press, 2014.

 ISBN: 9781466570269

10. P. Kocher, J. Jaffe, and B. Jun, "Differential Power

Analysis," Advances in Cryptology — CRYPTO’

99, Lecture Notes in Computer Science, vol.

1666, pp. 388–397, Springer, 1999.

doi: 10.1007/3-540-48405-1_25

 Sampath .M. International Journal of Science, Engineering and Technology,

 2025, 13:3

8

