R Kalavani Jobin K Easo, 2025, 13:3 International Journal of Science,

ISSN (Online): 2348-4098 Engineering and Technology
ISSN (Print): 2395-4752

An Open Access Journal

Web-Based Firewall Automation System Using Flask

Assistant Professor R.Kalavani Jobin K Easo, Abhiram.S, Ageesh Lal N.G
Department of Cyber Security, Mahendra Engineering College, Tamil Nadu, India,

Abstract- In today's cybersecurity landscape, managing firewall rules effectively and securely is essential in both
educational and professional settings. This project introduces a Python Flask-based web application for
automating and managing Linux firewall rules through an intuitive web interface. The platform enables secure
user login, rule validation, history tracking, and firewall interaction via REST APL. It supports both iptables and
nftables and includes features such as user role control, dry-run simulation, multi-host management using
Ansible, and Docker deployment for portability. Additional capabilities like notifications, rule import/export, and

a responsive Ul make it ideal for cybersecurity labs, hands-on training, and lightweight operational use

Keywords- Blockchain, File Sharing, Data Integrity, AES Encryption, Secure Upload, Decentralized Storage, Flask,

Python Security, Real-Time Collaboration

I. INTRODUCTION unaware of past configuration changes or the
personnel responsible for them. By integrating a

rule management interface with real-time logging,
user authentication, and a REST API, this project
addresses these challenges head-on, offering an
intuitive system that increases security,
transparency, and operational efficiency.

In an era marked by the proliferation of
cyberattacks and an ever-expanding digital
landscape, robust network security mechanisms are
more essential than ever. Among the fundamental
tools employed to secure digital assets is the
firewall—a system that controls incoming and
outgoing traffic based on defined security rules.
Despite their importance, firewalls are often
misconfigured due to human error or limited
interfaces, which can result in significant
vulnerabilities and system disruptions. This project
introduces a comprehensive, web-based Firewall
Automation System designed to simplify the
creation, management, and auditing of firewall rules
using a secure and user-friendly platform built with
Flask.

A key feature of the system is its secure user
authentication and role-based access control. Built
using Flask-Login, the application supports login
and session handling, while also differentiating
between administrative and viewer roles.
Administrators can add, delete, and manage rules,
while viewers are restricted to audit and monitor
logs. This segmentation ensures that only
authorized users can alter firewall behavior,
minimizing the risk of accidental or malicious
changes. Every action taken within the application is
logged, including the user who performed it, the IP
address, timestamp, and the specific rule modified.
Another major innovation in this system is its
structured rule management interface. Rather than
relying on free-text inputs, which are susceptible to
malformed or dangerous commands, the
application uses dropdown menus and input
validation to restrict rule creation to safe,

The motivation behind this project stems from the
inherent limitations of conventional command-line-
based firewall management practices. Managing
iptables or nftables manually requires deep
technical knowledge and is prone to mistakes,
especially in fast-paced or high-volume
environments. Furthermore, traditional methods
lack auditability, often leaving administrators

© 2025 R.Kalavani Jobin K Easo. This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly credited.

R.Kalavani Jobin K Easo. International Journal of Science, Engineering and Technology,

2025, 13:3

predefined values. Users select from protocol types
(TCP, UDP), specify a port number, and choose an
action (ACCEPT, DROP), ensuring that rules are
syntactically correct and aligned with organizational
policies. Prior to deletion, a JavaScript confirmation
dialog protects against accidental removals.

To extend its versatility and integration potential,
the application exposes a RESTful API that allows
external tools such as Postman, shell scripts, or
configuration management systems (e.g., Ansible)
to interface with it. This APl supports rule creation,
deletion, retrieval, and auditing—making it suitable
for both manual and automated deployments. In
addition, all rule operations are persistently stored
in an SQLite database for historical reference and
compliance audits. This audit trail not only ensures
accountability but also aids in diagnosing system
behavior and tracing anomalies.

To support maintainability and security, the system
follows modern web development best practices. It
features a modular architecture with separation of
concerns between the frontend, backend, and
database layers. The backend is powered by Flask
and Flask-Restful, while the frontend uses
Bootstrap-enhanced HTML, CSS, and vanilla
JavaScript. Authentication is tokenized via secure
session cookies, and input sanitization prevents
injection attacks and invalid operations.
Furthermore, the application is fully containerized
with Docker, enabling effortless deployment on any
Linux-based infrastructure.

Advanced features include a dry-run mode, which
allows users to simulate rule application without
affecting the active firewall configuration—ideal for
validation and testing. Rule sets can be exported as
JSON or shell scripts and re-imported later, offering
a practical mechanism for backup, migration, or
versioning. The dashboard includes basic charts
rendered with Chart,js to visualize rule usage trends
over time. As a proof-of-concept, the system also
includes a prototype for multi-host management
using SSH, allowing rule deployment to multiple
Linux servers from a centralized control panel.

In summary, this project demonstrates the
feasibility and utility of a secure, extensible, and
user-friendly firewall automation platform. It
bridges the gap between usability and control,
providing administrators with powerful tools to
safeguard networks without the complexity of
traditional systems. With its modular architecture
and RESTful integration, the system is scalable and
ready for future enhancements such as email/SMS
notifications, mobile support, and full orchestration
across distributed environments

Il. WORKING PROCESS

The Web-Based Firewall Automation System is
designed to simplify and streamline firewall rule
management on Linux-based systems through a
secure and user-friendly web application. Built with
Flask and integrated with iptables and nftables, this
system enables authenticated users to input,
validate, and apply firewall rules remotely. It
supports modular extensions like dry-run testing,
role-based access control, and multi-host
management via Ansible. This section details the
operational workflow and each functional
component involved in delivering secure and
automated firewall configuration.

1. Secure User Authentication and Authorization

The system begins by authenticating users through

a secure login interface. Flask-Login (or Flask-

Security) is used to manage user sessions. During

registration, credentials are hashed (using bcrypt or

similar algorithms), and roles such as "Admin” or

“Read-Only” are assigned.

e Admins can add, delete, and export/import
rules.

e Read-only users can view the firewall status and
history but cannot modify rules.

e Session management is handled securely to
prevent session hijacking and unauthorized
access.

2. Input Validation and Rule Whitelisting

Once authenticated, users access a dashboard
where they can configure new firewall rules. Instead
of raw command input, the system uses a
dropdown-driven interface with fields for:

Page 27 of 6

R.Kalavani Jobin K Easo. International Journal of Science, Engineering and Technology,

2025, 13:3

e Protocol (TCP, UDP, ICMP)

e Port number

e Action (ACCEPT, DROP, REJECT)

e Direction (INPUT, OUTPUT, FORWARD)
e |P source/destination (optional)

This design ensures rule consistency, minimizes
user error, and prevents command injection.
Internally, the system validates entries against a set
of whitelisted conditions before execution.

3. Rule Execution (iptables/nftables)

After validation, the rule is either:

e Applied directly to the system's firewall using
iptables or nft commands, or

e Simulated (in dry-run mode) to show the
command output without executing it.

Dry-run functionality is critical for safely testing rule
impact without disrupting system connectivity.
Once applied, the system stores a log of each rule
in the backend database, capturing:

e Rule parameters

e User who applied the rule

e Timestamp

e Command used

e Output status

4. History Logging and Auditing

Each rule applied is recorded in an SQLite database
for traceability. The history interface displays:

e A chronological list of applied rules

e The user who submitted them

e Their status (applied, rejected, dry-run)

e The exact command used

This log enables educators, network admins, or
students to audit firewall activity and rollback
changes if needed.

5. Rule Import/Export and Recovery

The system supports rule export in JSON or shell
script format. Users can back up current rules and
re-import them as needed for:

e Migration to other machines

e Recovery from system reset

e Classroom exercises

A structured format ensures compatibility with both
iptables and nftables syntaxes.

6. Multi-Host Firewall Control via Ansible

For managing firewalls on multiple Linux hosts, the
system integrates with Ansible. Users can:

e Select a target host or group from a dropdown
e Execute validated rules remotely

e Sync rule configurations across systems

Ansible playbooks handle SSH-based secure
communication and rule application, making the
system scalable for lab environments or small
enterprise use.

7. Notifications and Alerts

Optional features include sending alerts via email or
Slack when:

e Anew ruleis applied

e Unauthorized access is detected

e Adry-run identifies a critical misconfiguration

This proactive feedback loop increases operational
awareness and responsiveness.

8. Real-Time Rule Dashboard

The frontend includes a dynamic dashboard built

with JavaScript and Flask APlIs. It displays:

e Current firewall status (via iptables -L or nft list
ruleset)

e Live updates on newly applied rules

e Search and filter options for rule sets

This interface enables wusers to monitor rule
effectiveness in real time without accessing the
terminal.

9. Docker-Based Deployment

To ensure portability and consistent environments,
the entire application can be containerized using
Docker. This makes it easy to deploy across lab
systems or cloud instances with minimal
configuration, encapsulating all dependencies
(Flask, database, shell interface, Ansible).

Summary

The working process of the Web-Based Firewall
Automation System is designed for clarity, control,

Page 37 of 6

R.Kalavani Jobin K Easo. International Journal of Science, Engineering and Technology,

2025, 13:3

and extensibility. From rule validation and secure
execution to history tracking and multi-host
automation, the system provides a complete suite
for managing firewall policies in both academic and
real-world environments. Its modular structure
allows for continuous enhancement, making it a
practical tool for hands-on cybersecurity education
and lightweight production use.

I1l. RESULTS AND DISCUSSION

This section presents an in-depth analysis of the
system’'s operational capabilities, empirical
performance, and user interaction outcomes
following the deployment of the proposed Web-
Based Firewall Automation System. The system was
implemented and validated within a controlled
Linux environment using a technology stack
comprising Python Flask, iptables, SQLite, and a
custom-built blockchain framework for logging.

1. System Functionality and Feature Assessment
The application successfully fulfilled its core
objectives, including secure user authentication,
role-based access control, dynamic firewall rule
management, and immutable logging via
blockchain. Administrators could define, apply, and
revoke iptables rules using an intuitive web
interface. Rule parameters such as IP addresses,
ports, and protocol types were entered via form
inputs and were immediately executed at the
system level. A real-time rules viewer provided
immediate feedback and visibility into the system
state.

Blockchain functionality provided an effective
mechanism for ensuring integrity and traceability of
all firewall-related operations. Each modification
action was captured as a new block, maintaining an
immutable audit trail. This approach significantly
enhances accountability compared to traditional
firewall administration, where such granular,
tamper-proof logs are uncommon.

2 User Interface Evaluation

The frontend interface, built with HTML, JavaScript,
and CSS, delivered a responsive and intuitive user
experience. Interactive charts summarizing traffic

types, rule counts, and activity frequencies proved
helpful during testing. Real-time updates of firewall
rules and blockchain visualizations further
enhanced usability.

Role-specific access permissions ensured that only
authorized users could apply or modify firewall
configurations. The separation between
administrative and observational roles contributed
to system security and integrity.

3 Security Enhancements and Validation

Security mechanisms were integrated at both the
application and network levels. JSON Web Tokens
(JWT) were employed for user session
management, facilitating stateless and secure
authentication. Input sanitization routines were
applied to mitigate risks from injection attacks.
Additionally, the use of AES encryption helped
secure sensitive data within the application.

A "Dry Run” simulation feature allowed rule testing
without actual deployment, reducing the risk of
misconfiguration and system downtime. Detailed
error handling and logging mechanisms supported
robust debugging and operational transparency.

4. RESTful API Integration

The application exposed REST APl endpoints to
support programmatic rule manipulation. These
APIs, tested extensively using Postman, enabled
operations such as rule insertion, deletion, retrieval,
and blockchain query. Access to the API was
restricted using token-based authentication, and
basic rate-limiting mechanisms were employed to
prevent misuse. The presence of these APls makes
the system viable for integration into automated
DevSecOps pipelines and infrastructure-as-code
workflows.

5. Performance and Resource Utilization

The system was deployed on a virtualized Ubuntu
environment with 2 GB of RAM. Firewall rule
changes were typically executed within 500
milliseconds. Memory usage remained efficient due
to the lightweight design of the custom blockchain,
although future scalability concerns suggest the

Page 47 of 6

R.Kalavani Jobin K Easo. International Journal of Science, Engineering and Technology,

2025, 13:3

adoption of more robust data stores such as
MongoDB or PostgreSQL for larger deployments.

6. Challenges and Limitations

Key challenges during development included
synchronizing blockchain updates with Ul rendering
and ensuring compatibility across different Linux-
based systems using iptables or nftables.
Abstraction layers and modular components were
developed to address these discrepancies.

Notably, the blockchain design utilized a single-
node configuration, limiting its resilience and
applicability in distributed environments. There was
no implementation of consensus protocols or
multi-peer validation, restricting the architecture’s
scalability and fault tolerance.

7. System Architecture Overview

The system architecture follows a modular, three-
tier design. The presentation layer (web interface)
communicates with the application logic layer
(Flask backend), which in turn interacts with system-
level firewalls and the blockchain ledger. Data flow
is bidirectional, with user actions triggering firewall
rule execution and block creation, followed by Ul
updates reflecting current system states.

This decoupled architecture promotes
maintainability and facilitates future expansions,
such as containerized deployment using Docker,
integration with orchestration tools like Ansible,
and cloud-based scalability.

8. Practical Implications and Relevance

The developed system addresses critical gaps in
traditional firewall management by offering a user-
friendly, secure, and auditable alternative. The
solution is particularly suitable for educational labs,
research networks, and small-to-medium enterprise
(SME) environments seeking lightweight,
centralized firewall administration.

With further enhancement, the system can evolve
into a distributed and Al-enhanced platform
capable of autonomous threat response and
network optimization.

Flowchart

Firewall Automation System

o |

v

User submits
firewall request

Request
valid?

Generate
firewall rules

Verify firewall
configuration

A

o

IV. CONCLUSION

The Web-Based Firewall Automation System
demonstrated strong potential for transforming
traditional firewall rule management through the
integration of web technologies, blockchain-based
logging, and RESTful APIs. The system fulfilled its
objectives of improving usability, security, and
transparency in managing firewall rules within Linux
environments. Core features such as role-based
access control, rule simulation (dry run), immutable
blockchain audit trails, and responsive user
interfaces proved effective in both functional and
user-centric evaluations.

Security was a central design consideration, with
robust mechanisms such as JWT-based

Page 57 of 6

R.Kalavani Jobin K Easo. International Journal of Science, Engineering and Technology,

2025, 13:3

authentication, AES encryption, and
sanitization contributing to the system'’s resilience

against common attack vectors. Performance
testing indicated that the application remains
efficient under moderate workloads, although

future scalability will require optimization of the
blockchain and data handling layers.

Despite its effectiveness in controlled environments,
the system currently faces limitations such as the
use of a single-node blockchain and partial support
for nftables. These constraints offer opportunities
for future research and development, particularly in
the areas of distributed ledger integration, peer
validation, and adaptive rule recommendation
systems using machine learning.

Overall, the proposed system represents a viable
foundation for firewall automation and education,
offering a practical, secure, and extensible platform
for system administrators, cybersecurity learners,
and research institutions.

REFERENCES

1. M. Conti, A. Dehghantanha, K. Franke, and S.
Watson, “Internet of Things security and
forensics: Challenges and opportunities," Future
Generation Computer Systems, vol. 78, pp. 544—
546, Jan. 2018.

2. S. Zargar, J. Joshi, and D. Tipper, "A survey of
defense mechanisms against distributed denial
of service (DDoS) flooding attacks," IEEE
Communications Surveys & Tutorials, vol. 15,
no. 4, pp. 2046-2069, 2013.

3. R. Ahmad, S. Noor, and H. I. Husain, "Firewall
automation: A review," Journal of Theoretical
and Applied Information Technology, vol. 96,
no. 10, pp. 2883-2891, 2018.

4. M. N. Kamel, M. M. Hassan, and S. A. H. S.
Ariffin, "Blockchain technology: A review of its
applications in the cybersecurity domain,"
International Journal of Advanced Computer
Science and Applications (IJACSA), vol. 10, no.
12, 2019.

5. Flask Documentation. “Flask - Web
development, one drop at a time," Available:
https://flask.palletsprojects.com/

input 6.

10.

Documentation, The
[Online]. Available:

iptables Linux Firewall
Netfilter Project.
https://netfilter.org/
SQLite Documentation, "SQLite: Self-contained,
high-reliability, embedded, full-featured,
public-domain, SQL database engine”
Available: https://www.sqlite.org/

JWT.io, "JSON Web Tokens - Introduction,"
[Online]. Available: https://jwt.io/introduction/
Open Web Application Security Project
(OWASP), "Top 10 Web Application Security
Risks," 2021. [Online]. Available:
https://owasp.org/www-project-top-ten/
Chart,js Documentation, "Simple yet flexible
JavaScript charting," Available:
https://www.chartjs.org/

Page 67 of 6

