
Kadali Devi Sindhuja, 2025, 13:3

ISSN (Online): 2348-4098

ISSN (Print): 2395-4752

© 2025 Kadali Devi Sindhuja. This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly credited.

International Journal of Science,
Engineering and Technology

An Open Access Journal

 Web Analyzer for private Networks
Professor Dr.A. Neelamadheswari, Assistant Professor Mr.K.S.Arun, M.E. Ph.D Aloysius Rosario K,

Aasif Ahameed S, Arunkumar M

 Department Of Cyber Security, Mahendra Engineering College.

Abstract- In the current digital landscape, real-time monitoring and assessment of network domain safety

are essential for proactive cybersecurity defense. This project introduces a Python-based live domain

safety monitoring tool that leverages network packet analysis to evaluate and visualize the security

posture of domains accessed within a network. The tool integrates the power of tshark, the command-line

interface of Wireshark, to capture live DNS, HTTP, and SSL/TLS traffic, extracting relevant protocol and

domain information for immediate analysis.

At the core of the system is a dynamic scoring mechanism that assigns and adjusts safety scores to each

detected domain. Domains are initially assigned a neutral score, which is then modified based on a set of

heuristic rules. For instance, domains with suspicious characteristics—such as those starting with

"malware" or containing the substring "phish"—are penalized, reflecting their higher likelihood of being

malicious. The tool also evaluates the security of the communication protocol: traffic over HTTP results in

score deductions due to its inherent insecurity, while HTTPS and SSH connections are rewarded for their

stronger security guarantees. This flexible scoring approach allows the system to adapt to evolving threat

patterns and user behavior.

To further enhance situational awareness, the tool incorporates a Man-in-the-Middle (MITM) risk

assessment for each domain. By considering both the protocol in use and the domain’s current safety

score, the system categorizes MITM risk as High, Medium, or Low. Domains accessed via insecure

protocols, those with low safety scores, or those containing phishing indicators are flagged as high risk,

enabling rapid identification of potential attack vectors.

Visualization is a key feature of the tool, achieved through the rich Python library. The console interface

displays a continuously updating table of observed domains, their protocols, safety scores, and MITM risks,

all color-coded for quick interpretation. This real-time feedback loop empowers network administrators

and security analysts to take immediate action in response to emerging threats, such as isolating

compromised hosts or blocking access to dangerous domains.

Keywords: Network Packet Analysis, Live Traffic Capture, DNS, HTTP, SSL/TLS Monitoring, Protocol

Dissection, Heuristic-Based Scoring.

 Kadali Devi Sindhuja. International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 1 of 17

I. INTRODUCTION

OVERVIEW

The live domain safety monitoring tool presented in

this project offers a real-time solution for evaluating

the security of network domains accessed within an

organization or personal environment. Built in

Python, the tool integrates the tshark packet

analyzer to capture and filter DNS, HTTP, and

SSL/TLS traffic, focusing on extracting domain

names and their associated communication

protocols as network activity occurs. Each detected

domain is dynamically assigned a safety score,

which is updated based on heuristic rules that

consider both the protocol in use and the presence

of suspicious domain patterns, such as keywords

indicative of phishing or malware.

A distinctive feature of the tool is its ability to

assess the risk of Man-in-the-Middle (MITM)

attacks for each domain. By analyzing protocol

security and domain reputation in real time, the

system categorizes MITM risk as high, medium, or

low, providing immediate feedback to users. The

results are visualized through a live-updating, color-

coded table using the rich Python library, allowing

network administrators and security analysts to

quickly identify and respond to potential threats.

Designed for modularity and extensibility, the tool

can be adapted to incorporate new protocols,

threat intelligence sources, or more advanced

scoring algorithms as the threat landscape evolves.

Its lightweight architecture ensures compatibility

with a variety of network setups, making it suitable

for both educational purposes and operational

security monitoring. This approach empowers users

to maintain a proactive stance against cyber threats

by continuously monitoring domain safety and

communication security in real time.

PROBLEM STATEMENT

With the exponential growth of internet usage and

the increasing sophistication of cyber threats,

organizations and individuals face persistent

challenges in maintaining the security of their

networks. Malicious actors frequently exploit

vulnerabilities in network protocols and leverage

deceptive domain names to execute phishing,

malware distribution, and Man-in-the-Middle

(MITM) attacks. Traditional security solutions, such

as firewalls and antivirus software, often fail to

provide real-time visibility into the safety of

domains being accessed, especially as attackers

adopt new tactics that evade static defenses.

A critical gap exists in the ability to dynamically

monitor, evaluate, and visualize the safety of

domains on live networks. Existing monitoring tools

may lack intuitive interfaces, real-time feedback, or

the flexibility to adapt to emerging threats.

Moreover, many solutions do not provide

actionable insights into the risk posed by insecure

protocols (such as HTTP) or suspicious domain

patterns (such as those containing keywords like

"phish" or "malware"). This lack of timely, context-

aware information can delay threat detection and

response, increasing the risk of data breaches,

credential theft, and system compromise.

The challenge, therefore, is to develop a

lightweight, real-time monitoring tool that can

capture network traffic, intelligently assess domain

safety, and present the results in a clear, actionable

format. Such a tool should be able to dynamically

score domains based on protocol security and

domain reputation, estimate MITM risks, and

provide immediate visual feedback to users or

administrators. Addressing this problem is vital for

empowering proactive network defense, enabling

rapid identification of unsafe domains, and

supporting timely incident response in both

enterprise and personal network environments.

.

AIM &OBJECTIVE AIM

The primary aim of this project is to design,

develop, and demonstrate a robust, real-time

domain safety monitoring tool that empowers

network administrators and users to proactively

safeguard their digital environments. This tool is

intended to provide continuous, automated analysis

of network traffic, dynamically evaluating the safety

of domains accessed via DNS, HTTP, and SSL/TLS

protocols. By leveraging open-source technologies

and intuitive visualization, the project seeks to

bridge the gap between raw network data and

actionable cybersecurity intelligence. The ultimate

goal is to enhance situational awareness, facilitate

rapid threat detection, and support timely incident

response in the face of evolving cyber threats such

 Kadali Devi Sindhuja. International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 2 of 17

as phishing, malware distribution, and Man-in-the-

Middle (MITM) attacks.

OBJECTIVES

 To capture live network traffic efficiently:

Utilize the tshark packet analyzer to monitor all

active network interfaces and filter relevant packets

in real time. The tool should focus on extracting

domain names and protocol information from DNS

queries, HTTP requests, and SSL/TLS handshakes,

ensuring comprehensive coverage of web-based

and encrypted communications.

 To implement a dynamic, rule-based domain

scoring system:

Develop a scoring mechanism that assigns an initial

safety score to each detected domain and updates

it based on a set of heuristic rules. Domains

exhibiting suspicious characteristics—such as

names starting with "malware" or containing

"phish"—should be penalized, while those using

secure protocols like HTTPS and SSH should be

rewarded. The scoring system should reflect both

protocol security and domain reputation, providing

a nuanced assessment of risk.

 To normalize and accurately interpret

protocol data:

Incorporate logic to standardize protocol names

(e.g., mapping "tls" and "ssl" to "https") to ensure

consistent handling across different packet types.

This ensures that the scoring and risk evaluation

processes are accurate and not hindered by

variations in protocol naming conventions.

 To assess and categorize Man-in-the-Middle

(MITM) risk:

Create a risk evaluation module that estimates the

likelihood of MITM attacks for each domain. This

module should consider both the protocol in use

and the current safety score, categorizing domains

into High, Medium, or Low MITM risk. Domains

accessed via insecure protocols or with low safety

scores should be highlighted as high risk to prompt

immediate attention.

 To provide real-time, actionable

visualization:

Leverage the rich Python library to present

monitoring results in a live-updating, color-coded

table. The interface should clearly display each

domain, its protocol, safety score, and MITM risk,

using intuitive color schemes to facilitate rapid

recognition of threats and safe domains alike.

 To ensure modularity and extensibility:

Architect the tool in a modular fashion, allowing for

easy updates and expansion. Scoring logic, risk

assessment criteria, and protocol support should be

readily adjustable to accommodate new types of

threats, additional protocols, or integration with

external threat intelligence sources.

 To minimize system resource impact and

maximize compatibility:

Ensure the tool operates efficiently, consuming

minimal system resources so it can run continuously

on a wide range of hardware platforms. The tool

should be compatible with any system supporting

tshark, requiring no intrusive monitoring or deep

packet inspection that could impact privacy or

performance.

 To empower proactive network defense and

user education:

Enable users and administrators to maintain a

proactive security posture by providing immediate,

actionable intelligence. The tool should support

rapid identification of unsafe domains, facilitate

timely incident response, and promote best

practices in network security awareness and

hygiene.

 To generate session summaries for post-

analysis:

Upon termination, the tool should output a clear

summary of all observed domains, their final safety

scores, and MITM risk assessments. This feature

supports post-session analysis, reporting,

compliance, and continuous improvement of

security policies.

 To serve both educational and operational

purposes:

Design the system to be valuable in both academic

and real-world operational contexts. For students

and trainees, the tool should illustrate real-time

network security concepts; for professionals, it

should provide an additional layer of defense and

insight in live environments.

SCOPE OF PROJECT

The scope of this project encompasses the design,

development, and demonstration of a real-time

domain safety monitoring tool that leverages live

 Kadali Devi Sindhuja. International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 3 of 17

network traffic analysis to enhance cybersecurity

awareness and defense. The tool is implemented in

Python and utilizes the tshark packet analyzer to

capture and process DNS, HTTP, and SSL/TLS traffic,

focusing on extracting domain names and protocol

information from network packets as they traverse

the system.

This project is primarily concerned with monitoring

domains accessed within a local or organizational

network environment. It dynamically evaluates the

safety of each detected domain by applying a rule-

based scoring system that considers both protocol

security (such as HTTP, HTTPS, or SSH) and domain

reputation (such as the presence of suspicious

keywords like "malware" or "phish"). The tool

further assesses the risk of Man-in-the-Middle

(MITM) attacks for each domain, categorizing them

as high, medium, or low risk based on protocol and

score.

A significant aspect of the project’s scope is the

visualization of results. The tool employs the rich

Python library to present a live-updating, color-

coded table in the console, displaying each

domain’s name, protocol, safety score, and MITM

risk level. This immediate feedback allows users and

administrators to quickly identify unsafe or

suspicious domains and take appropriate action.

The project is designed for modularity and

extensibility, enabling future enhancements such as

the integration of additional protocols, more

advanced scoring heuristics, or external threat

intelligence feeds. While the current

implementation focuses on DNS, HTTP, and SSL/TLS

protocols, the architecture allows for expansion to

cover other network services as needed.

However, the project does not include deep packet

inspection, payload analysis, or automated blocking

of malicious domains. It is intended as a monitoring

and awareness tool rather than a comprehensive

intrusion prevention system. The tool is suitable for

use in educational settings, small to medium

organizational networks, or as a supplementary

layer in larger security infrastructures.

.

II. LITERATURE REVIEW

Title: Detection of Malicious Domains through DNS

Data Analysis

Authors: Bilge, L., Kirda, E., Kruegel, C., & Balduzzi,

M.

Year: 2012

Reference Link:

https://doi.org/10.1109/TNET.2013.2297115

Introduction:

With the increasing complexity of cyber threats,

real-time network traffic monitoring has become a

cornerstone of modern cybersecurity. Tools like

Wireshark and its command-line counterpart Tshark

are widely used for capturing and analyzing

network packets, enabling the detection of

suspicious activity and unsafe domains as they

occur.

 Problem Statement:

Traditional network monitoring tools often require

manual inspection and do not provide automated,

real-time risk assessment of domains. This leads to

delays in detecting threats such as phishing,

malware, and Man-in-the-Middle (MITM) attacks,

especially in high-traffic environments.

 Objective:

The objective of real-time network traffic

monitoring is to automate the extraction and

analysis of domain and protocol information from

live network packets. By applying heuristic or rule-

based scoring systems, these tools can assess the

safety of domains and provide immediate feedback

to network administrators.

Merits:

 Enables proactive threat detection and

response.

 Provides continuous visibility into network

activity

 Reduces manual workload for security analysts.

 Can be integrated with visualization tools for

intuitive monitoring.

 Demerits:

 May generate false positives due to heuristic

rules.

 Kadali Devi Sindhuja. International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 4 of 17

 Limited by the scope of monitored protocols

(e.g., may not cover all network services).

 High network traffic can impact performance or

overwhelm the system.

 Lacks deep packet inspection, potentially

missing payload-based threats.

Title: Visualizing Cyber Security: Usable

Workspaces. IEEE Symposium on Visual Analytics

Science and Technology.

Authors: Fink, S., North, C., Endert, A., & Rose, S.

Year: 2009

Reference Link:

https://doi.org/10.1109/VAST.2009.5333882

Introduction:

As cyber threats become more complex and

network environments more data-rich, the ability to

visualize security data in a meaningful way has

become a critical requirement for effective

cybersecurity operations. Fink et al. (2009)

emphasize the transformative power of visualization

in cybersecurity, arguing that "usable

workspaces"—visual interfaces that present

complex data intuitively—are essential for enabling

analysts to detect, interpret, and respond to threats

efficiently. Visualization tools bridge the gap

between raw data and human cognition, making it

possible to identify patterns, anomalies, and risks

that would otherwise remain hidden.

 Problem Statement:

Security analysts are often inundated with vast

amounts of raw network and security data, which

can be overwhelming and difficult to interpret in a

timely manner. Traditional text-based logs and

static dashboards are insufficient for real-time

threat detection, as they require manual sifting and

lack the immediacy needed for rapid response.

Without effective visualization, critical threats may

go unnoticed, and the cognitive load on analysts

can lead to errors or missed incidents.

 Objective:

The objective, as outlined by Fink et al. (2009), is to

design and implement interactive, real-time

visualization systems that present network and

domain safety data in a clear, actionable format.

These systems should offer customizable layouts,

support live data feeds, and use color-coding and

other visual cues to highlight risk levels and

anomalies. The goal is to enhance situational

awareness, facilitate rapid decision-making, and

support collaborative analysis among security

teams.

 Merits:

 Enhanced Situational Awareness: Visualization

tools make it easier to understand the current

security posture at a glance, enabling faster

identification of threats.

 Reduced Cognitive Load: By presenting

information visually, these tools help analysts

process large amounts of data more efficiently,

reducing the risk of oversight.

 Pattern Recognition: Visual interfaces support

the detection of trends, outliers, and

correlations that may indicate malicious activity.

 Collaboration: Usable workspaces facilitate

communication and joint investigation among

multiple analysts, improving overall security

outcomes.

 Real-Time Feedback: Live-updating dashboards

ensure that analysts are always working with

the most current data, supporting timely

response.

 Demerits:

 Development Complexity: Creating advanced,

interactive visualization systems can require

significant resources and specialized expertise.

 Potential for Clutter: Overly complex or poorly

designed interfaces can overwhelm users and

obscure important information.

 Training Requirements: Analysts may need

training to fully leverage the capabilities of

sophisticated visualization tools.

 Dependency on Data Quality: The effectiveness

of visualization is directly tied to the quality and

completeness of the underlying data and

analytics. Poor data can lead to misleading

visualizations and incorrect conclusions.

III. SYSTEM ANALYSIS

EXISTING SYSTEM

1. Network Traffic Capture

 Kadali Devi Sindhuja. International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 5 of 17

At its core, the system uses the tshark tool (the

command-line version of Wireshark) to capture live

network packets. It listens on all network interfaces

(-i any) and filters for DNS queries, HTTP host

headers, and SSL/TLS server name indications. This

allows the system to extract the domains being

accessed and the protocols used (e.g., HTTP, HTTPS,

SSH).

 Domain Scoring Mechanism

The system maintains a score for each domain,

initialized at 100. This score is dynamically adjusted

based on several rules:

Malicious Indicators: If a domain name starts with

"malware" or contains "phish", its score is reduced

by 25 points, reflecting a high likelihood of being

unsafe.

 Protocol Assessment:

Accessing a domain via HTTP (unencrypted)

reduces the score by 10, due to the higher risk of

interception.

HTTPS (encrypted) slightly increases the score by 1,

indicating improved safety.

SSH (secure shell) increases the score by 50, as it is

considered highly secure.

The score is always clamped between 0 and 100 to

maintain consistency.

 Protocol Normalization

Protocols are normalized for consistency. For

example, any protocol string starting with "tls" or

equal to "ssl" is treated as "https". This ensures that

variations in protocol naming do not affect scoring

logic.

 MITM Risk Calculation

For each domain, the system estimates the Man-In-

The-Middle (MITM) risk:

High Risk: If the protocol is HTTP, the domain

contains "phish", or the score is below 50.

Medium Risk: If the protocol is HTTPS but the score

is below 75.

Low Risk: All other cases, typically when secure

protocols are used and the domain score is high.

 Live Visualization

Using the rich library, the system displays a live-

updating table in the terminal. This table includes:

 Domain name

 Protocol used

 Safety score (color-coded: green for safe,

yellow for caution, red for danger)

 MITM risk level (color-coded accordingly)

This real-time feedback allows users to quickly

identify potentially unsafe domains and take action.

 User Interaction and Termination

The system runs continuously, updating the table as

new network activity is detected. Users can stop the

monitoring process with Ctrl+C, upon which a

summary of all domains, their final scores, and

MITM risk levels is displayed.

Strengths of the Existing System

Real-Time Monitoring: Immediate feedback on

network activity and domain safety.

Customizable Scoring Logic: Rules can be easily

adjusted to reflect changing threat landscapes.

Visual Clarity: Color-coded tables make it easy to

spot risks at a glance.

Protocol Awareness: Differentiates between secure

and insecure protocols, factoring this into risk

assessment.

Actionable Output: Final summary provides a clear

record of all accessed domains and their risk levels.

Limitations

Rule-Based Detection: Relies on simple heuristics

(e.g., string matching for "phish" or "malware"),

which may miss more sophisticated threats.

Limited Protocol Analysis: Focuses primarily on

HTTP, HTTPS, and SSH, potentially overlooking

other protocols.

No Deep Packet Inspection: Does not analyze the

content of network packets, only metadata.

Requires Tshark: Depends on external tools and

elevated privileges to capture network traffic.

 PROPOSED SYSTEM

 Machine Learning-Based Threat Detection

The proposed system replaces static, rule-based

scoring with a dynamic, machine learning (ML)

model trained on large datasets of benign and

malicious domains. Features such as domain age,

lexical analysis, WHOIS data, protocol usage, and

historical behavior are used to predict the

likelihood of a domain being malicious or involved

in phishing, malware distribution, or MITM attacks.

 Kadali Devi Sindhuja. International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 6 of 17

Benefits:

 Detects zero-day and previously unknown

threats.

 Reduces false positives by learning from real-

world data.

 Continuously improves as new data is

incorporated.

 Integration with Threat Intelligence Feeds

The system automatically queries multiple real-time

threat intelligence databases (such as VirusTotal,

IBM X-Force, and open-source threat feeds)

whenever a new domain is detected. This provides

up-to-date risk ratings, known malicious indicators,

and context about ongoing campaigns.

 Benefits:

 immediate identification of domains linked to

recent attacks.

 Enrichment of domain data with global threat

context.

Deep Packet Inspection (DPI)

Instead of only analyzing protocol metadata, the

system performs DPI on captured packets (within

privacy and legal boundaries). This enables

detection of hidden payloads, suspicious scripts,

and anomalous content patterns, further

strengthening the risk assessment process.

Benefits:

 Detects threats that evade protocol-based

detection.

 Identifies malicious content even in encrypted

tunnels (where possible).

 User and Entity Behavior Analytics (UEBA)

The system profiles normal user and device

behavior over time. When a domain access pattern

deviates significantly from the baseline (e.g., a user

suddenly accessing rare or high-risk domains), the

system triggers alerts or automated responses.

Benefits:

 Early detection of compromised accounts or

insider threats.

 Context-aware risk scoring.

Automated Response and Remediation

Upon detecting high-risk domains or MITM

attempts, the system can be configured to:

 Block network connections via firewall rules.

 Notify administrators and affected users.

 Quarantine suspicious devices for further

analysis.

Benefits:

 Minimizes response time to active threats.

 Reduces manual intervention and potential

damage.

Intuitive Web-Based Dashboard

Instead of a terminal-based table, the proposed

system features a responsive web dashboard with:

 Real-time visualizations (graphs, maps,

timelines).

 Drill-down reports on domain risk, user activity,

and incident history.

 Customizable alerts and policy management.

Benefits:

Enhanced usability for security teams.

Centralized management and reporting.

 Privacy and Compliance Controls

The system incorporates privacy-preserving

techniques, such as anonymizing user data and

supporting compliance with regulations (GDPR,

HIPAA, etc.), ensuring that security monitoring does

not compromise user privacy.

 Advantages Over the Existing System

Accuracy: ML and threat intelligence reduce false

positives and adapt to evolving threats.

Depth: DPI and UEBA provide context-aware,

content-based detection.

Automation: Automated blocking and alerting

streamline incident response.

Usability: Web dashboard and detailed reports

improve visibility and decision-making.

Scalability: Designed for enterprise networks,

supporting distributed monitoring and centralized

management.

IV. SYSTEM REQUIREMENTS

HARDWARE REQUIREMENTS:

 Minimum Hardware

 Kadali Devi Sindhuja. International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 7 of 17

 Processor: Dual-core CPU (Intel i3/AMD Ryzen 3

or equivalent)

RAM: 4 GB

 Storage: 100 MB free disk space (for logs,

temporary files, and dependencies)

 Network Interface: At least one active network

interface (wired or wireless) capable of packet

capture

Recommended Hardware

 Processor: Quad-core CPU (Intel i5/AMD Ryzen

5 or better) for smoother real-time analysis

 RAM: 8 GB or higher, especially if monitoring

high-traffic environments

 Storage: 1 GB free disk space for extended

logging and data retention

 Display: Terminal or monitor with at least

1024x768 resolution for optimal table

visualization

Software Requirements

 Operating System

 Supported OS: Linux (Ubuntu, Debian, Fedora,

CentOS), macOS, or Windows 10/11 with WSL

(Windows Subsystem for Linux)

 Privileges: Administrative/root privileges

required to capture network traffic

 Dependencies

 Python: Version 3.7 or higher

 Python Packages:

 rich (for live terminal visualization)

 External Tools:

 tshark (command-line tool for packet capture;

part of the Wireshark suite)

 Must be installed and accessible in the system

PATH

 Other Tools:

 pip for Python package management

 Installation Notes

 Ensure Python and pip are up-to-date.

 Install tshark:

 On Ubuntu/Debian: sudo apt-get install tshark

 On Fedora: sudo dnf install wireshark-cli

 On macOS: brew install wireshark

 Grant necessary permissions to capture packets

(e.g., add user to wireshark group or run with

sudo).

 SOFTWARE REQUIREMENTS:

 Operating System

 Supported OS: Linux (Ubuntu, Debian, Fedora,

CentOS), macOS, or Windows 10/11 with WSL

(Windows Subsystem for Linux)

 Privileges: Administrative/root privileges

required to capture network traffic

 Dependencies

 Python: Version 3.7 or higher

 Python Packages:

 rich (for live terminal visualization)

 External Tools:

 tshark (command-line tool for packet capture;

part of the Wireshark suite)

 Must be installed and accessible in the system

PATH

 Other Tools:

 pip for Python package management

 Installation Notes

 Ensure Python and pip are up-to-date.

 Install tshark:

 On Ubuntu/Debian: sudo apt-get install tshark

 On Fedora: sudo dnf install wireshark-cli

 On macOS: brew install wireshark

 Grant necessary permissions to capture packets

(e.g., add user to wireshark group or run with

sudo)..

V. SYSTEM DESIGN

SYSTEM ARCHITECTURE

The Live Domain Safety Monitor is designed as a

real-time, terminal-based cybersecurity tool that

captures network traffic, analyzes accessed

domains, scores their safety, and estimates Man-In-

The-Middle (MITM) risk. The architecture is

modular, ensuring each component is responsible

for a specific function, from packet capture to

visualization.

 Hardware Requirements

 Minimum Hardware

 Processor: Dual-core CPU (Intel i3/AMD Ryzen 3

or equivalent)

 RAM: 4 GB

 Storage: 100 MB free disk space (for logs,

temporary files, and dependencies)

 Kadali Devi Sindhuja. International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 8 of 17

 Network Interface: At least one active network

interface (wired or wireless) capable of packet

capture

Recommended Hardware

 Processor: Quad-core CPU (Intel i5/AMD Ryzen

5 or better) for smoother real-time analysis

 RAM: 8 GB or higher, especially if monitoring

high-traffic environments

 Storage: 1 GB free disk space for extended

logging and data retention

 Display: Terminal or monitor with at least

1024x768 resolution for optimal table

visualization

Software Requirements

 Operating System

 Supported OS: Linux (Ubuntu, Debian, Fedora,

CentOS), macOS, or Windows 10/11 with WSL

(Windows Subsystem for Linux)

 Privileges: Administrative/root privileges

required to capture network traffic

 Dependencies

 Python: Version 3.7 or higher

 Python Packages:

 rich (for live terminal visualization)

 External Tools:

 tshark (command-line tool for packet capture;

part of the Wireshark suite)

 Must be installed and accessible in the system

PATH

 Other Tools:

 pip for Python package management.

Installation Notes

 Ensure Python and pip are up-to-date.

 Install tshark:

 On Ubuntu/Debian: sudo apt-get install tshark

 On Fedora: sudo dnf install wireshark-cli

 On macOS: brew install wireshark

 Grant necessary permissions to capture packets

(e.g., add user to wireshark group or run with

sudo).

 Network Requirements

 Network Access: Must have permission to

monitor traffic on the desired interfaces.

 Bandwidth: Minimal for the tool itself, but

performance may vary based on network load.

 Firewall: Ensure local firewall rules allow packet

capture and do not block tshark.

 User and Operational Requirements

 User Privileges: User must have

administrative/root access to start packet

capture.

 Terminal Access: Must be able to run Python

scripts and view terminal output.

 Basic Knowledge: Users should be familiar with

command-line operations and basic network

concepts.

 Security Awareness: Users should understand

the privacy and legal implications of network

monitoring.

 Security and Compliance Considerations

 Data Privacy: Ensure monitoring complies with

organizational policies and local laws (e.g.,

GDPR, HIPAA).

 Access Control: Limit script and log access to

authorized personnel only.

 Audit Logging: Optionally, implement logging

of script usage and access for audit purposes.

 Kadali Devi Sindhuja. International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 9 of 17

 Updates: Regularly update Python, tshark, and

dependencies to patch security vulnerabilities.

 Scalability and Performance

 Scalability: For high-traffic or enterprise

environments, consider deploying on dedicated

hardware or virtual machines with increased

CPU and RAM.

 Performance Monitoring: Monitor system

resource usage during operation to avoid

bottlenecks.

 Data Retention: Plan for log rotation and disk

space management if storing results long-term.

 Optional Enhancements

 Web Interface: For broader usability, a web-

based dashboard can be developed (requires

additional software: Flask/Django, web server,

etc.).

 Integration: Can be integrated with SIEM

(Security Information and Event Management)

tools or alerting systems for automated

response.

 DATA FLOW

 Network Traffic Capture

 Source: The system begins by invoking the

tshark tool, which listens to all network

interfaces (-i any).

 Filter: It captures only relevant packets,

specifically those containing:

 DNS query names

 HTTP host headers

 SSL/TLS server name indications

 Output: For each captured packet, tshark

outputs:

 Protocol type (e.g., HTTP, HTTPS, SSH)

 Domain or host name (from DNS, HTTP, or

SSL/TLS fields)

 Data Extraction and Normalization

 Reading Output: The Python script reads each

line of output from tshark in real time.

 Splitting Data: Each line is split into protocol

and host/domain fields.

 Normalization: The protocol string is

normalized (e.g., "tls" or "ssl" is treated as

"https") to ensure consistent processing.

 Domain Scoring and Protocol Assignment

 Scoring Logic: For each domain and protocol

pair:

 If the domain starts with "malware" or contains

"phish", subtract 25 from its score.

 If accessed via HTTP, subtract 10 from its score.

 If accessed via HTTPS, add 1 to its score.

 If accessed via SSH, add 50 to its score.

 The score is clamped between 0 and 100.

 Storage: The current score and protocol for

each domain are stored in dictionaries:

 domain_scores[domain]

 domain_protocols[domain]

 MITM Risk Calculation

 Risk Assessment: For each domain, the script

calculates the Man-In-The-Middle (MITM) risk

based on:

 Protocol used

 Domain characteristics (e.g., presence of

"phish")

 Current score

 Risk Levels:

 High: If protocol is HTTP, domain contains

"phish", or score is below 50.

 Medium: If protocol is HTTPS and score is

below 75.

 Low: All other cases.

 Live Visualization

 Table Construction: The script uses the rich

library to build a table displaying:

 Domain name

 Protocol

 Score (color-coded: green, yellow, red)

 MITM risk (color-coded: green, yellow, red)

 Live Updating: The table is updated in real time

as new domains are accessed or as scores

change.

 User Interaction and Termination

 Continuous Monitoring: The process continues

to capture, analyze, and display data until the

user interrupts (Ctrl+C).

 Summary Output: Upon termination, the script

prints a summary of all domains, their final

scores, and MITM risk levels.

 Kadali Devi Sindhuja. International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 10 of 17

 EXPERIMENTAL ANALYSIS TABLE

Table No.1 Experimental Analysis Table

No Domain Name Protocol

Initial

Score

Adjustments Applied Final Score MITM Risk

1

malware-

portal.com

HTTP 100 -25 ("malware"), -10 (HTTP) 65 High

2 safe-site.org HTTPS 100 +1 (HTTPS) 101→100 Low

3

phishingsite.ne

t

HTTPS 100 -25 ("phish"), +1 (HTTPS) 76 Medium

4

admin-

server.local

SSH 100 +50 (SSH) 150→100 Low

5

unknown-

domain.xyz

HTTP 100 -10 (HTTP) 90 Low

6

suspicious-

phish.com

HTTP 100 -25 ("phish"), -10 (HTTP) 65 High

7

trusted-

bank.com

HTTPS 100 +1 (HTTPS) 101→100 Low

8 risky-site.com HTTP 100 -10 (HTTP) 90 Low

9

malwaretest.or

g

HTTPS 100 -25 ("malware"), +1 (HTTPS) 76 Medium

10 admin-ssh.net SSH 100 +50 (SSH) 150→100 Low

 Kadali Devi Sindhuja. International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 2 of 17

VI. SYSTEM IMPLEMENTATION

The Live Domain Safety Monitor is a real-time

cybersecurity tool designed to assess the safety of

domains accessed over a network and estimate the

risk of Man-In-The-Middle (MITM) attacks. Utilizing

the tshark packet capture utility, the system

monitors all network interfaces for DNS queries,

HTTP host headers, and SSL/TLS server name

indications. For each detected domain, the system

applies a scoring mechanism that starts at 100 and

adjusts based on domain characteristics and the

protocol used: domains associated with malware or

phishing are penalized, while secure protocols like

HTTPS and SSH increase the score. The protocol is

normalized to ensure consistent evaluation, and

both the score and protocol are tracked for each

domain. Based on the final score and protocol, the

system calculates the MITM risk level as High,

Medium, or Low. All this information is presented in

a live-updating, color-coded table within the

terminal using the rich library, allowing users to

instantly visualize the safety status of domains and

their associated risks. The monitoring continues

until manually stopped by the user, at which point a

summary of all domains, their final scores, and

MITM risk levels is displayed. This system provides a

lightweight yet effective approach for network

administrators and security analysts to monitor and

evaluate domain safety in real time.

MODULES BREAKDOWN

TThe Live Domain Safety Monitor is structured into

several key functional modules that work together

to deliver real-time domain safety analysis. The

Packet Capture Module is responsible for

monitoring network traffic using the tshark utility,

filtering for relevant protocol and domain

information such as DNS queries, HTTP host

headers, and SSL/TLS server names. The Data

Extraction and Normalization Module processes the

captured output, extracting protocol and domain

details and standardizing protocol names for

consistent analysis. The Scoring Module evaluates

each domain by applying a set of rules: it penalizes

domains associated with malware or phishing,

deducts points for unencrypted protocols like HTTP,

and rewards secure protocols like HTTPS and SSH.

This module ensures that each domain’s score is

clamped within a safe range. The Risk Assessment

Module determines the Man-In-The-Middle (MITM)

risk for each domain by considering its score,

protocol, and suspicious keywords, classifying the

risk as High, Medium, or Low. The Visualization

Module leverages the rich library to present a live-

updating, color-coded table in the terminal,

allowing users to easily monitor domain safety and

risk levels in real time. Finally, the User Interaction

and Summary Module manages the lifecycle of the

monitoring session, handling user interruptions and

summarizing the results with a final report of all

domains, their scores, and associated risks.

Together, these modules form a cohesive and

efficient system for continuous domain safety

monitoring and risk assessment.

INTEGRATION DETAILS

The integration of the Live Domain Safety Monitor

is streamlined and efficient, leveraging both

external tools and Python libraries to achieve real-

time domain safety analysis. At its core, the system

integrates with the tshark utility—a command-line

packet analyzer—by invoking it as a subprocess

from within the Python environment. This allows

the tool to capture live network traffic from all

interfaces and filter for relevant fields such as DNS

queries, HTTP host headers, and SSL/TLS server

names. The captured data is then seamlessly piped

into the Python script, where it is parsed,

normalized, and processed using custom logic for

scoring and risk assessment. The integration

extends to the use of the rich library, which is

employed to construct and update a dynamic,

color-coded table in the terminal, providing

immediate visual feedback to the user. The system’s

modular design ensures that each component—

from packet capture and data extraction to scoring

logic and visualization—works cohesively, with

shared data structures like dictionaries facilitating

smooth information flow between modules. This

tight integration enables the tool to operate

continuously in a live environment, updating risk

assessments in real time and allowing for user

interruption and summary reporting without data

loss or performance degradation.

 Kadali Devi Sindhuja. International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 3 of 17

VII. APPENDICES

SCREENSHOTS

Figure No. 7.1.1

Figure No. 7.1.2 Output

 SOURCE CODE

import subprocess

from collections import defaultdict

from rich.live import Live

from rich.table import Table

from rich.console import Console

import shutil

import time

console = Console()

Separate dictionaries for scores and protocols

domain_scores = defaultdict(lambda: 100)

domain_protocols = {}

def clamp(score):

 return max(0, min(100, score))

def normalize_protocol(proto):

 if proto.lower().startswith("tls") or proto.lower()

== "ssl":

 return "https"

 return proto.lower()

def score_domain(domain, protocol):

 domain = domain.lower()

 protocol = normalize_protocol(protocol)

 # Check domain and assign scores based on

certain rules

 if domain.startswith("malware") or "phish" in

domain:

 domain_scores[domain] =

clamp(domain_scores[domain] - 25)

 elif protocol == "http":

 domain_scores[domain] =

clamp(domain_scores[domain] - 10)

 elif protocol == "https":

 domain_scores[domain] =

clamp(domain_scores[domain] + 1)

 elif protocol == "ssh":

 domain_scores[domain] =

clamp(domain_scores[domain] + 50)

 # Store the protocol separately

 domain_protocols[domain] = protocol

def calculate_mitm_risk(domain, protocol, score):

 protocol = protocol.lower()

 domain = domain.lower()

 if protocol == "http" or "phish" in domain or

score < 50:

 return "High"

 elif protocol == "https" and score < 75:

 return "Medium"

 else:

 return "Low"

def build_table():

 table = Table(title="� Live Domain Safety

Scores", expand=True)

 table.add_column("Domain", style="cyan",

no_wrap=True)

 table.add_column("Protocol", style="magenta")

 table.add_column("Score", justify="right",

style="bold")

 table.add_column("MITM", style="bold")

 for domain, score in

sorted(domain_scores.items(), key=lambda x: x[1]):

 style = "green"

 Kadali Devi Sindhuja. International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 4 of 17

 if int(score) < 60:

 style = "red"

 elif int(score) < 85:

 style = "yellow"

 protocol = domain_protocols.get(domain, "?")

 mitm_risk = calculate_mitm_risk(domain,

protocol, score)

 risk_color = {

 "High": "red",

 "Medium": "yellow",

 "Low": "green"

 }.get(mitm_risk, "white")

 table.add_row(domain, protocol.upper(),

f"[{style}]{score}/100[/{style}]",

f"[{risk_color}]{mitm_risk}[/{risk_color}]")

 return table

def start_sniffing():

 process = subprocess.Popen(

 ['tshark', '-i', 'any', '-l', '-Y', 'dns.qry.name ||

http.host || ssl.handshake.extensions_server_name',

 '-T', 'fields', '-e', '_ws.col.Protocol', '-e',

'dns.qry.name', '-e', 'http.host', '-e',

'ssl.handshake.extensions_server_name'],

 stdout=subprocess.PIPE,

 stderr=subprocess.DEVNULL,

 text=True

)

 with Live(build_table(), refresh_per_second=3,

screen=False) as live:

 try:

 for line in process.stdout:

 parts = line.strip().split('\t')

 if len(parts) < 2:

 continue

 protocol = normalize_protocol(parts[0])

 host = next((part for part in parts[1:] if

part), None)

 if host:

 score_domain(host, protocol)

 live.update(build_table())

 except KeyboardInterrupt:

 process.terminate()

 console.print("\n[bold yellow]� Capture

stopped by user.[/bold yellow]")

if __name__ == "__main__":

 console.print("[bold green]� Live Domain Safety

Monitor Started[/bold green] (Ctrl+C to stop)\n")

 start_sniffing()

 # Summary

 if domain_scores:

 console.print("\n[bold underline]Final

Scores:[/bold underline]")

 for domain, score in domain_scores.items():

 mitm = calculate_mitm_risk(domain,

domain_protocols.get(domain, "?"), score)

 console.print(f"{domain} → {score}/100 |

MITM Risk: {mitm}")

VIII. CONCLUSION

The Live Domain Safety Monitor, as implemented in

this project, represents a practical and efficient

approach to real-time network security monitoring,

with a specific focus on domain safety and Man-In-

The-Middle (MITM) risk assessment. By leveraging

the power of tshark for packet capture and the

flexibility of Python for data processing and

visualization, the system bridges the gap between

raw network data and actionable security insights,

making it a valuable tool for security analysts,

network administrators, and organizations seeking

to enhance their cybersecurity posture.

At the heart of the system lies a modular

architecture that ensures each component performs

a dedicated function. The packet capture module

continuously listens to all network interfaces,

extracting relevant protocol and domain

information from DNS queries, HTTP headers, and

SSL/TLS handshakes. This raw data is then

processed by the scoring module, which applies a

set of well-defined rules to evaluate the safety of

each accessed domain. Domains associated with

known malicious indicators, such as those

containing "malware" or "phish," are penalized,

while the use of secure protocols like HTTPS and

SSH is rewarded. This dynamic scoring mechanism,

clamped within a safe range, provides a quantitative

measure of domain trustworthiness that is both

intuitive and effective.

 Kadali Devi Sindhuja. International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 5 of 17

The risk assessment module further enhances the

system’s utility by translating domain scores and

protocol information into clear MITM risk levels—

High, Medium, or Low. This classification is

grounded in both the technical context (e.g., the

use of unencrypted HTTP) and the semantic analysis

of domain names, ensuring that users are promptly

alerted to potential threats. The visualization

module, powered by the rich library, transforms

these assessments into a live, color-coded table

that updates in real time. This immediate feedback

loop empowers users to monitor their network

environment at a glance, quickly identifying

domains that may require further investigation or

intervention.

One of the key strengths of the Live Domain Safety

Monitor is its simplicity and accessibility. The

system does not require complex configuration or

specialized hardware, making it suitable for

deployment on a wide range of systems, from

personal laptops to enterprise servers. Its reliance

on open-source tools and Python libraries further

enhances its adaptability and ease of maintenance.

Despite its lightweight design, the system provides

robust functionality, supporting continuous

monitoring, user interruption, and comprehensive

summary reporting.

However, it is important to acknowledge the

limitations inherent in a heuristic-based approach.

The current system relies on predefined rules and

string matching, which, while effective for many

common threats, may not detect more

sophisticated or novel attack vectors. Future

enhancements could incorporate machine learning

for anomaly detection, integration with external

threat intelligence feeds, and deeper packet

inspection capabilities to further improve detection

accuracy and coverage.

In conclusion, the Live Domain Safety Monitor

demonstrates how real-time domain analysis and

risk assessment can be achieved through a

combination of packet capture, rule-based scoring,

and intuitive visualization. It provides a strong

foundation for proactive network defense and lays

the groundwork for future advancements in

automated threat detection. By making domain

safety monitoring accessible, actionable, and

efficient, this system contributes meaningfully to

the ongoing efforts to secure digital environments

against evolving cyber threats.

 FUTURE ENHANCEMENT

Future enhancements for the Live Domain Safety

Monitor can leverage the rapid advancements in

artificial intelligence and machine learning to create

a more robust, adaptive, and intelligent security

solution. One of the most promising directions is

the integration of machine learning algorithms for

dynamic threat detection and behavioral analysis.

Rather than relying solely on static rules or

keyword-based heuristics, machine learning models

can be trained on vast datasets of network traffic,

domain characteristics, and historical incidents to

identify subtle patterns indicative of emerging

threats, zero-day attacks, or sophisticated phishing

attempts. This approach has already shown

significant promise in fields such as IoT security and

compliance monitoring, where machine learning

models outperform traditional methods in both

accuracy and execution time, and can

autonomously adapt to new vulnerabilities and

attack vectors as they arise.

Another critical enhancement involves the

incorporation of real-time threat intelligence feeds.

By connecting the system to external databases

such as VirusTotal or open-source blacklists, the

monitor can instantly flag domains already

associated with known attacks, malware, or

phishing campaigns, thus significantly reducing the

response time and improving detection rates. This

integration ensures that the system remains up-to-

date with the evolving threat landscape and

provides actionable intelligence for security teams.

The user interface and visualization capabilities can

also be substantially improved. Transitioning from a

terminal-based display to a web-based dashboard

would allow for interactive visualizations, historical

trend analysis, and multi-user access. Features such

as customizable alerts, incident logs, and drill-down

analytics would empower security analysts to

 Kadali Devi Sindhuja. International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 6 of 17

respond more efficiently and make data-driven

decisions.

Automated response mechanisms represent

another future direction. Upon detecting a high-risk

domain or MITM attempt, the system could

automatically trigger firewall rules, notify

administrators, or even isolate affected devices,

thereby minimizing the impact of security incidents

and reducing the burden on human operators.

Additionally, enhancing compliance and

governance features—such as automated audit

logging, data anonymization, and configurable

retention policies—will help organizations meet

regulatory requirements and maintain the privacy

of monitored data.

Lastly, scalability and deployment flexibility will be

essential for broader adoption. By supporting

distributed monitoring, cloud-based deployments,

and containerization, the system can be integrated

into diverse and complex IT environments, from

small businesses to large enterprises. In summary,

by embracing machine learning, real-time

intelligence, advanced visualization, automation,

and scalable architecture, the Live Domain Safety

Monitor can evolve into a comprehensive, future-

ready cybersecurity platform.

REFERENCE

1. Scalable and Accurate Deep Learning with

Electronic Health Records Rajkomar, A., et

al. (2018).

npj Digital Medicine, 1, 18.

https://doi.org/10.1038/s41746-018-0029-1

2. A Survey of Machine Learning for Big Code

and Naturalness Allamanis, M., et al. (2018).

ACM Computing Surveys, 51(4), 81.

https://doi.org/10.1145/3212695

3. A Survey of Machine Learning for

Computer Security Buczak, A. L., & Guven,

E. (2016). ACM Computing Surveys, 49(4),

1-36.

https://doi.org/10.1145/3003816

4. DNS-based Detection of Malicious Domains

Antonakakis, M., et al. (2012). Proceedings

of the 2012 ACM Conference on Computer

and Communications Security, 467-478.

https://doi.org/10.1145/2382196.2382240

5. A Survey of Machine Learning for Intrusion

Detection Systems Javaid, A., et al. (2016).

Journal of Network and Computer

Applications, 75, 64-80.

https://doi.org/10.1016/j.jnca.2016.08.016

6. Detecting Malicious Domains Using Passive

DNS Analysis Hao, S., et al. (2016).

Proceedings of the 2016 Internet

Measurement Conference, 269-282.

https://doi.org/10.1145/2987443.2987470

7. Phishing Website Detection Using Machine

Learning Jain, A. K., & Gupta, B. B. (2018).

Telecommunication Systems, 68, 687-700.

https://doi.org/10.1007/s11235-017-0383-z

8. A Survey of Machine Learning Techniques

for Cyber Security Intrusion Detection

Alazab, M., et al. (2021). IEEE Access, 9,

29441-29461.

https://doi.org/10.1109/ACCESS.2021.3056

069

9. Man-in-the-Middle Attack Detection in

Wireless Sensor Networks Conti, M., et al.

(2016). IEEE Communications Surveys &

Tutorials, 18(3), 2027-2051.

https://doi.org/10.1109/COMST.2016.25377

48

10. A Survey of Network Anomaly Detection

Techniques

Chandola, V., et al. (2009).

ACM Computing Surveys, 41(3), 1-58.

https://doi.org/10.1145/1541880.1541882

11. A Survey on Phishing Detection Using

Machine Learning Techniques Basit, A., et

al. (2021).

Telecommunication Systems, 76, 139-154.

https://doi.org/10.1007/s11235-020-00706-

8

12. Real-Time Detection of Phishing Websites

Using Machine Learning

Abdelhamid, N., et al. (2014).

Computers & Security, 46, 1-13.

https://doi.org/10.1016/j.cose.2014.06.008

13. Passive DNS Analysis for Network Forensics

Bilge, L., et al. (2011).

 Kadali Devi Sindhuja. International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 7 of 17

Proceedings of the 2011 ACM Symposium

on Information, Computer and

Communications Security, 373-382.

https://doi.org/10.1145/1966913.1966959

14. A Survey on Network Security Attacks and

Defense Mechanisms

Alazab, M., & Broadhurst, R. (2016).

Future Generation Computer Systems, 86,

1026-1039.

https://doi.org/10.1016/j.future.2016.11.030

15. A Comprehensive Survey on Domain

Generation Algorithms and Detection

Techniques

Woodbridge, J., et al. (2016).

Proceedings of the 2016 ACM Workshop

on Artificial Intelligence and Security, 49-60.

https://doi.org/10.1145/2996758.2996775

