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Abstract- Woven fabrics are formed by the interlacing of warp (vertical) and weft (horizontal) yarns, with yarn
density (threads per inch) being a critical parameter in textile quality assessment. This study aims to develop
an automated yarn density measurement system using the Fast Fourier Transform (FFT), which analyzes
periodic texture patterns in the frequency domain. The method involves frequency filtering and density
estimation based on gray line profile intensity and was tested on 25 images for each weave type. Results show
high accuracy for plain (0.96% warp error; 1.14% weft error) and twill (1.02% warp error; 1.57% weft error)
weaves. However, satin weave exhibits a significant discrepancy between warp (31.98%) and weft (1.99%)
errors, attributed to its unique structural characteristics—high yarn density, overlapping warp threads that
obscure the weft, and a glossy surface that causes uneven light reflections, which affect image acquisition.
While the method proves effective for most fabrics, accurately measuring warp density in satin remains a

challenge. Nonetheless, the proposed approach has potential for industrial application to improve production

efficiency in the textile industry.
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measurements are prone to errors and inefficient [8].
Automated fabric density measurement is essential to
reduce testing time and produce more accurate analysis
results. Jing et al.[8] also stated that automated
methods play an important role in reducing labor costs

I. INTRODUCTION

Textile fabrics play a significant role as body protection
and as a medium of aesthetic expression[1]. Woven
fabrics are constructed from the interlacing of warp

yarns (vertical) and weft yarns (horizontal), where the
warp forms the structural base and the weft acts as the
binder[2]. Based on the weaving pattern, basic weaves
are classified into three types: plain, twill, and satin[3].
The textile industry must analyze fabric parameters such
as yarn content, fabric weight, yarn number and yarn
density to meet market demands[4].

Fabric density is defined as the number of warp/weft
yarns per inch[4], and it serves as a quality indicator that
affects textile properties such as air permeability[5].
Fabric density also determines the overall quality—the
denser the weave, the stronger the fabric, but the less
breathable it becomes [6]. The conventional approach
to recognizing woven patterns in textile laboratories
relies on visual inspection by humans, often assisted by
the wuse of pins fabrics[7]. However, manual

while improving the performance of textile companies.
With the advancement of computer technology, many
textile researchers have developed image-based
methods to analyze fabrics automatically. Several
previous studies, such as those conducted by Pan and
Gao[9], demonstrated that image processing methods
are capable of extracting low-level features from yarns
in woven fabrics, including texture, color, shape, edges,
and various other information. One of the image
processing techniques widely used in fabric texture
analysis is the Fourier Transform.

Fourier Transform (FT) is a mathematical tool that
enables the conversion of data from the spatial domain
to the frequency domain, making it highly effective for
analyzing periodic patterns such as the woven yarn
structure in fabrics[5]. In the context of textiles, FT can
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identify yarn density by detecting the repetitive
patterns of warp and weft interlacing through
frequency spectrum analysis. Automated methods such
as Fourier transformation in the frequency domain have
been shown to accurately measure fabric density by
analyzing texture periodicity[10]. This technique has
also proven effective in other fields, such as early
detection of Alzheimer's disease through MRI image
analysis[11]. The FFT can be used to denoise a noisy ECG
signal using a bandpass filter [12]. Zhang et al[10]
applied Fast Fourier Transform and binary analysis to
measure fabric density, but only for solid fabrics.

Il. LITERATURE REVIEW

Fourier Transform

A transformation is a mathematical tool that simplifies
the representation of signals and extracts relevant
information[13]. Fourier analysis, introduced by French
scientist Jean Baptiste Joseph Fourier in the 1800s,
allows the representation of any periodic signal—
regardless of its complexity—using harmonic series
[14][15]. The Fourier Transform is a classical analytical
method that represents signals as a linear combination
of sine and cosine functions [13]. It is also a powerful
method for decomposing functions into sine and cosine
components  with relatively low computational
complexity.

The Fourier Transform converts a signal from the spatial
domain to the frequency domain, making it one of the
most fundamental tools in the fields of signal and image
processing [16]. Fourier Trasnform is widely utilized
across various domains such as transformation analysis,
fault detection, optimization, and feature extraction
[11]. In image processing, the frequency components
obtained through Fourier Transform are commonly
employed in filtering processes to reduce noise and
enhance image sharpness[17], [18]

A digital image of size M x N is represented by a
grayscale function f(x,y) As the period T approaches
infinity, the Fourier series converges to the continuous
Fourier Transform. Since processing infinite discrete
data is impractical, the Discrete Fourier Transform (DFT)
is used to convert it into a finite series [13]. The function
f(x,y)is transformed into the frequency domain as F(u,v)
and can be converted back to the spatial domain using
the Inverse Fourier Transform to retrieve f(x,y) [14], [19].
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Where variables u and x = 0,1,2,..,N-1 also v
and y = 0,1,2,..,M-1, representing frequency domain
variables, and M and N representing the pixel
dimensions (rows and columns) of the image, the
Discrete Fourier Transform (DFT) can be computed.
However, conventional DFT calculations have a high
computational complexity of (O(P%). To address this,
the Fast Fourier Transform (FFT) was developed as an
optimization algorithm that reduces the complexity to
O(P log P) [20], enabling faster and more efficient
analysis, especially in textile industry applications that
require real-time measurements. Power spectrum
analysis in the frequency domain is key to this method.
Energy peaks in the frequency spectrum correlate
directly with the yarn density in the fabric structure [10].

P(u,v) = log(1 + |F(u,v)|? (3)

Thus, the intensity and distribution of spectral peaks can
be used as quantitative indicators for evaluating the
density and regularity of yarn interlacing.Fabric density
analysis using Fourier Transform leverages frequency
domain manipulation through filtering[14]. The fabric
image is transformed using FFT to identify the
frequency components representing the yarn structure
[10]. Selective band-pass filters are applied to the
frequency spectrum to isolate the vertical (warp) and
horizontal (weft) frequencies[21], and the image is then
reconstructed back to the spatial domain using Inverse
FFT (IFFT)[20].

Gray Line Profile Intensity

The reconstructed image is analyzed using the gray
profile line intensity method, which involves counting
the number of peaks in the grayscale intensity
waveform. This method works by projecting the
grayscale levels of the image onto the horizontal axis,
allowing the number of warp yarns to be determined
based on the number of local peaks in the gray line
profile that are separated by a predefined threshold. To
calculate weft yarn density, the fabric image is rotated
90 degrees, and the same method is reapplied from the
beginning[22]. In a previous study, Jeong and Jang[23]
demonstrated that the gray line profile method yields
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good results for both patterned and non-patterned
fabrics and offers an advantage by not

requiring any pre-processing or additional filtering
techniques. However, a limitation of this method is that
its effectiveness is highly influenced by the size of the
filter used to identify local minimum points in the profile

graph.
I1l. METHODOLOGY

Fabric density identification using MATLAB was
performed by testing 25 images for each basic weave
pattern: plain, twill, and satin. The process begins with
image acquisition using a camera with 5x
magnification. The captured image is then imported
into MATLAB, where it is converted from RGB to
grayscale and resized to 640x640 pixels, representing a
10x10 mm area. The analysis continues by transforming
the image from the spatial domain to the frequency
domain using the Fast Fourier Transform (FFT)
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Figure 1: Flowchart FFT

This transformation produces a frequency spectrum
that represents the frequency of intensity changes in
the image and enables the identification of periodic
patterns in the weave structure through frequency
spectrum analysis. The frequency spectrum is then used
to calculate the power spectrum, which represents the
strength of each frequency component (frequency
peaks). To separate the warp and weft yarn
components, a band-pass filter is applied, preserving
frequency components within a 9-pixel width around
the center of the spectrum, while zeroing out the others.

The filtered spectrum is then reconstructed back to the
spatial domain using the Inverse FFT (IFFT), resulting in
images that clearly highlight vertical lines (warp yarns)
and horizontal lines (weft yarns) like Figure 2.

Figure 2: Image Reconstruction from Band Pass Filter

Once the images showing only vertical or horizontal
lines are obtained, the warp and weft yarn densities are
calculated by counting the number of peaks in the gray
intensity profile graph. To calculate the warp yarn
density, the grayscale intensity values along the central
horizontal line of the image are extracted. This intensity
profile is then smoothed using a Gaussian filter with a
window length of 10 pixels to reduce noise that may
interfere with peak detection. The smoothing process
preserves the general wave shape while eliminating
small, insignificant fluctuations.

Once the signal is smoothed, the findpeaks function is
used to detect local maxima, each representing a
detected warp yarn due to periodic intensity variation
caused by the woven structure. To account for possible
partial peaks at the beginning or end of the profile
(which may be truncated due to image boundaries), a
correction is applied by adding 0.5 peaks if the starting
or ending value is higher than its neighbor.

The total number of peaks (including this correction) is
then converted into the warp yarn density in threads per
inch (TPI). The same procedure is applied to determine
the weft yarn density, with the fabric image rotated 90
degrees so that the weft yarns align horizontally. The
gray profile intensity method is then reapplied from the
beginning to this orientation.

The number of peaks corresponds to the yarn density,
which is then converted into the industry-standard unit
of yarns per inch. The measurement error is calculated
by comparing the results with manual methods, using
the percentage error formula[24].
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Figure 3: Line Profile with Peaks
Error% = "M x100% (4)
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IV. RESULT AND DISCUSSION

Based on the measurement data of plain weave fabric
density in Table 1, the error values in the automatic
measurement of plain weave fabric density are
generally low, indicating good accuracy. For warp yarns,
the error ranges from 0.06% to 3.24%, with the majority
of samples showing errors below 1%. The highest warp
errors occurred in samples plain9 (3.10%) and plain19
(3.24%), while the lowest were found in plain8 (0.06%)
and plain23 (0.13%). For weft yarns, the error ranges
from 0.09% to 2.97%, with most values staying under
2%, except for plain3, which recorded the highest weft
error at 2.97%.

Table -1: Result Density Plain Fabric

Error | Error
Auto | Auto | MN MN
Image Warp | Weft
Warp | Weft | Warp | Weft
(%) | (%)
plainl | 129,5 | 82,6 130 81 0,35 1,91
plain2 | 163,8 | 85,1 163 84 0,51 1,30
plain3 | 1232 | 76,2 122 74 0,98 2,97
plaind | 166,4 | 74,9 168 75 0,97 0,09
plain5 | 168,9 | 80,0 168 79 0,54 1,28

Error | Error
Auto | Auto | MN MN
Image Warp | Weft
Warp | Weft | Warp | Weft

(%) | (%)
plain6 | 1689 | 80,0 | 168 79 0,54 | 1,28
plain7 | 1715 | 77,5 173 76 0,90 1,93
plain8 | 1651 | 77,5 165 76 0,06 1,93
plaind | 167,6 | 78,7 173 79 3,10 0,33
plain10 | 170,2 | 78,7 168 79 1,30 0,33
plainll | 170,2 | 80,0 173 79 1,63 1,28
plain12 | 154,9 | 80,0 154 79 0,61 1,28
plainl3 | 152,4 | 851 | 152 84 0,26 | 1,30
plainl4 | 1359 | 82,6 | 135 83 0,66 | 0,54
plainl5 | 1334 | 85,1 132 84 1,02 1,30
plainl6 | 1384 | 83,8 | 137 85 1,04 | 1,39
plainl7 | 1715 | 81,3 | 170 80 0,85 | 1,60
plainl18 | 137,2 | 87,6 | 136 86 0,85 | 1,90
plainl19 | 162,6 | 73,7 168 75 3,24 1,79
plain20 | 1359 | 83,8 135 84 0,66 0,21
plain21 | 166,4 | 76,2 165 76 0,83 0,26
plain22 | 134,6 | 73,7 137 74 1,74 0,46
plain23 | 156,2 | 81,3 | 156 81 0,13 | 0,35
plain24 | 172,7 | 80,0 173 79 0,16 1,28
plain25 | 1232 | 76,2 122 76 0,98 0,26

Auto : Automated measurement
MN : Manually measurement

In addition to the plain weave, the automated density
measurement of twill fabrics also demonstrated strong
performance, with error values generally remaining low
and consistent. For warp yarns, the error ranged from
0.06% to 2.58%, with the majority of samples below 2%.
The highest warp error was recorded in sample twill14
(2.58%), followed by twill15 (2.31%). Notably, several
samples such as twill18 and twill21 exhibited extremely
low errors of just 0.06%, indicating highly accurate warp
detection.Weft yarn measurements also showed
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favorable results, with error percentages varying
between 0.02% and 4.49%. Most of the weft errors were
below 2%, although twill1 (4.42%) and twill22 (4.49%)
showed relatively higher deviations, which may be
attributed to texture complexity or minor inaccuracies
during peak detection. Nevertheless, samples like twill4,
twill11, and twill19 demonstrated near-perfect weft

accuracy with errors close to 0.02%-0.66%.

Table -2: Result Density Twill Fabric

Error | Error
Auto | Auto MN MN
Image Warp | Weft
Warp | Weft | Warp | Weft
%) | (%)
twill22 | 97,8 | 82,6 98 79 021 | 449
twill23 | 80,0 | 99,1 81 99 1,22 | 0,06
twill24 | 81,3 | 108,0 81 107 | 0,35 | 0,89
twill25 | 141,0 | 77,5 140 79 069 | 1,94

Error | Error
Auto | Auto MN MN
Image Warp | Weft
Warp | Weft | Warp | Weft

) | (%)
twilll | 100,3 | 141,0 | 102 135 1,64 | 4,42
twill2 | 1422 | 80,0 | 145 83 1,90 | 3,60
twill3 97,8 80,0 99 79 1,22 1,28
twill4 | 1232 | 94,0 | 122 94 | 098 | 0,02
twill5 | 1130 | 86,4 | 114 86 | 085 | 042
twillé | 1257 | 90,2 | 127 91 1,00 | 0,91
twill7 | 100,3 | 81,3 99 84 1,34 | 3,24
twill8 | 100,3 | 81,3 99 83 1,34 | 2,07
twill9 | 1054 | 914 107 91 149 | 0,48
twill10 | 161,3 | 99,1 | 160 | 102 | 081 | 2,88
twillll | 119,4 | 94,0 119 94 0,32 | 0,02
twilll2 | 120,7 | 88,9 119 90 1,39 1,22
twilll3 | 128,3 | 102,9 | 128 102 0,21 | 0,85
twilll4 | 133,4 | 102,9 | 130 102 2,58 | 0,85
twilll5 | 127,0 | 100,3 | 130 102 2,31 1,64
twilllé | 111,8 | 78,7 112 81 0,21 2,79
twilll7 | 1105 | 85,1 109 84 1,37 1,30
twill18 | 99,1 | 76,2 99 76 0,06 | 0,26
twill19 | 101,6 | 1359 | 102 | 135 | 0,39 | 0,66
twill20 | 101,6 | 55,9 100 57 1,60 1,96
twill21 | 99,1 76,2 99 77 0,06 1,04

Auto : Automated measurement
MN : Manually measurement

In contrast to the plain and twill weave fabrics, the
automated density measurements for satin fabrics
exhibited significantly higher errors, particularly in the
warp yarns. Warp error percentages ranged widely,
from as low as 0.64% (satin25) to as high as 58.71%
(satin9). More than half of the satin samples recorded
warp errors exceeding 30%, indicating a considerable
challenge in accurately detecting warp yarn density in
satin fabrics using the current FFT-based method.
Despite the high warp errors, weft density
measurements remained relatively accurate. The
majority of weft errors were below 3%, with the lowest
error at 0.06% (satin19) and the highest at 8.26%
(satin16). Several samples, including satin2, satin5,
satin10, and satin23, exhibited exceptionally low weft
errors under 1%, suggesting that the automated system
can still reliably capture horizontal thread density even
in complex satin weaves.

Table -3: Result Density Satin Fabric
Error | Error

Auto | Auto | MN MN
Image Warp | Weft
Warp | Weft | Warp | Weft
%) | (%)

satinl | 94,0 | 711 155 69 | 39,37 | 3,07

satin2 | 61,0 | 635 145 64 | 57,96 | 0,78

satin3 | 80,0 | 775 193 76 | 58,54 | 1,93

satin4 | 96,5 | 559 135 55 | 28,50 | 1,60

satin5 | 138,4 | 86,4 193 86 | 28,27 | 0,42

satin6 | 58,4 | 54,6 124 53 | 52,89 | 3,04
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satin7 | 69,9 | 62,2 150 61 | 53,43 | 2,02
satin | 1359 | 77,5 173 76 | 2145 | 1,93
satin9 | 83,8 | 851 203 84 | 58,71 | 1,30
satinl0 | 82,6 | 78,7 198 79 | 5831 | 0,33
satinll | 100,3 | 49,5 119 48 | 15,69 | 3,19
satinl2 | 1232 | 77,5 191 79 | 3550 | 1,94
satinl3 | 76,2 | 54,6 127 53 | 40,00 | 3,04
satinl4 | 1054 | 57,2 140 56 | 24,71 | 2,05
satinl5 | 111,8 | 80,0 173 79 | 3540 | 1,28
satinlé | 87,6 | 66,0 142 61 | 38,29 | 8,26
satinl7 | 1283 | 77,5 178 76 | 27,94 | 193
satin18 | 193,0 | 120,7 | 203 119 | 491 | 1,39
satin19 | 188,0 | 99,1 208 99 9,63 | 0,06
satin20 | 120,7 | 775 234 76 | 48,44 | 193
satin21 | 127,0 | 83,8 191 81 | 3351 | 348
satin22 | 139,7 | 80,0 168 79 | 1685 | 1,28
satin23 | 162,6 | 96,5 160 97 1,60 | 0,49
satin24 | 138,4 | 67,3 152 66 8,93 | 1,98
satin25 | 191,8 | 85,1 193 86 0,64 | 1,06

Auto : Automated measurement
MN : Manually measurement

The overall performance of the automated fabric
density measurement system can be further evaluated
through the Mean Average Error (MAE) across the three
weave types. As shown in the table, plain weave fabrics
yielded the lowest MAE, with0.96% for warp and 1.14%
for weft, indicating a high level of accuracy and
consistency in both directions. For twill fabrics, the
system also demonstrated strong reliability, with
slightly higher MAE values of 1.02% for warp and 1.57%
for weft. These results confirm that the FFT-based
method using Gray Line Profile remains effective even
with the more complex interlacing pattern of twill
weaves.

Table -4: Mean Average Error Fabric Density

Mean Average
Plain | Twill | Satin
Error (%)
Warp 0,96 | 1,02 | 31,98
Weft 1,14 | 157 | 1,99

In contrast, the warp yarn density error for satin weave
was considerably high at 31.98%, indicating that the
automatic method is still less accurate in detecting warp
density in satin fabrics. However, for weft yarns, the
system performed much better, with errors mostly
below 3%, and an average error of 1.99%. There is a
significant discrepancy between the warp and weft
density errors in satin weave, as well as when compared
to the average errors observed in plain and twill weaves.
This difference is likely due to the unique structural
characteristics of satin fabrics, where the warp yarns
tend to float over and obscure the weft yarns—
especially in high-density fabrics (greater than 150
threads per inch). High yarn density can lead to
overlapping and stacking of threads, making it difficult
to accurately detect individual yarns. Moreover, satin
fabrics typically have a glossy surface due to their
floating yarn structure, which can cause uneven
reflection during image acquisition. This reflective
nature may introduce artifacts or highlights in the
captured image, causing some yarns to appear blurred
or partially missing, thereby reducing the accuracy of
yarn detection. As shown in Figure 4, the red line
highlights the repeating pattern consisting of 5 warp
threads. However, the proposed method is only able to
detect 3 to 4 of these threads, which explains the high
error in warp density measurement for satin fabrics.

4, ¥

Figure 4: Satin Weave

These results demonstrate that the automatic method
produces relatively small errors compared to manual
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measurement for plain and twill weaves, with most
deviations remaining within an acceptable range.
However, improvements in image acquisition and
pre-processing are still needed for satin weaves.

The average error rates for plain, twill, and satin (warp)
weaves are comparable to recent studies such as Zhang
et al[5], who used backlight imaging; Tan & Wong[24],
who used segmentation methods; and Meng et al[4],
who applied Multi-scale Convolutional  Neural
Networks and Hough Transform—all reporting average
errors below 2%. These results indicate that the FFT-
based method developed in this study is as reliable as
other state-of-the-art approaches in textile analysis.

Table -5: Previous Studies Comparison

Author Method Average Error
Zhang et al. [5] backlight imaging <1,5%
Tan & Wong
segmentation methods <1,5%
[24]
Multi-scale
Convolutional Neural
Meng et al [4] <2%
Networks and Hough
Transform
Pan et al. [25] FFT + Biner 0,98%
Wijayono [26] Counting pixel 0,95%

This study reports slightly higher errors (ranging from
0.96% to 1.57%) compared to Pan et al[25] (0,98%) and
Wijayono[26] (0,95%). However, this difference can be
attributed to the fact that Pan’s method was limited to
single-colored fabrics, while the method proposed in
this study utilizes FFT analysis based on intensity profile,
which excels at detecting yarn structures even under
low contrast and is more robust to color and lighting
variations, making it suitable for multi-colored yarn-
dyed fabrics. Other factors influencing the error rate
include inaccurate boundary detection, uneven lighting
distribution, and image blur. This highlights that the
accuracy of fabric density measurement is highly

dependent on the quality of image acquisition and pre-
processing stages.

V. CONCLUSION

This study presents an automated fabric density
measurement system based on FFT analysis using Gray
Line Profile to evaluate warp and weft yarn density
across three common weave types: plain, twill, and
satin. The experimental results demonstrate that the
proposed method achieves high accuracy for plain and
twill weaves, with Mean Average Errors (MAE)
consistently below 2% in both warp and weft directions.
These findings are in line with previous state-of-the-art
studies, confirming the reliability and robustness of the
FFT-based approach. In contrast, satin weave fabrics
present a notable challenge, especially in warp density
detection, with an average error of 31.98%. This is due
to the floating warp yarns that overlap and obscure the
weft,making individual yarns harder to detect. For
further refinement—such as adaptive preprocessing,
improved thread boundary detection, or hybrid
methods—is necessary to enhance accuracy for satin
and other complex weave structures. Compared to
previous works, the proposed method demonstrates

competitive performance while offering greater
robustness to multicolored and low-contrast fabrics.
Despite slightly higher error rates than some

conventional approaches that rely on controlled
imaging conditions, this method proves effective in
more realistic scenarios with diverse fabric types and
colors. The FFT-based Gray Line Profile method is a
viable and accurate solution for automated yarn density
measurement in woven fabrics. It is applicable in the
textile industry and can be further developed for other
patterns or textile types, such as knitted fabrics
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