
R.Kalavani Jobin K Easo, 2025, 13:3

ISSN (Online): 2348-4098

ISSN (Print): 2395-4752

© 2025 R.Kalavani Jobin K Easo. This is an Open Access article distributed under the terms of the Creative Commons Attribution

License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly credited.

International Journal of Science,
Engineering and Technology

An Open Access Journal

Web-Based Firewall Automation System Using Flask
Assistant Professor R.Kalavani Jobin K Easo, Abhiram.S, Ageesh Lal N.G

Department of Cyber Security, Mahendra Engineering College, Tamil Nadu, India,

I. INTRODUCTION

In an era marked by the proliferation of

cyberattacks and an ever-expanding digital

landscape, robust network security mechanisms are

more essential than ever. Among the fundamental

tools employed to secure digital assets is the

firewall—a system that controls incoming and

outgoing traffic based on defined security rules.

Despite their importance, firewalls are often

misconfigured due to human error or limited

interfaces, which can result in significant

vulnerabilities and system disruptions. This project

introduces a comprehensive, web-based Firewall

Automation System designed to simplify the

creation, management, and auditing of firewall rules

using a secure and user-friendly platform built with

Flask.

The motivation behind this project stems from the

inherent limitations of conventional command-line-

based firewall management practices. Managing

iptables or nftables manually requires deep

technical knowledge and is prone to mistakes,

especially in fast-paced or high-volume

environments. Furthermore, traditional methods

lack auditability, often leaving administrators

unaware of past configuration changes or the

personnel responsible for them. By integrating a

rule management interface with real-time logging,

user authentication, and a REST API, this project

addresses these challenges head-on, offering an

intuitive system that increases security,

transparency, and operational efficiency.

A key feature of the system is its secure user

authentication and role-based access control. Built

using Flask-Login, the application supports login

and session handling, while also differentiating

between administrative and viewer roles.

Administrators can add, delete, and manage rules,

while viewers are restricted to audit and monitor

logs. This segmentation ensures that only

authorized users can alter firewall behavior,

minimizing the risk of accidental or malicious

changes. Every action taken within the application is

logged, including the user who performed it, the IP

address, timestamp, and the specific rule modified.

Another major innovation in this system is its

structured rule management interface. Rather than

relying on free-text inputs, which are susceptible to

malformed or dangerous commands, the

application uses dropdown menus and input

validation to restrict rule creation to safe,

Abstract- In today's cybersecurity landscape, managing firewall rules effectively and securely is essential in both

educational and professional settings. This project introduces a Python Flask-based web application for

automating and managing Linux firewall rules through an intuitive web interface. The platform enables secure

user login, rule validation, history tracking, and firewall interaction via REST API. It supports both iptables and

nftables and includes features such as user role control, dry-run simulation, multi-host management using

Ansible, and Docker deployment for portability. Additional capabilities like notifications, rule import/export, and

a responsive UI make it ideal for cybersecurity labs, hands-on training, and lightweight operational use

Keywords- Blockchain, File Sharing, Data Integrity, AES Encryption, Secure Upload, Decentralized Storage, Flask,

Python Security, Real-Time Collaboration

 R.Kalavani Jobin K Easo. International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 27 of 6

predefined values. Users select from protocol types

(TCP, UDP), specify a port number, and choose an

action (ACCEPT, DROP), ensuring that rules are

syntactically correct and aligned with organizational

policies. Prior to deletion, a JavaScript confirmation

dialog protects against accidental removals.

To extend its versatility and integration potential,

the application exposes a RESTful API that allows

external tools such as Postman, shell scripts, or

configuration management systems (e.g., Ansible)

to interface with it. This API supports rule creation,

deletion, retrieval, and auditing—making it suitable

for both manual and automated deployments. In

addition, all rule operations are persistently stored

in an SQLite database for historical reference and

compliance audits. This audit trail not only ensures

accountability but also aids in diagnosing system

behavior and tracing anomalies.

To support maintainability and security, the system

follows modern web development best practices. It

features a modular architecture with separation of

concerns between the frontend, backend, and

database layers. The backend is powered by Flask

and Flask-Restful, while the frontend uses

Bootstrap-enhanced HTML, CSS, and vanilla

JavaScript. Authentication is tokenized via secure

session cookies, and input sanitization prevents

injection attacks and invalid operations.

Furthermore, the application is fully containerized

with Docker, enabling effortless deployment on any

Linux-based infrastructure.

Advanced features include a dry-run mode, which

allows users to simulate rule application without

affecting the active firewall configuration—ideal for

validation and testing. Rule sets can be exported as

JSON or shell scripts and re-imported later, offering

a practical mechanism for backup, migration, or

versioning. The dashboard includes basic charts

rendered with Chart.js to visualize rule usage trends

over time. As a proof-of-concept, the system also

includes a prototype for multi-host management

using SSH, allowing rule deployment to multiple

Linux servers from a centralized control panel.

In summary, this project demonstrates the

feasibility and utility of a secure, extensible, and

user-friendly firewall automation platform. It

bridges the gap between usability and control,

providing administrators with powerful tools to

safeguard networks without the complexity of

traditional systems. With its modular architecture

and RESTful integration, the system is scalable and

ready for future enhancements such as email/SMS

notifications, mobile support, and full orchestration

across distributed environments

II. WORKING PROCESS

The Web-Based Firewall Automation System is

designed to simplify and streamline firewall rule

management on Linux-based systems through a

secure and user-friendly web application. Built with

Flask and integrated with iptables and nftables, this

system enables authenticated users to input,

validate, and apply firewall rules remotely. It

supports modular extensions like dry-run testing,

role-based access control, and multi-host

management via Ansible. This section details the

operational workflow and each functional

component involved in delivering secure and

automated firewall configuration.

1. Secure User Authentication and Authorization

The system begins by authenticating users through

a secure login interface. Flask-Login (or Flask-

Security) is used to manage user sessions. During

registration, credentials are hashed (using bcrypt or

similar algorithms), and roles such as ―Admin‖ or

―Read-Only‖ are assigned.

 Admins can add, delete, and export/import

rules.

 Read-only users can view the firewall status and

history but cannot modify rules.

 Session management is handled securely to

prevent session hijacking and unauthorized

access.

2. Input Validation and Rule Whitelisting

Once authenticated, users access a dashboard

where they can configure new firewall rules. Instead

of raw command input, the system uses a

dropdown-driven interface with fields for:

 R.Kalavani Jobin K Easo. International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 37 of 6

 Protocol (TCP, UDP, ICMP)

 Port number

 Action (ACCEPT, DROP, REJECT)

 Direction (INPUT, OUTPUT, FORWARD)

 IP source/destination (optional)

This design ensures rule consistency, minimizes

user error, and prevents command injection.

Internally, the system validates entries against a set

of whitelisted conditions before execution.

3. Rule Execution (iptables/nftables)

After validation, the rule is either:

 Applied directly to the system's firewall using

iptables or nft commands, or

 Simulated (in dry-run mode) to show the

command output without executing it.

Dry-run functionality is critical for safely testing rule

impact without disrupting system connectivity.

Once applied, the system stores a log of each rule

in the backend database, capturing:

 Rule parameters

 User who applied the rule

 Timestamp

 Command used

 Output status

4. History Logging and Auditing

Each rule applied is recorded in an SQLite database

for traceability. The history interface displays:

 A chronological list of applied rules

 The user who submitted them

 Their status (applied, rejected, dry-run)

 The exact command used

This log enables educators, network admins, or

students to audit firewall activity and rollback

changes if needed.

5. Rule Import/Export and Recovery

The system supports rule export in JSON or shell

script format. Users can back up current rules and

re-import them as needed for:

 Migration to other machines

 Recovery from system reset

 Classroom exercises

A structured format ensures compatibility with both

iptables and nftables syntaxes.

6. Multi-Host Firewall Control via Ansible

For managing firewalls on multiple Linux hosts, the

system integrates with Ansible. Users can:

 Select a target host or group from a dropdown

 Execute validated rules remotely

 Sync rule configurations across systems

Ansible playbooks handle SSH-based secure

communication and rule application, making the

system scalable for lab environments or small

enterprise use.

7. Notifications and Alerts

Optional features include sending alerts via email or

Slack when:

 A new rule is applied

 Unauthorized access is detected

 A dry-run identifies a critical misconfiguration

This proactive feedback loop increases operational

awareness and responsiveness.

8. Real-Time Rule Dashboard

The frontend includes a dynamic dashboard built

with JavaScript and Flask APIs. It displays:

 Current firewall status (via iptables -L or nft list

ruleset)

 Live updates on newly applied rules

 Search and filter options for rule sets

This interface enables users to monitor rule

effectiveness in real time without accessing the

terminal.

9. Docker-Based Deployment

To ensure portability and consistent environments,

the entire application can be containerized using

Docker. This makes it easy to deploy across lab

systems or cloud instances with minimal

configuration, encapsulating all dependencies

(Flask, database, shell interface, Ansible).

Summary

The working process of the Web-Based Firewall

Automation System is designed for clarity, control,

 R.Kalavani Jobin K Easo. International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 47 of 6

and extensibility. From rule validation and secure

execution to history tracking and multi-host

automation, the system provides a complete suite

for managing firewall policies in both academic and

real-world environments. Its modular structure

allows for continuous enhancement, making it a

practical tool for hands-on cybersecurity education

and lightweight production use.

III. RESULTS AND DISCUSSION

This section presents an in-depth analysis of the

system’s operational capabilities, empirical

performance, and user interaction outcomes

following the deployment of the proposed Web-

Based Firewall Automation System. The system was

implemented and validated within a controlled

Linux environment using a technology stack

comprising Python Flask, iptables, SQLite, and a

custom-built blockchain framework for logging.

1. System Functionality and Feature Assessment

The application successfully fulfilled its core

objectives, including secure user authentication,

role-based access control, dynamic firewall rule

management, and immutable logging via

blockchain. Administrators could define, apply, and

revoke iptables rules using an intuitive web

interface. Rule parameters such as IP addresses,

ports, and protocol types were entered via form

inputs and were immediately executed at the

system level. A real-time rules viewer provided

immediate feedback and visibility into the system

state.

Blockchain functionality provided an effective

mechanism for ensuring integrity and traceability of

all firewall-related operations. Each modification

action was captured as a new block, maintaining an

immutable audit trail. This approach significantly

enhances accountability compared to traditional

firewall administration, where such granular,

tamper-proof logs are uncommon.

2 User Interface Evaluation

The frontend interface, built with HTML, JavaScript,

and CSS, delivered a responsive and intuitive user

experience. Interactive charts summarizing traffic

types, rule counts, and activity frequencies proved

helpful during testing. Real-time updates of firewall

rules and blockchain visualizations further

enhanced usability.

Role-specific access permissions ensured that only

authorized users could apply or modify firewall

configurations. The separation between

administrative and observational roles contributed

to system security and integrity.

3 Security Enhancements and Validation

Security mechanisms were integrated at both the

application and network levels. JSON Web Tokens

(JWT) were employed for user session

management, facilitating stateless and secure

authentication. Input sanitization routines were

applied to mitigate risks from injection attacks.

Additionally, the use of AES encryption helped

secure sensitive data within the application.

A ―Dry Run‖ simulation feature allowed rule testing

without actual deployment, reducing the risk of

misconfiguration and system downtime. Detailed

error handling and logging mechanisms supported

robust debugging and operational transparency.

4. RESTful API Integration

The application exposed REST API endpoints to

support programmatic rule manipulation. These

APIs, tested extensively using Postman, enabled

operations such as rule insertion, deletion, retrieval,

and blockchain query. Access to the API was

restricted using token-based authentication, and

basic rate-limiting mechanisms were employed to

prevent misuse. The presence of these APIs makes

the system viable for integration into automated

DevSecOps pipelines and infrastructure-as-code

workflows.

5. Performance and Resource Utilization

The system was deployed on a virtualized Ubuntu

environment with 2 GB of RAM. Firewall rule

changes were typically executed within 500

milliseconds. Memory usage remained efficient due

to the lightweight design of the custom blockchain,

although future scalability concerns suggest the

 R.Kalavani Jobin K Easo. International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 57 of 6

adoption of more robust data stores such as

MongoDB or PostgreSQL for larger deployments.

6. Challenges and Limitations

Key challenges during development included

synchronizing blockchain updates with UI rendering

and ensuring compatibility across different Linux-

based systems using iptables or nftables.

Abstraction layers and modular components were

developed to address these discrepancies.

Notably, the blockchain design utilized a single-

node configuration, limiting its resilience and

applicability in distributed environments. There was

no implementation of consensus protocols or

multi-peer validation, restricting the architecture’s

scalability and fault tolerance.

7. System Architecture Overview

The system architecture follows a modular, three-

tier design. The presentation layer (web interface)

communicates with the application logic layer

(Flask backend), which in turn interacts with system-

level firewalls and the blockchain ledger. Data flow

is bidirectional, with user actions triggering firewall

rule execution and block creation, followed by UI

updates reflecting current system states.

This decoupled architecture promotes

maintainability and facilitates future expansions,

such as containerized deployment using Docker,

integration with orchestration tools like Ansible,

and cloud-based scalability.

8. Practical Implications and Relevance

The developed system addresses critical gaps in

traditional firewall management by offering a user-

friendly, secure, and auditable alternative. The

solution is particularly suitable for educational labs,

research networks, and small-to-medium enterprise

(SME) environments seeking lightweight,

centralized firewall administration.

With further enhancement, the system can evolve

into a distributed and AI-enhanced platform

capable of autonomous threat response and

network optimization.

Flowchart

IV. CONCLUSION

The Web-Based Firewall Automation System

demonstrated strong potential for transforming

traditional firewall rule management through the

integration of web technologies, blockchain-based

logging, and RESTful APIs. The system fulfilled its

objectives of improving usability, security, and

transparency in managing firewall rules within Linux

environments. Core features such as role-based

access control, rule simulation (dry run), immutable

blockchain audit trails, and responsive user

interfaces proved effective in both functional and

user-centric evaluations.

Security was a central design consideration, with

robust mechanisms such as JWT-based

 R.Kalavani Jobin K Easo. International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 67 of 6

authentication, AES encryption, and input

sanitization contributing to the system’s resilience

against common attack vectors. Performance

testing indicated that the application remains

efficient under moderate workloads, although

future scalability will require optimization of the

blockchain and data handling layers.

Despite its effectiveness in controlled environments,

the system currently faces limitations such as the

use of a single-node blockchain and partial support

for nftables. These constraints offer opportunities

for future research and development, particularly in

the areas of distributed ledger integration, peer

validation, and adaptive rule recommendation

systems using machine learning.

Overall, the proposed system represents a viable

foundation for firewall automation and education,

offering a practical, secure, and extensible platform

for system administrators, cybersecurity learners,

and research institutions.

REFERENCES

1. M. Conti, A. Dehghantanha, K. Franke, and S.

Watson, "Internet of Things security and

forensics: Challenges and opportunities," Future

Generation Computer Systems, vol. 78, pp. 544–

546, Jan. 2018.

2. S. Zargar, J. Joshi, and D. Tipper, "A survey of

defense mechanisms against distributed denial

of service (DDoS) flooding attacks," IEEE

Communications Surveys & Tutorials, vol. 15,

no. 4, pp. 2046–2069, 2013.

3. R. Ahmad, S. Noor, and H. I. Husain, "Firewall

automation: A review," Journal of Theoretical

and Applied Information Technology, vol. 96,

no. 10, pp. 2883–2891, 2018.

4. M. N. Kamel, M. M. Hassan, and S. A. H. S.

Ariffin, "Blockchain technology: A review of its

applications in the cybersecurity domain,"

International Journal of Advanced Computer

Science and Applications (IJACSA), vol. 10, no.

12, 2019.

5. Flask Documentation. "Flask – Web

development, one drop at a time," Available:

https://flask.palletsprojects.com/

6. iptables Linux Firewall Documentation, The

Netfilter Project. [Online]. Available:

https://netfilter.org/

7. SQLite Documentation, "SQLite: Self-contained,

high-reliability, embedded, full-featured,

public-domain, SQL database engine,"

Available: https://www.sqlite.org/

8. JWT.io, "JSON Web Tokens - Introduction,"

[Online]. Available: https://jwt.io/introduction/

9. Open Web Application Security Project

(OWASP), "Top 10 Web Application Security

Risks," 2021. [Online]. Available:

https://owasp.org/www-project-top-ten/

10. Chart.js Documentation, "Simple yet flexible

JavaScript charting," Available:

https://www.chartjs.org/

