Kadali Devi Sindhuja, 2025, 13:3 International Journal of Science,

ISSN (Online): 2348-4098 Engineering and Technology
ISSN (Print): 2395-4752

An Open Access Journal

Web Analyzer for private Networks

Professor Dr.A. Neelamadheswari, Assistant Professor Mr.K.S.Arun, M.E. Ph.D Aloysius Rosario K,
Aasif Ahameed S, Arunkumar M
Department Of Cyber Security, Mahendra Engineering College.

Abstract- In the current digital landscape, real-time monitoring and assessment of network domain safety
are essential for proactive cybersecurity defense. This project introduces a Python-based live domain
safety monitoring tool that leverages network packet analysis to evaluate and visualize the security
posture of domains accessed within a network. The tool integrates the power of tshark, the command-line
interface of Wireshark, to capture live DNS, HTTP, and SSL/TLS traffic, extracting relevant protocol and
domain information for immediate analysis.

At the core of the system is a dynamic scoring mechanism that assigns and adjusts safety scores to each
detected domain. Domains are initially assigned a neutral score, which is then modified based on a set of
heuristic rules. For instance, domains with suspicious characteristics—such as those starting with
"malware” or containing the substring "phish"—are penalized, reflecting their higher likelihood of being
malicious. The tool also evaluates the security of the communication protocol: traffic over HTTP results in
score deductions due to its inherent insecurity, while HTTPS and SSH connections are rewarded for their
stronger security guarantees. This flexible scoring approach allows the system to adapt to evolving threat
patterns and user behavior.

To further enhance situational awareness, the tool incorporates a Man-in-the-Middle (MITM) risk
assessment for each domain. By considering both the protocol in use and the domain’s current safety
score, the system categorizes MITM risk as High, Medium, or Low. Domains accessed via insecure
protocols, those with low safety scores, or those containing phishing indicators are flagged as high risk,
enabling rapid identification of potential attack vectors.

Visualization is a key feature of the tool, achieved through the rich Python library. The console interface
displays a continuously updating table of observed domains, their protocols, safety scores, and MITM risks,
all color-coded for quick interpretation. This real-time feedback loop empowers network administrators
and security analysts to take immediate action in response to emerging threats, such as isolating

compromised hosts or blocking access to dangerous domains.

Keywords: Network Packet Analysis, Live Traffic Capture, DNS, HTTP, SSL/TLS Monitoring, Protocol

Dissection, Heuristic-Based Scoring.

© 2025 Kadali Devi Sindhuja. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly credited.

Kadali Devi Sindhuja. International Journal of Science, Engineering and Technology,

2025, 13:3

I. INTRODUCTION

OVERVIEW

The live domain safety monitoring tool presented in
this project offers a real-time solution for evaluating
the security of network domains accessed within an
organization or personal environment. Built in
Python, the tool integrates the tshark packet
analyzer to capture and filter DNS, HTTP, and
SSL/TLS traffic, focusing on extracting domain
names and their associated communication
protocols as network activity occurs. Each detected
domain is dynamically assigned a safety score,
which is updated based on heuristic rules that
consider both the protocol in use and the presence
of suspicious domain patterns, such as keywords
indicative of phishing or malware.

A distinctive feature of the tool is its ability to
assess the risk of Man-in-the-Middle (MITM)
attacks for each domain. By analyzing protocol
security and domain reputation in real time, the
system categorizes MITM risk as high, medium, or
low, providing immediate feedback to users. The
results are visualized through a live-updating, color-
coded table using the rich Python library, allowing
network administrators and security analysts to
quickly identify and respond to potential threats.
Designed for modularity and extensibility, the tool
can be adapted to incorporate new protocols,
threat intelligence sources, or more advanced
scoring algorithms as the threat landscape evolves.
Its lightweight architecture ensures compatibility
with a variety of network setups, making it suitable
for both educational purposes and operational
security monitoring. This approach empowers users
to maintain a proactive stance against cyber threats
by continuously monitoring domain safety and
communication security in real time.

PROBLEM STATEMENT

With the exponential growth of internet usage and
the increasing sophistication of cyber threats,
organizations and individuals face persistent
challenges in maintaining the security of their
networks. Malicious actors frequently exploit
vulnerabilities in network protocols and leverage
deceptive domain names to execute phishing,
malware distribution, and Man-in-the-Middle

(MITM) attacks. Traditional security solutions, such
as firewalls and antivirus software, often fail to
provide real-time visibility into the safety of
domains being accessed, especially as attackers
adopt new tactics that evade static defenses.

A critical gap exists in the ability to dynamically
monitor, evaluate, and visualize the safety of
domains on live networks. Existing monitoring tools
may lack intuitive interfaces, real-time feedback, or
the flexibility to adapt to emerging threats.
Moreover, many solutions do not provide
actionable insights into the risk posed by insecure
protocols (such as HTTP) or suspicious domain
patterns (such as those containing keywords like
"phish" or "malware"). This lack of timely, context-
aware information can delay threat detection and
response, increasing the risk of data breaches,
credential theft, and system compromise.

The challenge, therefore, is to develop a
lightweight, real-time monitoring tool that can
capture network traffic, intelligently assess domain
safety, and present the results in a clear, actionable
format. Such a tool should be able to dynamically
score domains based on protocol security and
domain reputation, estimate MITM risks, and
provide immediate visual feedback to users or
administrators. Addressing this problem is vital for
empowering proactive network defense, enabling
rapid identification of unsafe domains, and
supporting timely incident response in both
enterprise and personal network environments.

AIM &OBJECTIVE AIM

The primary aim of this project is to design,
develop, and demonstrate a robust, real-time
domain safety monitoring tool that empowers
network administrators and users to proactively
safeguard their digital environments. This tool is
intended to provide continuous, automated analysis
of network traffic, dynamically evaluating the safety
of domains accessed via DNS, HTTP, and SSL/TLS
protocols. By leveraging open-source technologies
and intuitive visualization, the project seeks to
bridge the gap between raw network data and
actionable cybersecurity intelligence. The ultimate
goal is to enhance situational awareness, facilitate
rapid threat detection, and support timely incident
response in the face of evolving cyber threats such

Page 1 of 17

Kadali Devi Sindhuja. International Journal of Science, Engineering and Technology,

2025, 13:3

as phishing, malware distribution, and Man-in-the-
Middle (MITM) attacks.

OBJECTIVES
e To capture live network traffic efficiently:
Utilize the tshark packet analyzer to monitor all
active network interfaces and filter relevant packets
in real time. The tool should focus on extracting
domain names and protocol information from DNS
queries, HTTP requests, and SSL/TLS handshakes,
ensuring comprehensive coverage of web-based
and encrypted communications.
e To implement a dynamic, rule-based domain
scoring system:
Develop a scoring mechanism that assigns an initial
safety score to each detected domain and updates
it based on a set of heuristic rules. Domains
exhibiting suspicious characteristics—such as
names starting with “"malware” or containing
"phish"—should be penalized, while those using
secure protocols like HTTPS and SSH should be
rewarded. The scoring system should reflect both
protocol security and domain reputation, providing
a nuanced assessment of risk.
e To normalize and accurately
protocol data:
Incorporate logic to standardize protocol names
(e.g., mapping "tls" and "ss|" to "https") to ensure
consistent handling across different packet types.
This ensures that the scoring and risk evaluation
processes are accurate and not hindered by
variations in protocol naming conventions.
e To assess and categorize Man-in-the-Middle
(MITM) risk:
Create a risk evaluation module that estimates the
likelihood of MITM attacks for each domain. This
module should consider both the protocol in use
and the current safety score, categorizing domains
into High, Medium, or Low MITM risk. Domains
accessed via insecure protocols or with low safety
scores should be highlighted as high risk to prompt
immediate attention.

interpret

e To provide real-time, actionable
visualization:
Leverage the rich Python library to present

monitoring results in a live-updating, color-coded
table. The interface should clearly display each
domain, its protocol, safety score, and MITM risk,

using intuitive color schemes to facilitate rapid
recognition of threats and safe domains alike.
¢ To ensure modularity and extensibility:
Architect the tool in a modular fashion, allowing for
easy updates and expansion. Scoring logic, risk
assessment criteria, and protocol support should be
readily adjustable to accommodate new types of
threats, additional protocols, or integration with
external threat intelligence sources.
e To minimize system resource impact and
maximize compatibility:
Ensure the tool operates efficiently, consuming
minimal system resources so it can run continuously
on a wide range of hardware platforms. The tool
should be compatible with any system supporting
tshark, requiring no intrusive monitoring or deep
packet inspection that could impact privacy or
performance.
¢ To empower proactive network defense and
user education:
Enable users and administrators to maintain a
proactive security posture by providing immediate,
actionable intelligence. The tool should support
rapid identification of unsafe domains, facilitate

timely incident response, and promote best

practices in network security awareness and

hygiene.

e To generate session summaries for post-
analysis:

Upon termination, the tool should output a clear
summary of all observed domains, their final safety
scores, and MITM risk assessments. This feature
supports post-session analysis, reporting,
compliance, and continuous improvement of
security policies.

e To serve both educational and operational

purposes:

Design the system to be valuable in both academic
and real-world operational contexts. For students
and trainees, the tool should illustrate real-time
network security concepts; for professionals, it
should provide an additional layer of defense and
insight in live environments.

SCOPE OF PROJECT

The scope of this project encompasses the design,
development, and demonstration of a real-time
domain safety monitoring tool that leverages live

Page 2 of 17

Kadali Devi Sindhuja. International Journal of Science, Engineering and Technology,

2025, 13:3

network traffic analysis to enhance cybersecurity
awareness and defense. The tool is implemented in
Python and utilizes the tshark packet analyzer to
capture and process DNS, HTTP, and SSL/TLS traffic,
focusing on extracting domain names and protocol
information from network packets as they traverse
the system.

This project is primarily concerned with monitoring
domains accessed within a local or organizational
network environment. It dynamically evaluates the
safety of each detected domain by applying a rule-
based scoring system that considers both protocol
security (such as HTTP, HTTPS, or SSH) and domain
reputation (such as the presence of suspicious
keywords like "malware" or "phish"). The tool
further assesses the risk of Man-in-the-Middle
(MITM) attacks for each domain, categorizing them
as high, medium, or low risk based on protocol and
score.

A significant aspect of the project's scope is the
visualization of results. The tool employs the rich
Python library to present a live-updating, color-
coded table in the console, displaying each
domain’s name, protocol, safety score, and MITM
risk level. This immediate feedback allows users and
administrators to quickly identify unsafe or
suspicious domains and take appropriate action.
The project is designed for modularity and
extensibility, enabling future enhancements such as
the integration of additional protocols, more
advanced scoring heuristics, or external threat
intelligence feeds. While the current
implementation focuses on DNS, HTTP, and SSL/TLS
protocols, the architecture allows for expansion to
cover other network services as needed.

However, the project does not include deep packet
inspection, payload analysis, or automated blocking
of malicious domains. It is intended as a monitoring
and awareness tool rather than a comprehensive
intrusion prevention system. The tool is suitable for
use in educational settings, small to medium
organizational networks, or as a supplementary
layer in larger security infrastructures.

Il. LITERATURE REVIEW

Title: Detection of Malicious Domains through DNS
Data Analysis

Authors: Bilge, L., Kirda, E., Kruegel, C., & Balduzzi,
M.

Year: 2012

Reference
https://doi.org/10.1109/TNET.2013.2297115
Introduction:

With the increasing complexity of cyber threats,
real-time network traffic monitoring has become a
cornerstone of modern cybersecurity. Tools like
Wireshark and its command-line counterpart Tshark
are widely used for capturing and analyzing
network packets, enabling the detection of
suspicious activity and unsafe domains as they
occur.

Link:

¢ Problem Statement:

Traditional network monitoring tools often require
manual inspection and do not provide automated,
real-time risk assessment of domains. This leads to
delays in detecting threats such as phishing,
malware, and Man-in-the-Middle (MITM) attacks,
especially in high-traffic environments.

e Objective:

The objective of real-time network traffic
monitoring is to automate the extraction and
analysis of domain and protocol information from
live network packets. By applying heuristic or rule-
based scoring systems, these tools can assess the
safety of domains and provide immediate feedback
to network administrators.

Merits:

e Enables proactive threat detection and
response.

e Provides continuous visibility into network
activity

e Reduces manual workload for security analysts.

e Can be integrated with visualization tools for
intuitive monitoring.

e Demerits:

e May generate false positives due to heuristic
rules.

Page 3 of 17

Kadali Devi Sindhuja. International Journal of Science, Engineering and Technology,

2025, 13:3

e Limited by the scope of monitored protocols
(e.g., may not cover all network services).

e High network traffic can impact performance or
overwhelm the system.

e lacks deep packet inspection, potentially
missing payload-based threats.
Title: Visualizing Cyber Security: Usable

Workspaces. IEEE Symposium on Visual Analytics
Science and Technology.

Authors: Fink, S., North, C,, Endert, A., & Rose, S.
Year: 2009

Reference
https://doi.org/10.1109/VAST.2009.5333882
Introduction:

As cyber threats become more complex and
network environments more data-rich, the ability to
visualize security data in a meaningful way has
become a critical requirement for effective
cybersecurity operations. Fink et al. (2009)
emphasize the transformative power of visualization
in cybersecurity, arguing that "usable
workspaces"—visual interfaces that present
complex data intuitively—are essential for enabling
analysts to detect, interpret, and respond to threats
efficiently. Visualization tools bridge the gap
between raw data and human cognition, making it
possible to identify patterns, anomalies, and risks
that would otherwise remain hidden.

Link:

¢ Problem Statement:

Security analysts are often inundated with vast
amounts of raw network and security data, which
can be overwhelming and difficult to interpret in a
timely manner. Traditional text-based logs and
static dashboards are insufficient for real-time
threat detection, as they require manual sifting and
lack the immediacy needed for rapid response.
Without effective visualization, critical threats may
go unnoticed, and the cognitive load on analysts
can lead to errors or missed incidents.

e Objective:

The objective, as outlined by Fink et al. (2009), is to
design and implement interactive, real-time
visualization systems that present network and
domain safety data in a clear, actionable format.
These systems should offer customizable layouts,

support live data feeds, and use color-coding and
other visual cues to highlight risk levels and
anomalies. The goal is to enhance situational
awareness, facilitate rapid decision-making, and
support collaborative analysis among security
teams.

e Merits:

e Enhanced Situational Awareness: Visualization
tools make it easier to understand the current
security posture at a glance, enabling faster
identification of threats.

e Reduced Cognitive Load: By presenting
information visually, these tools help analysts
process large amounts of data more efficiently,
reducing the risk of oversight.

e Pattern Recognition: Visual interfaces support
the detection of trends, outliers, and
correlations that may indicate malicious activity.

e Collaboration: Usable workspaces facilitate
communication and joint investigation among
multiple analysts, improving overall security
outcomes.

e Real-Time Feedback: Live-updating dashboards
ensure that analysts are always working with
the most current data, supporting timely
response.

e Demerits:

o Development Complexity: Creating advanced,
interactive visualization systems can require
significant resources and specialized expertise.

e Potential for Clutter: Overly complex or poorly
designed interfaces can overwhelm users and
obscure important information.

e Training Requirements: Analysts may need
training to fully leverage the capabilities of
sophisticated visualization tools.

e Dependency on Data Quality: The effectiveness
of visualization is directly tied to the quality and
completeness of the underlying data and
analytics. Poor data can lead to misleading
visualizations and incorrect conclusions.

I1l. SYSTEM ANALYSIS

EXISTING SYSTEM
1. Network Traffic Capture

Page 4 of 17

Kadali Devi Sindhuja. International Journal of Science, Engineering and Technology,

2025, 13:3

At its core, the system uses the tshark tool (the
command-line version of Wireshark) to capture live
network packets. It listens on all network interfaces
(-i any) and filters for DNS queries, HTTP host
headers, and SSL/TLS server name indications. This
allows the system to extract the domains being
accessed and the protocols used (e.g., HTTP, HTTPS,
SSH).

e Domain Scoring Mechanism

The system maintains a score for each domain,
initialized at 100. This score is dynamically adjusted
based on several rules:

Malicious Indicators: If a domain name starts with
"malware" or contains "phish", its score is reduced
by 25 points, reflecting a high likelihood of being
unsafe.

e Protocol Assessment:

Accessing a domain via HTTP (unencrypted)
reduces the score by 10, due to the higher risk of
interception.

HTTPS (encrypted) slightly increases the score by 1,
indicating improved safety.

SSH (secure shell) increases the score by 50, as it is
considered highly secure.

The score is always clamped between 0 and 100 to
maintain consistency.

¢ Protocol Normalization

Protocols are normalized for consistency. For
example, any protocol string starting with "tls" or
equal to "ss|" is treated as "https". This ensures that
variations in protocol naming do not affect scoring
logic.

¢ MITM Risk Calculation

For each domain, the system estimates the Man-In-
The-Middle (MITM) risk:

High Risk: If the protocol is HTTP, the domain
contains "phish", or the score is below 50.

Medium Risk: If the protocol is HTTPS but the score
is below 75.

Low Risk: All other cases, typically when secure
protocols are used and the domain score is high.

e Live Visualization

Using the rich library, the system displays a live-
updating table in the terminal. This table includes:

e Domain name
e Protocol used

e Safety score (color-coded: green for safe,
yellow for caution, red for danger)
e MITM risk level (color-coded accordingly)

This real-time feedback allows users to quickly
identify potentially unsafe domains and take action.
e User Interaction and Termination

The system runs continuously, updating the table as
new network activity is detected. Users can stop the
monitoring process with Ctrl+C, upon which a
summary of all domains, their final scores, and
MITM risk levels is displayed.

Strengths of the Existing System

Real-Time Monitoring: Immediate feedback on
network activity and domain safety.

Customizable Scoring Logic: Rules can be easily
adjusted to reflect changing threat landscapes.
Visual Clarity: Color-coded tables make it easy to
spot risks at a glance.

Protocol Awareness: Differentiates between secure
and insecure protocols, factoring this into risk
assessment.

Actionable Output: Final summary provides a clear
record of all accessed domains and their risk levels.

Limitations

Rule-Based Detection: Relies on simple heuristics
(e.g., string matching for "phish" or "malware"),
which may miss more sophisticated threats.

Limited Protocol Analysis: Focuses primarily on
HTTP, HTTPS, and SSH, potentially overlooking
other protocols.

No Deep Packet Inspection: Does not analyze the
content of network packets, only metadata.
Requires Tshark: Depends on external tools and
elevated privileges to capture network traffic.

PROPOSED SYSTEM

e Machine Learning-Based Threat Detection
The proposed system replaces static, rule-based
scoring with a dynamic, machine learning (ML)
model trained on large datasets of benign and
malicious domains. Features such as domain age,
lexical analysis, WHOIS data, protocol usage, and
historical behavior are used to predict the
likelihood of a domain being malicious or involved
in phishing, malware distribution, or MITM attacks.

Page 5 of 17

Kadali Devi Sindhuja. International Journal of Science, Engineering and Technology,

2025, 13:3

Benefits:

e Detects zero-day and previously unknown
threats.

e Reduces false positives by learning from real-
world data.

e Continuously improves as new data is
incorporated.

¢ Integration with Threat Intelligence Feeds

The system automatically queries multiple real-time

threat intelligence databases (such as VirusTotal,

IBM X-Force, and open-source threat feeds)

whenever a new domain is detected. This provides

up-to-date risk ratings, known malicious indicators,

and context about ongoing campaigns.

¢ Benefits:

e immediate identification of domains linked to
recent attacks.

e Enrichment of domain data with global threat
context.

Deep Packet Inspection (DPI)

Instead of only analyzing protocol metadata, the

system performs DPI on captured packets (within

privacy and legal boundaries). This enables

detection of hidden payloads, suspicious scripts,

and anomalous content patterns, further

strengthening the risk assessment process.

Benefits:

e Detects threats that evade protocol-based
detection.

e |dentifies malicious content even in encrypted
tunnels (where possible).

e User and Entity Behavior Analytics (UEBA)

The system profiles normal user and device

behavior over time. When a domain access pattern

deviates significantly from the baseline (e.g., a user

suddenly accessing rare or high-risk domains), the

system triggers alerts or automated responses.

Benefits:

e Early detection of compromised accounts or
insider threats.

e Context-aware risk scoring.

Automated Response and Remediation
Upon detecting high-risk domains or
attempts, the system can be configured to:
e Block network connections via firewall rules.

MITM

e Notify administrators and affected users.

e Quarantine suspicious devices for further
analysis.
Benefits:

e Minimizes response time to active threats.
e Reduces manual intervention and potential
damage.

Intuitive Web-Based Dashboard

Instead of a terminal-based table, the proposed

system features a responsive web dashboard with:

e Real-time visualizations
timelines).

e Drill-down reports on domain risk, user activity,
and incident history.

e Customizable alerts and policy management.

(graphs, maps,

Benefits:
Enhanced usability for security teams.
Centralized management and reporting.

e Privacy and Compliance Controls

The system incorporates privacy-preserving
techniques, such as anonymizing user data and
supporting compliance with regulations (GDPR,
HIPAA, etc.), ensuring that security monitoring does
not compromise user privacy.

¢ Advantages Over the Existing System
Accuracy: ML and threat intelligence reduce false
positives and adapt to evolving threats.

Depth: DPI and UEBA provide context-aware,
content-based detection.

Automation: Automated blocking and alerting
streamline incident response.

Usability: Web dashboard and detailed reports
improve visibility and decision-making.

Scalability: Designed for enterprise networks,
supporting distributed monitoring and centralized
management.

IV. SYSTEM REQUIREMENTS

HARDWARE REQUIREMENTS:
e Minimum Hardware

Page 6 of 17

Kadali Devi Sindhuja. International Journal of Science, Engineering and Technology,

2025, 13:3

e Processor: Dual-core CPU (Intel i3/AMD Ryzen 3
or equivalent)

RAM: 4 GB

e Storage: 100 MB free disk space (for logs,
temporary files, and dependencies)

e Network Interface: At least one active network
interface (wired or wireless) capable of packet
capture

Recommended Hardware

e Processor: Quad-core CPU (Intel i5/AMD Ryzen
5 or better) for smoother real-time analysis

e RAM: 8 GB or higher, especially if monitoring
high-traffic environments

e Storage: 1 GB free disk space for extended
logging and data retention

e Display: Terminal or monitor with at least
1024x768 resolution for optimal table
visualization

Software Requirements

e Operating System

e Supported OS: Linux (Ubuntu, Debian, Fedora,
CentOS), macOS, or Windows 10/11 with WSL
(Windows Subsystem for Linux)

e Privileges: Administrative/root
required to capture network traffic

e Dependencies

e Python: Version 3.7 or higher

e Python Packages:

e rich (for live terminal visualization)

e External Tools:

e tshark (command-line tool for packet capture;
part of the Wireshark suite)

e Must be installed and accessible in the system
PATH

e OtherTools:

e pip for Python package management

e Installation Notes

e Ensure Python and pip are up-to-date.

e Install tshark:

¢ On Ubuntu/Debian: sudo apt-get install tshark

e On Fedora: sudo dnf install wireshark-cli

e On macOS: brew install wireshark

e Grant necessary permissions to capture packets
(e.g., add user to wireshark group or run with
sudo).

privileges

SOFTWARE REQUIREMENTS:

e Operating System

e Supported OS: Linux (Ubuntu, Debian, Fedora,
CentOS), macOS, or Windows 10/11 with WSL
(Windows Subsystem for Linux)

e Privileges: Administrative/root
required to capture network traffic

e Dependencies

e Python: Version 3.7 or higher

e Python Packages:

e rich (for live terminal visualization)

e External Tools:

e tshark (command-line tool for packet capture;
part of the Wireshark suite)

e Must be installed and accessible in the system
PATH

e Other Tools:

e pip for Python package management

e Installation Notes

e Ensure Python and pip are up-to-date.

e Install tshark:

e On Ubuntu/Debian: sudo apt-get install tshark

e On Fedora: sudo dnf install wireshark-cli

e On macOS: brew install wireshark

e Grant necessary permissions to capture packets

(e.g., add user to wireshark group or run with

sudo)..

privileges

V. SYSTEM DESIGN

SYSTEM ARCHITECTURE

The Live Domain Safety Monitor is designed as a

real-time, terminal-based cybersecurity tool that

captures network trafficc analyzes accessed

domains, scores their safety, and estimates Man-In-

The-Middle (MITM) risk. The architecture is

modular, ensuring each component is responsible

for a specific function, from packet capture to

visualization.

Hardware Requirements

e Minimum Hardware

e Processor: Dual-core CPU (Intel i3/AMD Ryzen 3
or equivalent)

e RAM:4GB

e Storage: 100 MB free disk space (for logs,
temporary files, and dependencies)

Page 7 of 17

Kadali Devi Sindhuja. International Journal of Science, Engineering and Technology,
2025, 13:3

==

==

Network Interface: At least one active network
interface (wired or wireless) capable of packet
capture

l

=
K

Baores
*
s & Proid

f:f

(o]

Recommended Hardware

Processor: Quad-core CPU (Intel i5/AMD Ryzen
5 or better) for smoother real-time analysis
RAM: 8 GB or higher, especially if monitoring
high-traffic environments

Storage: 1 GB free disk space for extended
logging and data retention

Display: Terminal or monitor with at least
1024x768 resolution for optimal table
visualization

Software Requirements

Operating System

Supported OS: Linux (Ubuntu, Debian, Fedora,
CentOS), macOS, or Windows 10/11 with WSL
(Windows Subsystem for Linux)
Privileges: Administrative/root
required to capture network traffic
Dependencies

Python: Version 3.7 or higher
Python Packages:

rich (for live terminal visualization)

privileges

External Tools:

tshark (command-line tool for packet capture;
part of the Wireshark suite)

Must be installed and accessible in the system
PATH

Other Tools:

pip for Python package management.

Installation Notes

Ensure Python and pip are up-to-date.

Install tshark:

On Ubuntu/Debian: sudo apt-get install tshark
On Fedora: sudo dnf install wireshark-cli

On macOS: brew install wireshark

Grant necessary permissions to capture packets
(e.g., add user to wireshark group or run with
sudo).

¢ Network Requirements

Network Access: Must have permission to
monitor traffic on the desired interfaces.
Bandwidth: Minimal for the tool itself, but
performance may vary based on network load.
Firewall: Ensure local firewall rules allow packet
capture and do not block tshark.

User and Operational Requirements

User Privileges: User must have
administrative/root access to start packet
capture.

Terminal Access: Must be able to run Python
scripts and view terminal output.

Basic Knowledge: Users should be familiar with
command-line operations and basic network
concepts.

Security Awareness: Users should understand
the privacy and legal implications of network
monitoring.

Security and Compliance Considerations
Data Privacy: Ensure monitoring complies with
organizational policies and local laws (e.g.,
GDPR, HIPAA).

Access Control: Limit script and log access to
authorized personnel only.

Audit Logging: Optionally, implement logging
of script usage and access for audit purposes.

Page 8 of 17

Updates: Regularly update Python, tshark, and
dependencies to patch security vulnerabilities.
Scalability and Performance

Scalability: For high-traffic or enterprise
environments, consider deploying on dedicated
hardware or virtual machines with increased
CPU and RAM.

Performance Monitoring: Monitor system
resource usage during operation to avoid
bottlenecks.

Data Retention: Plan for log rotation and disk
space management if storing results long-term.
Optional Enhancements

Web Interface: For broader usability, a web-
based dashboard can be developed (requires
additional software: Flask/Django, web server,
etc.).

Integration: Can be integrated with SIEM
(Security Information and Event Management)
tools or alerting systems for automated
response.

DATA FLOW

Network Traffic Capture

Source: The system begins by invoking the

tshark tool, which listens to all network
interfaces (-i any).
Filter: It captures only relevant packets,

specifically those containing:

DNS query names

HTTP host headers

SSL/TLS server name indications
Output: For each captured packet,
outputs:

Protocol type (e.g., HTTP, HTTPS, SSH)
Domain or host name (from DNS, HTTP, or
SSL/TLS fields)

tshark

Data Extraction and Normalization

Reading Output: The Python script reads each
line of output from tshark in real time.

Splitting Data: Each line is split into protocol
and host/domain fields.

Normalization: The protocol string s
normalized (e.g., "tls" or "ss|" is treated as
"https") to ensure consistent processing.
Domain Scoring and Protocol Assignment
Scoring Logic: For each domain and protocol
pair:

Kadali Devi Sindhuja. International Journal of Science, Engineering and Technology,
2025, 13:3

If the domain starts with "malware" or contains
"phish", subtract 25 from its score.

If accessed via HTTP, subtract 10 from its score.
If accessed via HTTPS, add 1 to its score.

If accessed via SSH, add 50 to its score.

The score is clamped between 0 and 100.
Storage: The current score and protocol for
each domain are stored in dictionaries:
domain_scores[domain]
domain_protocols[domain]

e MITM Risk Calculation

Risk Assessment: For each domain, the script
calculates the Man-In-The-Middle (MITM) risk
based on:

Protocol used

Domain characteristics
"phish")

Current score

Risk Levels:

High: If protocol is HTTP, domain contains
"phish", or score is below 50.

Medium: If protocol is HTTPS and score is
below 75.

Low: All other cases.

(e.g, presence of

Live Visualization

Table Construction: The script uses the rich
library to build a table displaying:

Domain name

Protocol

Score (color-coded: green, yellow, red)

MITM risk (color-coded: green, yellow, red)

Live Updating: The table is updated in real time
as new domains are accessed or as scores
change.

User Interaction and Termination

Continuous Monitoring: The process continues
to capture, analyze, and display data until the
user interrupts (Ctrl+C).

Summary Output: Upon termination, the script
prints a summary of all domains, their final
scores, and MITM risk levels.

Page 9 of 17

Kadali Devi Sindhuja. International Journal of Science, Engineering and Technology,

2025, 13:3

EXPERIMENTAL ANALYSIS TABLE

Initial
No | Domain Name | Protocol Adjustments Applied Final Score MITM Risk
Score
malware-
1 HTTP 100 -25 ("malware"), -10 (HTTP) 65 High
portal.com
2 safe-site.org HTTPS 100 +1 (HTTPS) 101—100 Low
phishingsite.ne
3 HTTPS 100 -25 ("phish™), +1 (HTTPS) 76 Medium
t
admin-
4 SSH 100 +50 (SSH) 150—100 Low
server.local
unknown-
5 HTTP 100 -10 (HTTP) 90 Low
domain.xyz
suspicious-
6 HTTP 100 -25 ("phish™), -10 (HTTP) 65 High
phish.com
trusted-
7 HTTPS 100 +1 (HTTPS) 101—100 Low
bank.com
8 risky-site.com HTTP 100 -10 (HTTP) 90 Low
malwaretest.or
9 HTTPS 100 -25 ("malware"), +1 (HTTPS) 76 Medium
g
10 | admin-ssh.net SSH 100 +50 (SSH) 150—100 Low

Table No.1 Experimental Analysis Table

Page 10 of 17

Kadali Devi Sindhuja. International Journal of Science, Engineering and Technology,

2025, 13:3
VI. SYSTEM IMPLEMENTATION

The Live Domain Safety Monitor is a real-time
cybersecurity tool designed to assess the safety of
domains accessed over a network and estimate the
risk of Man-In-The-Middle (MITM) attacks. Utilizing
the tshark packet capture utility, the system
monitors all network interfaces for DNS queries,
HTTP host headers, and SSL/TLS server name
indications. For each detected domain, the system
applies a scoring mechanism that starts at 100 and
adjusts based on domain characteristics and the
protocol used: domains associated with malware or
phishing are penalized, while secure protocols like
HTTPS and SSH increase the score. The protocol is
normalized to ensure consistent evaluation, and
both the score and protocol are tracked for each
domain. Based on the final score and protocol, the
system calculates the MITM risk level as High,
Medium, or Low. All this information is presented in
a live-updating, color-coded table within the
terminal using the rich library, allowing users to
instantly visualize the safety status of domains and
their associated risks. The monitoring continues
until manually stopped by the user, at which point a
summary of all domains, their final scores, and
MITM risk levels is displayed. This system provides a
lightweight yet effective approach for network
administrators and security analysts to monitor and
evaluate domain safety in real time.

MODULES BREAKDOWN

TThe Live Domain Safety Monitor is structured into
several key functional modules that work together
to deliver real-time domain safety analysis. The
Packet Capture Module is responsible for
monitoring network traffic using the tshark utility,
filtering for relevant protocol and domain
information such as DNS queries, HTTP host
headers, and SSL/TLS server names. The Data
Extraction and Normalization Module processes the
captured output, extracting protocol and domain
details and standardizing protocol names for
consistent analysis. The Scoring Module evaluates
each domain by applying a set of rules: it penalizes
domains associated with malware or phishing,
deducts points for unencrypted protocols like HTTP,
and rewards secure protocols like HTTPS and SSH.

This module ensures that each domain’s score is
clamped within a safe range. The Risk Assessment
Module determines the Man-In-The-Middle (MITM)
risk for each domain by considering its score,
protocol, and suspicious keywords, classifying the
risk as High, Medium, or Low. The Visualization
Module leverages the rich library to present a live-
updating, color-coded table in the terminal,
allowing users to easily monitor domain safety and
risk levels in real time. Finally, the User Interaction
and Summary Module manages the lifecycle of the
monitoring session, handling user interruptions and
summarizing the results with a final report of all
domains, their scores, and associated risks.
Together, these modules form a cohesive and
efficient system for continuous domain safety
monitoring and risk assessment.

INTEGRATION DETAILS

The integration of the Live Domain Safety Monitor
is streamlined and efficient, leveraging both
external tools and Python libraries to achieve real-
time domain safety analysis. At its core, the system
integrates with the tshark utility—a command-line
packet analyzer—by invoking it as a subprocess
from within the Python environment. This allows
the tool to capture live network traffic from all
interfaces and filter for relevant fields such as DNS
queries, HTTP host headers, and SSL/TLS server
names. The captured data is then seamlessly piped
into the Python script, where it is parsed,
normalized, and processed using custom logic for
scoring and risk assessment. The integration
extends to the use of the rich library, which is
employed to construct and update a dynamic,
color-coded table in the terminal, providing
immediate visual feedback to the user. The system'’s
modular design ensures that each component—
from packet capture and data extraction to scoring
logic and visualization—works cohesively, with
shared data structures like dictionaries facilitating
smooth information flow between modules. This
tight integration enables the tool to operate
continuously in a live environment, updating risk
assessments in real time and allowing for user
interruption and summary reporting without data
loss or performance degradation.

Page 2 of 17

Kadali Devi Sindhuja. International Journal of Science, Engineering and Technology,

2025, 13:3

VII. APPENDICES

SCREENSHOTS

Figure No. 7.1.1

Figure No. 7.1.2 Output

e SOURCE CODE

import subprocess

from collections import defaultdict
from rich.live import Live

from rich.table import Table

from rich.console import Console
import shutil

import time

console = Console()

Separate dictionaries for scores and protocols
domain_scores = defaultdict(lambda: 100)
domain_protocols = {}

def clamp(score):
return max(0, min(100, score))

def normalize_protocol(proto):
if proto.lower().startswith("tls") or proto.lower()
== "ss|":
return "https"
return proto.lower()

def score_domain(domain, protocol):
domain = domain.lower()
protocol = normalize_protocol(protocol)

Check domain and assign scores based on
certain rules
if domain.startswith("malware") or “phish" in
domain:
domain_scores[domain] =
clamp(domain_scores[domain] - 25)
elif protocol == "http":
domain_scores[domain] =
clamp(domain_scores[domain] - 10)
elif protocol == "https":
domain_scores[domain] =
clamp(domain_scores[domain] + 1)
elif protocol == "ssh™:
domain_scores[domain] =
clamp(domain_scores[domain] + 50)

Store the protocol separately
domain_protocols[domain] = protocol

def calculate_mitm_risk(domain, protocol, score):
protocol = protocol.lower()
domain = domain.lower()

if protocol == "http" or "phish" in domain or
score < 50:
return "High"
elif protocol == "https" and score < 75:
return "Medium"
else:
return "Low"

def build_table():
table = Table(title="0 Live Domain Safety
Scores", expand=True)
table.add_column("Domain",
no_wrap=True)
table.add_column("Protocol”, style="magenta")
table.add_column("Score", justify="right",
style="bold")
table.add_column(*MITM", style="bold")

style="cyan",

for domain, score in
sorted(domain_scores.items(), key=lambda x: x[1]):
style = "green”

Page 3 of 17

Kadali Devi Sindhuja. International Journal of Science, Engineering and Technology,

2025, 13:3

if int(score) < 60:
style = "red"
elif int(score) < 85:

style = "yellow"

protocol = domain_protocols.get(domain, "?")
mitm_risk = calculate_mitm_risk(domain,

protocol, score)

risk_color = {

IIHighII: llredII’
"Medium": "yellow",
"Low": "green”

}.get(mitm_risk, "white")

table.add_row(domain,
f"[{style}l{score}/100[/{style}]",
f'[{risk_color}]{mitm_risk}[/{risk_color}]")

protocol.upper(),

return table

def start_sniffing():
process = subprocess.Popen(
['tshark’, '-i', ‘any', '-I' '-Y', 'dns.gry.name ||
http.host || ssl.handshake.extensions_server_name’,
T, ‘fields', '-e', '_ws.col.Protocol’', '-e',
‘dns.qry.name’, -e, ‘http.host’, '-e,
'ssl.handshake.extensions_server_name'],
stdout=subprocess.PIPE,
stderr=subprocess.DEVNULL,
text=True
)
with Live(build_table(),
screen=False) as live:
try:
for line in process.stdout:
parts = line.strip().split('\t')
if len(parts) < 2:
continue
protocol = normalize_protocol(parts[0])
host = next((part for part in parts[1] if
part), None)
if host:
score_domain(host, protocol)
live.update(build_table())

refresh_per_second=3,

except KeyboardInterrupt:
process.terminate()

console.print("\n[bold
stopped by user.[/bold yellow]")
if _name__ =="_main_"
console.print("[bold green]O Live Domain Safety
Monitor Started[/bold green] (Ctrl+C to stop)\n")
start_sniffing()

yellow]O Capture

Summary
if domain_scores:
console.print("\n[bold
Scores:[/bold underline]")
for domain, score in domain_scores.items():
mitm = calculate_mitm_risk(domain,
domain_protocols.get(domain, "?"), score)
console.print(f"{domain} — {score}/100 |
MITM Risk: {mitm}")

underline]Final

VIIl. CONCLUSION

The Live Domain Safety Monitor, as implemented in
this project, represents a practical and efficient
approach to real-time network security monitoring,
with a specific focus on domain safety and Man-In-
The-Middle (MITM) risk assessment. By leveraging
the power of tshark for packet capture and the
flexibility of Python for data processing and
visualization, the system bridges the gap between
raw network data and actionable security insights,
making it a valuable tool for security analysts,
network administrators, and organizations seeking
to enhance their cybersecurity posture.

At the heart of the system lies a modular
architecture that ensures each component performs
a dedicated function. The packet capture module
continuously listens to all network interfaces,
extracting relevant protocol and domain
information from DNS queries, HTTP headers, and
SSL/TLS handshakes. This raw data is then
processed by the scoring module, which applies a
set of well-defined rules to evaluate the safety of
each accessed domain. Domains associated with
known malicious indicators, such as those
containing "malware" or "phish," are penalized,
while the use of secure protocols like HTTPS and
SSH is rewarded. This dynamic scoring mechanism,
clamped within a safe range, provides a quantitative
measure of domain trustworthiness that is both
intuitive and effective.

Page 4 of 17

Kadali Devi Sindhuja. International Journal of Science, Engineering and Technology,

2025, 13:3

The risk assessment module further enhances the
system'’s utility by translating domain scores and
protocol information into clear MITM risk levels—
High, Medium, or Low. This classification is
grounded in both the technical context (e.g., the
use of unencrypted HTTP) and the semantic analysis
of domain names, ensuring that users are promptly
alerted to potential threats. The visualization
module, powered by the rich library, transforms
these assessments into a live, color-coded table
that updates in real time. This immediate feedback
loop empowers users to monitor their network
environment at a glance, quickly identifying
domains that may require further investigation or
intervention.

One of the key strengths of the Live Domain Safety
Monitor is its simplicity and accessibility. The
system does not require complex configuration or
specialized hardware, making it suitable for
deployment on a wide range of systems, from
personal laptops to enterprise servers. Its reliance
on open-source tools and Python libraries further
enhances its adaptability and ease of maintenance.
Despite its lightweight design, the system provides
robust functionality, = supporting continuous
monitoring, user interruption, and comprehensive
summary reporting.

However, it is important to acknowledge the
limitations inherent in a heuristic-based approach.
The current system relies on predefined rules and
string matching, which, while effective for many
common threats, may not detect more
sophisticated or novel attack vectors. Future
enhancements could incorporate machine learning
for anomaly detection, integration with external
threat intelligence feeds, and deeper packet
inspection capabilities to further improve detection
accuracy and coverage.

In conclusion, the Live Domain Safety Monitor
demonstrates how real-time domain analysis and
risk assessment can be achieved through a
combination of packet capture, rule-based scoring,
and intuitive visualization. It provides a strong
foundation for proactive network defense and lays
the groundwork for future advancements in

automated threat detection. By making domain
safety monitoring accessible, actionable, and
efficient, this system contributes meaningfully to
the ongoing efforts to secure digital environments
against evolving cyber threats.

e FUTURE ENHANCEMENT

Future enhancements for the Live Domain Safety
Monitor can leverage the rapid advancements in
artificial intelligence and machine learning to create
a more robust, adaptive, and intelligent security
solution. One of the most promising directions is
the integration of machine learning algorithms for
dynamic threat detection and behavioral analysis.
Rather than relying solely on static rules or
keyword-based heuristics, machine learning models
can be trained on vast datasets of network traffic,
domain characteristics, and historical incidents to
identify subtle patterns indicative of emerging
threats, zero-day attacks, or sophisticated phishing
attempts. This approach has already shown
significant promise in fields such as loT security and
compliance monitoring, where machine learning
models outperform traditional methods in both
accuracy and execution time, and can
autonomously adapt to new vulnerabilities and
attack vectors as they arise.

Another critical enhancement involves the
incorporation of real-time threat intelligence feeds.
By connecting the system to external databases
such as VirusTotal or open-source blacklists, the
monitor can instantly flag domains already
associated with known attacks, malware, or
phishing campaigns, thus significantly reducing the
response time and improving detection rates. This
integration ensures that the system remains up-to-
date with the evolving threat landscape and
provides actionable intelligence for security teams.

The user interface and visualization capabilities can
also be substantially improved. Transitioning from a
terminal-based display to a web-based dashboard
would allow for interactive visualizations, historical
trend analysis, and multi-user access. Features such
as customizable alerts, incident logs, and drill-down
analytics would empower security analysts to

Page 5 of 17

Kadali Devi Sindhuja. International Journal of Science, Engineering and Technology,

2025, 13:3

respond more efficiently and make data-driven
decisions.

Automated response mechanisms represent
another future direction. Upon detecting a high-risk
domain or MITM attempt, the system could
automatically trigger firewall rules, notify
administrators, or even isolate affected devices,
thereby minimizing the impact of security incidents
and reducing the burden on human operators.
Additionally, enhancing compliance and
governance features—such as automated audit
logging, data anonymization, and configurable
retention policies—will help organizations meet
regulatory requirements and maintain the privacy
of monitored data.

Lastly, scalability and deployment flexibility will be
essential for broader adoption. By supporting
distributed monitoring, cloud-based deployments,
and containerization, the system can be integrated
into diverse and complex IT environments, from
small businesses to large enterprises. In summary,
by embracing machine learning, real-time
intelligence, advanced visualization, automation,
and scalable architecture, the Live Domain Safety
Monitor can evolve into a comprehensive, future-
ready cybersecurity platform.

REFERENCE
1. Scalable and Accurate Deep Learning with
Electronic Health Records Rajkomar, A, et

al. (2018).
npj Digital Medicine, 1, 18.
https://doi.org/10.1038/s41746-018-0029-1

2. A Survey of Machine Learning for Big Code
and Naturalness Allamanis, M., et al. (2018).
ACM Computing Surveys, 51(4), 81.
https://doi.org/10.1145/3212695

3. A Survey of Machine Learning for
Computer Security Buczak, A. L., & Guven,
E. (2016). ACM Computing Surveys, 49(4),
1-36.
https://doi.org/10.1145/3003816

4. DNS-based Detection of Malicious Domains

10.

11.

12.

13.

Antonakakis, M., et al. (2012). Proceedings
of the 2012 ACM Conference on Computer
and Communications Security, 467-478.
https://doi.org/10.1145/2382196.2382240

A Survey of Machine Learning for Intrusion
Detection Systems Javaid, A., et al. (2016).
Journal of Network and Computer
Applications, 75, 64-80.
https://doi.org/10.1016/j.jnca.2016.08.016
Detecting Malicious Domains Using Passive
DNS Analysis Hao, S., et al. (2016).
Proceedings of the 2016
Measurement Conference, 269-282.
https://doi.org/10.1145/2987443.2987470
Phishing Website Detection Using Machine
Learning Jain, A. K, & Gupta, B. B. (2018).
Telecommunication Systems, 68, 687-700.
https://doi.org/10.1007/s11235-017-0383-z
A Survey of Machine Learning Techniques
for Cyber Security Intrusion Detection
Alazab, M., et al. (2021). IEEE Access, 9,
29441-29461.
https://doi.org/10.1109/ACCESS.2021.3056
069

Man-in-the-Middle Attack Detection in
Wireless Sensor Networks Conti, M., et al.
(2016). IEEE Communications Surveys &
Tutorials, 18(3), 2027-2051.
https://doi.org/10.1109/COMST.2016.25377
48

A Survey of Network Anomaly Detection
Techniques

Chandola, V., et al. (2009).

ACM Computing Surveys, 41(3), 1-58.
https://doi.org/10.1145/1541880.1541882

A Survey on Phishing Detection Using
Machine Learning Techniques Basit, A., et
al. (2021).

Telecommunication Systems, 76, 139-154.
https://doi.org/10.1007/s11235-020-00706-
8

Real-Time Detection of Phishing Websites
Using Machine Learning

Abdelhamid, N., et al. (2014).

Computers & Security, 46, 1-13.
https://doi.org/10.1016/j.cose.2014.06.008
Passive DNS Analysis for Network Forensics
Bilge, L., et al. (2011).

Internet

Page 6 of 17

Kadali Devi Sindhuja. International Journal of Science, Engineering and Technology,

2025, 13:3

14.

15.

Proceedings of the 2011 ACM Symposium
on Information, Computer and
Communications Security, 373-382.
https://doi.org/10.1145/1966913.1966959

A Survey on Network Security Attacks and
Defense Mechanisms

Alazab, M., & Broadhurst, R. (2016).

Future Generation Computer Systems, 86,
1026-1039.
https://doi.org/10.1016/j.future.2016.11.030
A Comprehensive Survey on Domain
Generation Algorithms and Detection
Techniques

Woodbridge, J., et al. (2016).

Proceedings of the 2016 ACM Workshop
on Artificial Intelligence and Security, 49-60.
https://doi.org/10.1145/2996758.2996775

Page 7 of 17

