Sampath .M, 2025, 13:3 International Journal of Science,

ISSN (Online): 2348-4098 Engineering and Technology
ISSN (Print): 2395-4752

An Open Access Journal

Secure Real-Time File Sharing Using Blockchain
Technology

Sampath .M, Adhwaith Anilkumar, Akshay Ajay, Arjun Balagopalan
Cyber Security
Mahendra Engineering College, Anna University

Abstract- In the modern digital age, secure and efficient file sharing is paramount. This paper presents a
blockchain-based real-time file sharing application that ensures data integrity, confidentiality, and decentralized
access. The system is developed using Python and JavaScript, with Flask as the backend framework and AES
encryption for data security. Users can sign up, upload files, share them via links, and download them, all while
transactions are logged immutably on a blockchain. This application offers a reliable, transparent, and tamper-

proof solution for personal and organizational data exchange.

Keywords- Blockchain, File Sharing, Data Integrity, AES Encryption, Secure Upload, Decentralized Storage, Flask,

Python Security, Real-Time Collaboration.

The inception of this project is driven by growing
l. INTRODUCTION global awareness around digital security and
privacy. While conventional cloud storage services
offer convenience, they require users to place their
trust in third-party providers. This trust model has
proven fragile in the wake of high-profile data leaks
and cyberattacks. Blockchain, a distributed ledger
technology, disrupts this paradigm by introducing a
trustless environment—where data integrity and
operation history are guaranteed through
cryptographic principles and decentralized
consensus mechanisms.

In today’s hyper-connected digital landscape, the
need for secure, efficient, and tamper-proof file
sharing mechanisms has become more crucial than
ever. Individuals, businesses, and institutions across
sectors exchange sensitive information daily,
making them wvulnerable to cyber threats,
unauthorized access, and data manipulation.
Traditional file sharing systems, predominantly
centralized in nature, suffer from inherent
limitations including single points of failure, data
breaches, lack of transparency, and limited
traceability of file operations.

Each action in the application—such as uploading,
downloading, sharing, or deleting a file—is
recorded as a new block in the blockchain. This
creates an immutable audit trail that not only
deters unauthorized tampering but also enhances
transparency across the system. The blockchain
ledger is stored locally and updated in real time,
allowing users to visualize and verify file operations
directly from their dashboards.

To address these challenges, our project introduces
a Blockchain-Based File Sharing Application,
designed to offer a decentralized, immutable, and
secure platform for file exchange. This system
combines blockchain technology, AES encryption,
and real-time web interfaces to ensure that users
can confidently store, share, and retrieve files while
maintaining full control over data provenance and
access.

To further safeguard data, the application
integrates Advanced Encryption Standard (AES)
encryption for all files stored on the server. Files are
encrypted during upload and decrypted only upon

© 2025 Sampath .M. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly credited.

Sampath .M. International Journal of Science, Engineering and Technology,

2025, 13:3

download by authorized users, ensuring that data
remains unintelligible to unauthorized parties even
if access to the storage system is compromised.
User authentication and session management are
handled through secure, token-based mechanisms
using JSON Web Tokens (JWT). This ensures that
only authenticated users can perform file
operations, while session information is securely
maintained without persistent reliance on cookies
or server-side sessions.

From a usability perspective, the application
features an intuitive and responsive web interface
developed using HTML, CSS, and JavaScript. Users
can register, log in, upload files, share them with
other users, manage incoming file requests, and
view a live log of blockchain entries—providing a
seamless and interactive user experience.

The system architecture adheres to modern web
development standards, leveraging Flask for
backend API routing, SQLite for persistent data
storage, and a modular MVC-like structure to
ensure maintainability and scalability. Furthermore,
file sharing between users is facilitated through a
request-approval workflow that mimics real-world
access control systems, where users can request

files, and owners retain full discretion over
approvals.
This application is not only a technical

demonstration of blockchain’s applicability beyond
cryptocurrencies but also a practical tool that can
be adopted by organizations and individuals
seeking enhanced file security, transparency, and
user-centric data control. Future iterations may
extend functionality by integrating IPFS for
distributed file storage, enabling public/private key
cryptography for advanced access management, or
deploying on decentralized networks for full
infrastructure decentralization.

The Blockchain File Sharing Application follows a
modular and scalable architecture, drawing on the
principles of the Model-View-Controller (MVC)
pattern to separate concerns and promote
maintainability.

Backend Framework

The backend is built using Flask, a lightweight yet
powerful Python web framework. Flask handles
routing, APl endpoints, session management, file
operations, blockchain logic, and database
interactions. It is structured to serve both HTML
templates and RESTful JSON responses, enabling
dynamic, real-time user interaction.

Blockchain Engine

At the heart of the application lies a custom-

built blockchain ledger, implemented in Python.

Each file-related action (upload, download,

share, delete) results in the creation of a new

block. A block contains:

e Index: Position in the chain

e Timestamp: Exact time of action

e Data: Description of the action (e.g., “user A
shared file.txt with user B")

e Previous Hash: Ensures chain linkage

e Current Hash: Ensures data integrity

This blockchain is not a consensus-based network

like Bitcoin but rather a private ledger, tailored for

transparency and traceability within the application.

Encryption Layer

To ensure file confidentiality, the application uses
AES (Advanced Encryption Standard) to encrypt
files before saving them on the server. Upon
download, files are decrypted on-the-fly and sent
to the authorized user. This approach ensures that
file contents are secure even in the event of storage
compromise.

Authentication and Authorization

The application uses JWT (JSON Web Tokens) to
manage user sessions securely. Upon successful
login, a token is issued to the user, which is stored
in the session. This token is used to verify the
identity of users for all subsequent actions without
exposing credentials.

Database Layer

The application uses SQLite (or optionally MySQL)

for persistent data storage. The schema includes:

e Users: Stores login credentials and profile info.

o Files: Metadata about uploaded files, including
encrypted names and ownership.

Sampath .M. International Journal of Science, Engineering and Technology,

2025, 13:3

e ShareRequests: Pending or accepted/rejected
file sharing requests between users.

e Blockchain (in-memory): Reconstructed at
runtime or optionally persisted for audit.

Frontend Interface

The user interface is built with HTML, CSS, and

JavaScript. It features:

e Alogin/signup portal

e A dashboard to upload/download/delete files

e File sharing forms

e A real-time blockchain visualization panel,
which fetches the live blockchain data and
displays it in block-by-block cards
The frontend also includes JavaScript code to
asynchronously fetch blockchain data and
update the Ul in real time, ensuring a
responsive experience.

Il. WORKING PROCESS

Working Process of the Blockchain-Based File
Sharing Application

The Blockchain-Based File Sharing Application is
designed to provide a secure, transparent, and
tamper-proof platform for uploading, downloading,
sharing, and auditing files. The system integrates
blockchain technology with encryption, access
control, and a real-time web interface to enable
users to exchange files while maintaining privacy
and trust. This section outlines the functional
components of the system and describes how each
element contributes to the secure handling and
tracking of file operations.

Secure User Authentication and Session Handling
The working process begins with secure user
authentication. The application supports a
signup/login system built using Flask and SQLite.
During signup, user credentials are securely hashed
using industry-standard algorithms (e.g., SHA256 or
bcrypt), ensuring that passwords are never stored
in plaintext. Upon successful login, the user
receives a JSON Web Token (JWT), which is stored
in a session. JWT is used to validate each user
request during the session without requiring
repeated credential entry, thereby maintaining both
security and usability.

File Upload with AES Encryption

Once logged in, users are directed to the

dashboard where they can upload files. When a

user selects a file to upload, the system

performs the following steps:

e The file is read into memory and encrypted
using Advanced Encryption Standard (AES).

e A unique AES key is generated per session or
per user, depending on configuration.

e The encrypted file is saved to the server's file
sytem.

e Metadata including the original filename,
encrypted filename, owner, and timestamp is
stored in the database.

e This ensures that even if a file is accessed
outside the app environment, its contents are
unreadable without decryption.

Simultaneously, the system generates a new

block in the blockchain to record the upload

event. Each block includes:

Action (e.g., "Upload")

e Filename

e Username

e Timestamp

e Previous block’s hash

e Current block’s hash

The blockchain acts as an immutable log, ensuring

that file operations are fully auditable and tamper-

proof.

Blockchain Construction and Logging

Each block added to the blockchain s

cryptographically linked to the previous block. The

application maintains a dynamic in-memory

blockchain data structure, initialized with a genesis

block. Whenever a file is uploaded, downloaded,

shared, or deleted, a new block is created. Each

block stores:

e The transaction type (e.g,
download)

e Theinvolved users

e The affected file

e A precise UNIX timestamp

e A hash value generated using SHA-256

This linked list of hashes forms a tamper-resistant

chain of custody, making it impossible to alter any

record without invalidating the entire chain.

upload, share,

Sampath .M. International Journal of Science, Engineering and Technology,

2025, 13:3

Users can view the full blockchain ledger in their
dashboard through a live-rendered block explorer,
implemented in JavaScript. Each block is displayed
in a scrollable container, providing real-time
visibility into actions performed on the system.

File Sharing and Access Control Workflow

A key feature of the application is user-to-user

file sharing. The sharing mechanism includes a

request-approval system:

e Request: A user selects a file they own and
enters the recipient's username. A sharing
request is sent and stored in the database as
"pending".

e Approval: The recipient is notified of incoming
requests and can choose to accept or reject.

e Transfer: Upon approval, the file metadata is
cloned to the recipient's account. The actual
encrypted file remains on the server, reducing
duplication.

e Logging: Every step—request creation,
approval, and final delivery—is logged in the
blockchain.

e This process ensures that all file-sharing actions
are deliberate and authorized, maintaining
both traceability and consent-based access.

e File Download and On-the-Fly Decryption
When a user decides to download a file:

e The system verifies ownership or sharing
permission.

e |t locates the encrypted file and decrypts it on
the server using the user's AES key.

The decrypted file is then streamed to the
user's browser for download.

e This method avoids persistent decrypted file
storage, reducing attack surfaces and
improving data security.

e Every successful download event is recorded as
a new block in the blockchain, capturing the
username, file name, and exact timestamp. This
provides a reliable digital trail for post-activity
audits.

File Deletion and Audit Trail

Authorized users can also delete their uploaded or

received files. Upon deletion:

e The file is removed from the storage directory.

e The associated metadata entry is deleted from
the database.

A new block is added to the blockchain to log
the deletion event.

This log ensures that no action goes unrecorded,
helping administrators and wusers maintain a
complete audit trail of their activities.

Real-Time Blockchain Visualization

To improve user transparency, the dashboard
features a real-time blockchain viewer,
implemented with JavaScript and Flask. The viewer
fetches the current blockchain state via the

/blockchain route and renders each block
dynamically in the browser. Each block card
includes:

e Block Index

e Timestamp

e Action Summary

e Hash and Previous Hash

e Userinvolved

This live blockchain interface ensures that users can

verify their actions and observe the complete

operational history of the application.

Secure Data Handling and Privacy Measures

In addition to encryption and authentication, the

system implements several data privacy and

security measures, including.

e Secure session cookies

e Server-side validation of all user actions

e Input sanitation to prevent injection attacks

e Role-based access control to enforce
ownership and sharing permissions

These practices help ensure that the platform is

resilient to common web vulnerabilities while

preserving user trust and confidentiality.

Summary

The working process of the blockchain file

sharing system is a coordinated workflow that

integrates encryption, decentralized logging,

and access control. From file upload to sharing,

download, and deletion, each action is tightly

monitored and recorded. The system ensures

that:

e Files are secure (via AES)

e Actions are traceable (via blockchain)

e Permissions are enforced (via request-based
sharing)

e Users are protected (via JWT and access
control)

Sampath .M. International Journal of Science, Engineering and Technology,

2025, 13:3

e Together, these components form a robust,
user-centric platform that redefines how secure
file sharing can be achieved in a decentralized
and accountable manner.

I1l. RESULTS AND DISCUSSION

This section evaluates the outcomes and insights
gained from developing and testing the
Blockchain-Based File Sharing Application. The
application demonstrates how emerging
technologies such as blockchain and encryption
can be harnessed through lightweight, open-source
frameworks like Flask and PyCryptodome to deliver
a secure and transparent file exchange system.
Through a structured and feature-complete
implementation, the application provides real-time
traceability, user-controlled access, and
cryptographic assurance in handling sensitive files.

e User Authentication and Dashboard
The system incorporates a robust user
authentication mechanism using hashed
passwords and session-based management.
The dashboard acts as the user's central
interface, presenting options to upload, share,
delete, and download files.

¢ Highlights:

e Successful authentication results in a session
initiation that persists securely via Flask session
cookies.

e Access to the dashboard and all file-related
functions is gated by user authentication.
Incorrect login attempts are gracefully handled
with minimal data leakage, maintaining security
while guiding users with helpful feedback.

e This login framework proved stable across
multiple user sessions and ensured
unauthorized users could not access protected
routes.

¢ File Upload and Encryption Workflow
One of the core security features of the system
is the AES encryption of files during upload.
Each uploaded file undergoes encryption using
a secure AES key before being stored on the
server.

e Outcomes:

Files stored on the backend were confirmed to
be wunreadable in raw form, validating
encryption integrity.

During download, files were correctly
decrypted on the fly and matched the original
files byte-for-byte.

Uploads of varying file types and sizes (e.g., .txt,
.png, .pdf, up to 10MB) were supported without
performance degradation.

This process demonstrated strong data
confidentiality and established a foundation for
secure file storage.

Blockchain Logging and
Verification

Every user action—whether uploading,
downloading, sharing, or deleting a file—is
recorded as a block in the application’s

Integrity

internal blockchain. The blockchain
structure ensures that each block contains:
Index

Timestamp

User action data

Previous hash

Current hash (SHA-256)

Observations:

Blockchain entries were created in real-time
and immediately visible in the Ul.

Hash values correctly linked each block,
preserving chain continuity.

Tampering with block data broke the chain,
validating immutability.

This provided a tamper-proof audit trail,
allowing any user or administrator to verify
historical actions with complete transparency.
File Sharing and Request Management

The application implements a request-based
sharing mechanism. Users can initiate file
sharing with others, which creates a pending
share request. The recipient can choose to
accept or reject the request.

Results:

Approved requests correctly cloned file
references under the recipient's account
without duplicating physical storage.
Blockchain entries logged all key events:
request sent, accepted, and file downloaded.
Rejected requests were cleanly removed and
did not grant access.

This workflow enhanced user trust, ensured full
consent in file access, and allowed secure peer-
to-peer interactions within the platform.

Blockchain Visualization

To improve transparency and usability, the

blockchain ledger is rendered visually within

the dashboard. The visualization dynamically

loads via JavaScript and displays block

attributes such as timestamps, actions, and

hashes.

Key Insights:

The viewer updated in real-time as new blocks

were added.

Layout remained clean and readable even as

the chain grew to 30+ blocks.

Each block was styled with unique borders,

colors, and indentation to simulate a true

ledger view.

This component reinforced transparency and

usability by showing users a clear, real-time

record of actions in the system.

Summary of Core Results

Module Outcome

Authentication Stable, secure login/logout

using Flask sessions

AES File Encryption Effective at protecting file

contents at rest and in transit

Blockchain Logging
Tamper-proof logs for all file operations

File Sharing System Controlled

request/approval flow with full audit trail

Blockchain Ul Clean, real-time blockchain
display for end-users
Error Handling All operations returned

appropriate messages on failure or misuse
Practical Benefits

Increased Data Integrity: Blockchain
ensure no user action is
promoting full accountability.
Improved Security: AES encryption and role-
based access control protect files from
unauthorized viewing.

Decentralized Audit Trail: The blockchain
replaces traditional server-side logs with a
cryptographically verifiable chain of events.

logs
lost or altered,

Sampath .M. International Journal of Science, Engineering and Technology,
2025, 13:3

User Control: File owners retain complete
authority over who accesses their files and
under what conditions.

Educational Value: The app serves as a
working prototype to understand real-world
use of blockchain outside of cryptocurrency.
Limitations
Despite its
implementation
limitations:

No Distributed Storage: Files are stored on a
centralized server; integrating IPFS or cloud
storage would enhance decentralization.
Blockchain Persistence: The blockchain exists
only in memory; server restarts reset the chain
unless manually backed up.

AES Key Management: Key distribution is
implicit and not currently hardened with
public-private key encryption.

Lack of Email Notifications: Users must
manually check for file requests rather than
receiving alerts.

the
some

current
known

strengths,
has

Opportunities for Enhancement

To evolve the platform into a production-
grade tool, the following improvements are
recommended:
Integrate IPFS for
storage.

Persist Blockchain to Disk or use a lightweight
database such as LevelDB for chain storage.
Public-Key Encryption for key distribution and
file-specific access rights.

Email or SMS Notifications for share requests
and activity updates.

Admin Dashboard to monitor system-wide
blockchain logs, user activity, and performance
metrics.

true decentralized file

Mobile Responsiveness to support file
operations on smaller devices.
IV. CONCLUSIONS

The Blockchain-Based File Sharing Application
offers a powerful solution for enhancing both the
security and transparency of digital file exchanges.
By leveraging blockchain technology, the system
creates an immutable, tamper-proof record of all

6

Sampath .M. International Journal of Science, Engineering and Technology,

2025, 13:3

file transactions—including uploads, downloads,
shares, and deletions—ensuring that every user
action is permanently logged and verifiable. This
immutable audit trail significantly reduces the risk
of data manipulation, providing users with a high
level of confidence in the integrity of the system.

In parallel, the application enhances confidentiality
and access control through the use of AES
encryption and a secure user authentication
system. Files are encrypted upon upload and only
decrypted during authorized downloads,
safeguarding them from unauthorized access even
in the event of server compromise. Access to files is
strictly governed by ownership and sharing
permissions, which are enforced through a request-
and-approval model. This model not only ensures
that files are shared intentionally, but also provides
an opportunity for user-to-user collaboration while
maintaining privacy.

The system’s web-based dashboard offers a real-
time interface for managing file activities and
visualizing the blockchain ledger. By incorporating
interactive components and intuitive Ul elements,
the platform ensures that even non-technical users
can navigate the system with ease. The inclusion of
a real-time blockchain explorer further empowers
users to verify their own activity histories and hold
others accountable for shared interactions.

Together, these components form a comprehensive
and modern solution for secure file sharing—one

that replaces the opacity and limitations of
centralized systems with transparency,
cryptographic security, and user empowerment.
The application's modular and open-source

architecture makes it highly customizable and
suitable for deployment in academic, enterprise, or
personal environments where data security is
paramount.

This project demonstrates that blockchain is not
limited to cryptocurrencies—it can serve as a
critical infrastructure component for securing
digital assets in collaborative environments. By
combining blockchain with encryption, access
control, and a user-friendly interface, the system
establishes a practical foundation for trustworthy
digital communication.

4.

9.

10.

REFERENCES

S. Nakamoto, “Bitcoin: A Peer-to-Peer

Electronic Cash System,” 2008.

W. Stallings, Cryptography

Security: Principles and Practice,

Pearson Education, 2017.

ISBN: 9780134444284

M. Crosby, P. Pattanayak, S. Verma, and V.

Kalyanaraman, "Blockchain Technology: Beyond

Bitcoin," Applied Innovation Review, no. 2, pp.

6-10, Jun. 2016.

A. Gervais, G. Karame, V. Capkun, and S.

Capkun, “Is Bitcoin a Decentralized Currency?”

IEEE Security & Privacy, vol. 12, no. 3, pp. 54-

60, May-Jun. 2014. doi: 10.1109/MSP.2014.22

S. M. Khan and K. Salah, "loT Security: Review,

Blockchain Solutions, and Open Challenges,"

Future Generation Computer Systems, vol. 82,

pp. 395-411, May 2018. doi:

10.1016/j.future.2017.11.022

K. Christidis and M. Devetsikiotis, "Blockchains

and Smart Contracts for the Internet of Things,"

IEEE Access, vol. 4, pp. 2292-2303, 2016.

doi: 10.1109/ACCESS.2016.2566339

R. Jalali, K. El-Khatib, and C. McGregor, "Smart

Contract Implementation Using Blockchain

Technology in a Secure File Sharing Model,"

Proceedings of the 2019 IEEE International

Conference on Big Data (Big Data), Los

Angeles, CA, USA, 2019, pp. 2509-2516.

doi: 10.1109/BigData47090.2019.9006015

F. Zhang, A. Miller, and E. Shi, "Programming

and Security of Distributed Ledgers," Lecture

Notes in Computer Science, vol. 11475, pp. 67—

91, Springer, 2019.

doi: 10.1007/978-3-030-17653-2_3

J. Katz and Y. Lindell, Introduction to Modern

Cryptography, 2nd ed., CRC Press, 2014.

ISBN: 9781466570269

P. Kocher, J. Jaffe, and B. Jun, "Differential

Power Analysis," Advances in Cryptology —

CRYPTO' 99, Lecture Notes in Computer

Science, vol. 1666, pp. 388-397, Springer, 1999.
doi: 10.1007/3-540-48405-1_25

and Network
7th ed,

Sampath .M. International Journal of Science, Engineering and Technology,
2025, 13:3

