Professor P.S.Sutar, 2025, 13:3 ISSN (Online): 2348-4098 ISSN (Print): 2395-4752

An Open Access Journal

Quantum computing

Professor P.S.Sutar,Mr.Pranav Uthale, Mr.Santosh Shelake, Mr.Prashant Athavale, Mr.Shubham Pawar, Mr. Shubham Pawar, Mr.Jay Tingre, Mr.Rushikesh Linge, Mr.Aryan tupsaundary, Mr.Vaibhav Pawar, Mr.Omkar Koli

General Sciences and Engineering, AITRC, Vita

Abstract- Quantum computing is an emerging field that leverages the principles of quantum mechanics to process information in ways that classical computers cannot. By exploiting quantum bits or qubits, quantum computers can represent and manipulate complex data structures more efficiently. This paper presents a comprehensive review of the fundamentals, development, and potential applications of quantum computing. It discusses recent literature in the field, elaborates on the theoretical framework and methodologies, and illustrates the distinct advantages and limitations of quantum computation. The paper concludes with insights into future directions, emphasizing the transformative potential of quantum technologies across various sectors.

Keywords- Quantum Computing, Qubits, Quantum Mechanics, Quantum Algorithms, Quantum Information Processing, Superposition

I. INTRODUCTION

Quantum computing represents a paradigm shift from traditional computing by utilizing quantum phenomena such as superposition, entanglement, and quantum tunneling. Unlike classical bits that exist in binary states (0 or 1), qubits can exist in multiple states simultaneously, allowing for parallel computation on an unprecedented scale. As noted by Preskill (2018), quantum computing holds the promise of solving problems deemed intractable for classical computers, such as prime factorization, quantum simulation, and optimization. The field has gained considerable traction due to advancements in quantum hardware, algorithms, and error correction techniques.

Researchers and organizations worldwide, including Google, IBM, and academic institutions, are investing heavily in quantum computing research and development, aiming to achieve quantum supremacy—where quantum computers outperform their classical counterparts on specific tasks.

II. REVIEW LITERATURE

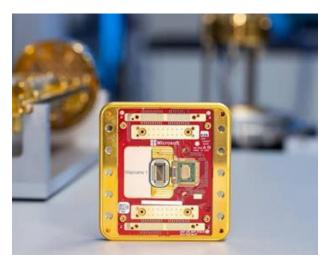
- U. Ahmed at. el., (2024) analyzes 815 papers to quantum computing's potential in explore enhancing cybersecurity. It identifies applications in algorithms, bioinformatics, cloud computing, and emphasizing complex systems, quantum technologies' revolutionizing role in environments. The study highlights techniques for data and privacy protection, extending beyond network security to societal aspects, encourages exploring methods to secure the cyber world using quantum computing Y.Wang and J. Liu (2024) review of quantum machine learning (QML), covering techniques suitable for Noisv Intermediate-Scale Quantum (NISQ) devices and fault-tolerant quantum computing hardware. It discusses fundamental concepts, algorithms, and statistical learning theory pertinent to QML, providing a comprehensive understanding of the field's current state and future directions.
- T. Nguyen at. el., (2024) examines the intersection of quantum computing and machine learning, analyzing 32 seminal papers. It highlights quantum-enhanced methods' potential in data processing

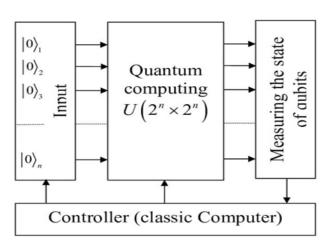
© 2025 Professor P.S.Sutar This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

and cyber security, categorizing sources based on research directions to realize quantum computing's algorithms, applications, challenges, and future developments. The simplementation of quantum computing in practical machine learning scenarios. Hoa T. Nguyen et al., (2024) reviews recent advances in quantum cloud computing, discussing cloudbased models, platforms, and technologies. It addresses aspects like resource management, serverless computing, security, and privacy. The study identifies open problems and proposes future research directions to advance quantum cloud computing's development and implementation.

Raisuddin and Suvranu De (2024) explores quantum computing's potential in engineering applications, focusing on algorithms that leverage quantum phenomena like superposition and entanglement. It gate-based quantum computing's discusses advantages over classical methods, addressing scalability and coherence challenges, and aims to make quantum computing accessible to engineers by providing clear examples.

S. Sepulveda et al., (2024) review examines quantum requirements engineering within computing, identifying challenges and proposing future research directions. It emphasizes the need for tailored engineering practices to address quantum computing's unique aspects, aiming to guide the development of robust quantum software systems.


A. K. Mandal et al., (2025)explores quantum computing's impact on software engineering, discussing how quantum principles can enhance development practices. It introduces quantum software engineering (QSE) as a discipline focused on designing and optimizing quantum software, highlighting the need for new methodologies to address quantum computing's complexities.


Sukhpal Singh Gill et al., (2025) review discusses quantum computing's foundational concepts and recent advancements in hardware, software, and cryptography. It highlights potential applications across various fields, identifies challenges like scalability and error correction, and outlines future

full potential.

III. METHODOLOGY

The methodology begins by analyzing the strategic integration of quantum algorithms cybersecurity frameworks. Ahmed et al. (2024) conducted a scoping review of 815 papers to classify the role of quantum computing in enhancing digital security. This involved identifying quantum-based encryption algorithms, quantum distribution (QKD), and multi-party computation methods. Their methodological lens thematic analysis, categorizing encompasses applications in data protection, cloud computing security, and complex systems like healthcare IT. They propose a layered

approach: first, adopting quantum random number generators (QRNGs); second, embedding quantumresistant cryptographic standards; and finally, modeling threat detection systems using quantumenhanced anomaly detection algorithms. The work provides a foundational model for constructing cyber-physical infrastructures resistant to quantum threats, especially in a post-quantum world.U. Ahmed et al., 2024Quantum Machine Learning (QML) forms the next pillar of the methodology. Wang and Liu (2024) adopt hybrid analytical that evaluates technique NISQcompatible models such as Variational Quantum Circuits (VQCs) and Quantum Support Vector Machines (QSVMs), integrating them with classical optimization routines. Their methodological emphasis lies in adapting QML to real-world quantum datasets through data encoding (amplitude and angle encoding), training via hybrid loss functions, and benchmarking against classical baselines. Complementarily, Nguyen et al. (2024) expand the scope by synthesizing results from 32 foundational papers, assessing model accuracy, quantum software prototyping. They advocate for

runtime complexity, and resilience to quantum noise. Their layered framework also investigates using OML for malware cvber applications detection and intelligent threat response. methodologies guide Collectively, these development of robust, scalable, and interpretable QML pipelines for both general AI tasks and domain-specific challenges like cybersecurity.T. Nguyen et al., 2024) In the realm of infrastructure, Hoa T. Nguyen et al. (2024) develop a cloud-native quantum computing model that includes a threetiered architecture: user interface, middleware with quantum APIs, and back-end quantum processors. Their methodology focuses on platform-as-aservice (PaaS) models using IBM Q Experience and Amazon Braket. They emphasize modular design, quantum resource virtualization, and latency optimization between classical-quantum feedback loops. Raisuddin and De (2024) further ground this architecture in practical engineering simulations. They use a gate-based simulation methodology to solve differential equations in thermal and fluid systems by leveraging quantum estimation (QAE) and Hamiltonian simulation techniques.O. Raisuddin & S. De, 2024) Their work shows how algorithms like the Quantum Phase Estimation (QPE) can be applied to stress-strain modeling, enabling engineers to adopt quantum tools for structural analysis and predictive modeling.

To manage the complexity of quantum software systems, Sepúlveda et al. (2024) propose a requirements engineering (RE) framework tailored for quantum projects.

Their methodology adopts a lifecycle-based approach: quantum-specific stakeholder analysis, quantum modeling languages (QMLs), requirement traceability, and validation via quantum simulations. They emphasize the creation of reusable software artifacts for hybrid (classical-quantum) codevelopment. Mandal et al. (2025) expand on this by proposing the discipline of Quantum Software Engineering (QSE). Their methods involve quantum version control systems, quantum IDEs (e.g., Qiskit, Cirq), and agile methodologies customized for

the Quantum Software Development Lifecycle (QSDL), which involves parallel testing on quantum emulators and real hardware, making the process iterative and adaptable. Together, these approaches bridge theory and implementation by promoting quality assurance and maintainability in quantum systems. offer a systems-level methodology to integrate quantum computing across domains. review-based Their method synthesizes advancements hardware in quantum (superconducting qubits, ion traps), software platforms, and cryptographic tools into a unified 5. DiVincenzo, D. P. (2000). The physical implementation pipeline. They introduce multidimensional methodology that combines error mitigation techniques like zero-noise extrapolation with device calibration, cloud-based orchestration, containerized deployment of quantum workloads. The study emphasizes continuous benchmarking using quantum volume and logical error rates to ensure performance consistency. Furthermore, Gill et al. highlight the necessity of interdisciplinary collaboration, suggesting frameworks for integrating quantum computing into smart grids, finance, and drug discovery. This 9 methodology scalability, holistic ensures interoperability, and long-term viability of quantum solutions in both research and industrial ecosystems. Sukhpal Singh Gill et al. (2025).

IV. CONCLUSION

Quantum computing is transitioning theoretical promise to practical reality. The progress in quantum hardware, coupled with advancements in algorithms and error correction, signifies a pivotal moment in computation. While challenges like decoherence and gubit scalability remain, the field's interdisciplinary nature continues to foster innovation. Quantum computing is poised to revolutionize industries ranging from cryptography to pharmaceuticals.

Continued research, collaboration, and investment will be crucial in overcoming current limitations and realizing the full potential of quantum computation.

REFERENCE

- Shor, P. W. (1994). Algorithms for quantum computation: Discrete logarithms and factoring. IEEE.
- Grover, L. K. (1996). A fast quantum mechanical algorithm for database search. ACM.
- Lloyd, S. (1996). Universal quantum simulators. Science.
- 4. Nielsen, M. A., & Chuang, I. L. (2000). Quantum Computation and Quantum Information.
- implementation of quantum computation. Fortschritte der Physik.
- Preskill, J. (2018). Quantum Computing in the NISQ era and beyond.Quantum.
- Arute, F. et al. (2019). Quantum supremacy programmable superconducting processor. Nature. IBM (2021). The IBM Eagle processor.
- Bravyi, S., & Kitaev, A. (2005). Universal quantum computation with ideal Clifford gates and noisy ancillas. Physical Review A.
- 9. Fowler, A. G. et al. (2012). Surface codes: Towards practical large-scale quantum computation. Physical Review A.
- 10. Harrow, A. W., Hassidim, A., & Lloyd, S. (2009). Quantum algorithm for linear systems of equations. Physical Review Letters.
- 11. Aaronson, S. (2013). Quantum computing since Democritus. Cambridge University Press.
- 12. Montanaro, A. (2016). Quantum algorithms: An overview. npj Quantum Information.
- 13. Blais, A. et al. (2021). Circuit quantum electrodynamics. Reviews of Modern Physics.
- 14. Cirac, J. I., & Zoller, P. (1995). Quantum computations with cold trapped ions.
- 15. Physical Review Letters.
- 16. Zhang, J. et al. (2017). Observation of a manybody dynamical phase transition. Nature.
- 17. Gyongyosi, L., Imre, S., & Nguyen, H. V. (2019). A survey on quantum computing technology. Computer Science Review.
- 18. Yao, A. C. (1993). Quantum circuit complexity.
- 19. Deutsch, D. (1985). Quantum theory, the Church–Turing principle and the universal quantum computer. P