Tamanna Tandon, 2025, 13:3 ISSN (Online): 2348-4098 ISSN (Print): 2395-4752

An Open Access Journal

Evolving Epidemiology and Early Diagnostic Advances in Mucormycosis

Tamanna Tandon, Pranay Jain

Department of Biotechnology, University Institute of Engineering and Technology, Kurukshetra University Kurukshetra, , Haryana, India

Abstract- Mucormycosis is a fatal fungal infection caused by filamentous molds belongs to order Mucorales.. Mucormycosis is observed to be more prominent in immunocompromised patients. In certain developed economies, mucormycosis is seen to be an associated infection with a bad prognosis regulated diabetes mellitus (DM). Mucormycosis or commonly known as black fungus, has a strong tendency of invading blood, causing nacrosis, thrombosis, and tissue infraction. Mucormycosis is found to be predisposed in co-morbidity or in the non-diabetic patients of COVID-19 especially in those who were at high dosage of steroids for a longer period of time or on ventilator support. Additionally poor hygienic conditions or disturbed diabetic management provides favorable conditions for the pathogenic fungal infection. Other reasons which are responsible for mucormycosis can be excess of uncontrolled conventional precautions. One of them is regular steaming, which may cause affliction in the nasal tracts' beneficial microbiota and virome. Early diagnosis is crucial to initiate the therapeutic interventions necessary for preventing progressive tissue invasion and its devastating sequelae, minimizing the effect of disfiguring corrective surgery and improving outcome and survival. In this review, the black fungus causes and cures of Mucormycosis have been highlighted. It contains cases from Mucormycosis outbreak, the pathogenesis and diagnosis of the respective disease along with its available treatments. This review also suggests some natural treatments for black fungus disease.

Keywords: Mucorales, Mucormycosis, Black fungus disease, Nosocomial mucormycosis, COVID-19,

I. INTRODUCTION

Members of order Mucorales1 are ubiquitous and could be found anywhere including wet lands, bread, dust, dirt and rotten plant matter 2. The fungi from order Mucorales are responsible for various skin diseases. Members of this order are a permanent part of human environment as pioneer species on every kind of habitat. They are the main causative agents of spoilage mainly of refrigerated food. Mucrorlean fungi are very ordinary mold fond indoors and are behind several allergic symptoms. One of the most well-known, infection caused by members of Mucorales order is Mucormycosis. The Black fungus disease or

Mucormycosis can be caught by absorption of infected meal, inoculation of damaged surfaces or injuries and inhalation of spores 3. Mucormycosis is observed to be more prominent in immunecompromised patients 4,5. In certain developed economies, mucormycosis is seen to be an associated infection with a bad prognosis regulated diabetes mellitus. Additionally, people who are predisposed disease are prone mucormycosis6. Mucormycosis or commonly known as black fungus, has a strong tendency of invading blood, causing nacrosis, thrombosis, and tissue infraction 7. The species belongs to order Mucorlaes are Rhizopus, Lichtheimia (formerly Absidia), Mucor, Cunninghamella, Rhizomucor,

© 2025 Tamanna Tandon. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

Apophysomyces spp., and Saksenaea8,9. However, Cunninghamella, Rhizomucor, and Saksenaea are predicted to show similar classes of the genera10. Even though, some species unveil remarkable variation due to their origin and geographical features. For instance, Apophysomyces inhabit in subtropical and tropical environment11, and is principal cause of cutaneous infections12, widespread soft necrosis necrotizing fasciitis13.

Inhalation or absorption of sporangiospores or inoculation of conidia by puncture trauma or entry by wounds is the primary steps in pathogenesis14. Nosocomial mucormycosis outburst was ascribed to surgical instruments, infected bandages and also breathing systems, which are very rare15. Polymorphonuclear phagocytes (PMNs) mononuclear destroy hyphae and fungal spores in healthy young people using oxidative and nonoxidative killing mechanism16. A deficiency in immune system of host encourages the organism's and development (neutropenia). survival Hyperglycaemia and acidosis, particularly hinder phagocytic killing and chemotaxsis. Rhizopus produces enzyme ketone reductase which allows it to grow in acidic and glucose rich medium, ketoacidosis17.

Mucorales are naturally susceptible which are killed by human phagocytes and are responsible for their virulency factors18. It is clinically proven that patients having iron overload are more prone to mucormycosis19. Whereas, deferoxamine stimulates fungal growth in-vitro by acting as siderophores20. Mucormycosis has affinity to penetrate blood vessels, causing thrombosis and tissue nacrosis 21. Angioinvasion may be aided by endothelial cell association with fungal association. Interaction with the receptors of endothelial cells in host can facilitates cell damage and fungal dissemination.

Mucormycosis is found to be predisposed in comorbidity or in the non-diabetic patients of COVID-19 especially in those who were at high dosage of steroids for a longer period of time or on ventilator support. Additionally poor hygienic conditions or disturbed diabetic management provides

favourable conditions for the pathogenic fungal infection. Previous studies states that poorly controlled diabetes (type -2) is more likably to get infected with Black fungus, whereas type-1 diabetes (15%) is also reported in few cases 1. Type-2 diabetes is insinuated as prime cause with 44-88% cases and half of the cases were diagnosed with ketoacidosis22,23. In a report, it is observed that among all the patients of COVID-19 associated mucormycosis (CAM) about 80.4-96.7% had diabetes mellitus 24,25,26. Aside from diabetes, various other elements counting the immunesuppressive therapy, organ transplant, immunecompromised health conditions and iron overload may also put at risk for mucormycosis 24,27.

Other reasons which are responsible mucormycosis can be excess of uncontrolled conventional precautions. One of them is regular steaming, which may cause affliction in the nasal tracts' beneficial microbiota and virome. Dysbiosis or nasal microbial imbalance may harm local immunity and could be helpful to create favourable conditions for the growth of fungal infection. Throughout the time of COVID-19, for the prevention of viral infection, people in big counting have been using Zn disproportionately through vitamins or along other dilatory supplements. It is conspicuous that Zn deprivation inhibits the growth of fungus in body28. Hence, Zn-depletion-based be used for the treatment mucormycosis - - 29. Additionally, various patients receiving medical treatment but oxygen therapy were infected and further diagnosed with Black fungus. It is stated that mucormycosis depends on climatic factors alike humidity, seasonal variations, and temperature; therefore, these factors must be investigated to find out potential conclusion and rational solutions 7 30.

II. EPIDEMIOLOGY AND INCIDENCE

Mucormycosis has been in highlights from last two decades around the world, especially in France, Belgium, Switzerland and India31,32,33. Mucormycosis is only observed in patients with immune-suppressed conditions34. Onwards, 2001 to 2010, National Hospital Discharge database

presented a data, which shows 35,876 invasive fungal infections (IFIs), in which mucormycosis was accounting for 1.5% 35.

Mucormycosis cases arose from 0.7 per million in 1997 to 1 per million in 2006 in France whereas 19 cases were diagnosed in a single center sample in spain during 2007 to 2015 accounting 3.2 per million cases compared to 1.2 per million cases from 1988 to 200636.

The frequent causative agents of mucormycosis are Rhizopus spp., Mucor spp., Licthemia spp., Rhizomucor, Saksenea, Cunninghamella and Apophysomyces37,38. In India, Rhizomucor being the prominent cause of mucormycosis, considering that Apophysomyces elegans, A. variabilis, and Rhizopus homothallicus are being emerging species39. Mucormycosis in immunocompromised patients' results from inhalation of spores present in air or from direct inoculation of organisms into disrupted skin or gastrointestinal tract mucosa. Seasonal variations also affect the incidence of mucormycosis with a peak in cases from August to November 40. Necrotizing fasciitis, after being injected by intramuscular injections is also reported in India, caused by Apophysomyces variabilis or A.elegans and Saksenaea erythrospora41.

Mucormycosis is a consequential and is possibly able to cause lethal fungal infections caused by a group of opportunistic fungal pathogens known as mucoromycetes. Mucormycosis, currently well known as black fungus, caused grievous havoc in second wave of COVID-19 pandemic in India (April-June 2021) by its sudden rise and catastrophic gush resulting 50% mortality rate. The exact origin of its edged arise during devasting pandemic is still debatable, but it is notable that diabatic people are likely to get caught by mucormycosis. Since the dawn of mucormycosis in late 2019, COVID-19 has ravaged the human health worldwide with also great impact on the global economy. SARS-CoV-2 than 220 countries affected more approximately 4176,185 deaths so far noted across the globe. During second wave of SARS-CoV-2 its fatal variant COVID-19 continues to affect people

specifically the deadly fungal manifestationmucormycosis, has put the lives of COVID-19 patients at very high risk43,44. Mucormycosis along with COVID-19 as a co-morbid infection is worsening the effect of infection resulting in peak of mortality rate graph. Aggressive mucormycosis can infect eyes, sinus, nose and brain in some cases. In some severe cases eyes have to be removed to save the life of patients45.

Remarkably, the developing countries such as India, the second most COVID-19 affected country in the world, have been unexpected tide of mucormycosis with inconstant magnitude of severity and pathologies. More than 45,432 cases and 4252 deaths due to mucormycosis have been reported. Rhino-cerebral mucormycosis is the most common type of infection (77.6%) in either among COVID-19 infected patients or in patients who had recovered from COVID-1946.

Cytologically, mucormycosis is a serious life taking infection which is caused by a mold family known as mucormycetes. Mucormycetes are ubiquitous, mostly found in moist soils, decaying food and plant matter, feces, around construction site47. This group of fungi is opportunistic pathogens and are supposed to attack only immunocompromised people. Vasculotropism and invasion in blood vessels in immunosuppressed people leads to tissue infraction48,49. Recently it is noticed that patients with comorbid infections like neutropenia, diabetes, renal failure, deferoxamine therapy, cancer, protein-calorie malnutrition and other manipulations are at high risk of mucormycosis50,51,52. An empirical survey aimed on mucormycosis about two decades ago suggested that if black fungus infection left untreated could lead to death, with the probability of 54% mortality53. Earlier, the expected numbers of mucormycosis patients were about 14 cases per 100,000 populations, which is considered to be at peak in global. Considering that, lately, an explode in the numbers of patients of COVID-19 associated mucormycosis (CAM) in India is observed54. On account of this, mucormycosis has been announced as an epidemic in many states and territories by the globally42, the great rise in multitude of infections Government of India. As there were no more cases

reported of COVID-19 associated mucormycosis (CAM) in all the time of first wave of SARS-CoV-2, questions rise about the reasons and factors responsible for mucormycosis particularly during mucormycosis particularly during mucormycosis about outburst of mucormycosis in India. As per the data obtained by WHO, India has a total of 15.3% of world diabetic population55,56. It has obeen noticed that diabetic patients and suffered hucormycosis from COVID-19 are more prone of mucormycosis from COVID-19 are more prone of mucormycosis from mucormycosis patients have diabetes or in uncontrolled diabetes from covided the second mucormycosis patients have diabetes or in uncontrolled diabetes from passociated mucormycosis.

III. PATHOGENESIS

Pathogens use various strategies for virulence to establish home in hosts system. Microbial pathogenesis is the ability of pathogen to cause damage to host. Pathogenesis begins with adherence of pathogenic microbes to the host outer skin, followed by invasion in cells, colonizing and abundant growth inside the body. If the growth is left untreated, it can lead to severe damage to host59. The process of pathogenesis requires following steps:

Exposure to fungal spores via inhalation, direct contact, injection, implantation, inoculation by infected needle or any other surgical equipment.

- Adherence of pathogenic microorganisms and invasion in host's cell.
- Colonization followed by growth of fungal spores inside host body.
- Invasiveness (abundant growth of cells).

Tissue damage or tissue narcosis.

serum iron available in immunosuppressed patients enhances chances mucormycosis. For virulence, the mucoralean fungi rummage on high serum iron available and evade from hosts phagocytic defence mechanism to disrupt and damage vasculature. Besides the ability of inhaled spores to germinate and from hyphae in host is critical for the establishment of infection. The skin acts as a barrier against cutaneous mucormycosis, disruption of this barrier may result in infections. The causative agents are incapable of penetrating skin. Although, traumatic disruption of skin wounds burns, cuts and persistent maceration of skin enable the fungi to invade deeper tissue60. In a healthy individual sequestration of iron from serum by certain iron binding proteins encompasses primary defence. These various defence systems of host forbid the growth and development of fungus as well as endovascular invasion. Instead, the susceptible ones are not capable of avert invasion in blood vessels. Patients from diabetic ketoacidosis, dissociation of free iron from sequestering proteins results in acidic pH of serum which allows rapid fungal growth. Neutropenia i.e., deficiency in cell number, manifestations by corticosteroids, hyperglycaemia enhances fungal propagation59. Into the bargain, proliferation of fungus to endothelial cells leads to angio-invasion, vessel thrombosis and subsequent tissue necrosis61. The angio-invasion contributes to capacity of causative agents to disperse to other organs. In a consequence, invasion in endothelial cells is critical step in pathogenic strategy of mucoralean fungi.

Table I. Different forms of clinical observations in mucormycosis and their possible symptoms62

Table 1. Different forms of elifical observations in maconing costs and their possible symptoms of	
Mucormycosis variant	Indications
Pulmonary mucormycosis	Dyspnea, Chest pain, Hemoptysis
Rhinocerebral, rhino-orbitocerebral	Headache, Facial pain, loss of vision, Lethargy, Brownish, Black
mucormycosis	eschar on palate, Blood-stained nasal discharge, Chemosis,
	Ophthalmoplegia, Ptosis, Periorbital cellulitis, Dysfunction of cranial
	nerves Proptosis

Gastrointestinal mucormycosis	Non-specific, Diarrhea, Abdominal pain, Melena, Hematemesis, depend on site involved
Cutaneous mucormycosis	Resemble ecthyma gangrenosum, Painful lesions, Necrotizing fasciitis, Cotton-like growth
Focal mucormycosis	Mediastinitis, Endocarditis, Osteomyelitis, Peritonitis, Otitis external, Pyelonephritis, Corneal infection
Disseminated mucormycosis	Stroke, Pneumonia, Subarachnoid-hemorrhage, Cellulitis, Brain abscess, Gangrene

Risk factors for mucormycosis

The predisposing factors of mucormycosis are poorly regulated diabetes mellitus1 (DM1), HemeM with neutropenia, chemotherapy, autoimmune disorders, immunosuppression, HIV, overloaded state, peritoneal, malnutrition, burns, wounds, trauma and recipients of VORI63,64. Mucormycosis appears to protect immunocompetent people65, even though infections are diagnosed after the damage of soft tissues, local cutaneous including rhino-orbital, cutaneous and also disseminated infection66,67. In a meta-statistic of 600 publicized from 2000 to 2007, including 851 cases from all over globe: burns (11%), natural disasters (11%), no underlying condition (18%), neutropenia (20%), HemeM (32%), trauma (33%), and DM (40%) 68. Diabetes mellitus (DM) is a major contribution to mucormycosis in Asia, whereas in Europe and North America organ transplant and HemeM are more responsible. While COVID-19-associated pulmonary aspergillosis (CAPA) has got a lot of attention69,70. The risk factors, consistent radiography and presence of Aspergillus in tissue culture or microscopy are all used to diagnose COVID-19-associated pulmonary aspergillosis (CAPA)71. All invasive mold infections have indistinguishable predisposing factors, clinical symptoms also radiological or serological findings. **Proportionately** COVID-19-associated mucormycosis (CAM) diagnose is considerably is more difficult. Mucormycosis may be not diagnosed for a long period of time due to lack of clinical symptoms and difficulty to isolate the pathogenic fungi. Additionally, biomarkers for invasive aspergillosis (beta-d-glucan, galactomannan) are not accessible for mucormycosis72. Diabetic

patients who are in controlled condition may develop overt or covert renal impairment. Multiple risk factors or co-morbid conditions raise the net state of immune suppression in severe COVID-19 patients, predisposing them to mucormycosis.

IV. DIAGNOSIS

Clinical diagnosis

A high index of suspicion, identification of host conditions and rapid evaluation of clinical symptoms are all needed for diagnosis of mucormycosis. Diplopia in a diabetic patient or pleuritic pain in a neutropenic patient may be signs of infection, prompting the use of imaging techniques and the eventual collection of specimens for histology, microbiology advanced molecular research. Previously described, rhino cerebral, pulmonary, soft tissue disseminated infection are the most frequently clinical infections of Mucorales6. Mucormycosis is superficially characterised by tissue necrosis. The appearance and syndrome-based methods of diagnosis lack sensitivity and are not accurate. Nevertheless, certain characters boost the fear of pulmonary mucormycosis73. Corzointrusive Leon74 and colleagues (2018) put forward an algorithm for consideration for detecting rhinocerebral mucormycosis in diabetic patients. A cranial nerve palsy, sinus pain, diplopia, periorbital swelling, proptosis and palate ulcers orbital apex syndrome are the major sign and symptoms that can be visible "red flags"74.

Mucormycosis is said to be associated with numerous nodules and pleural effusion on radiography. The reverse halo symbol (RHS) is another CT scan finding which can gives idea about strong diagnostic tool as it can easily discriminate the presence of mucormycosis. In a study done by Konttoyiannis75 (2012) the RHS was seen in 15 patients out of 16 within a week of disease. Other radiological observations appeared later. RHS technique is suggested to be a good indication of pulmonary mucormycosis in neutropenic patients than CT scan. The CT scan of 24 patients with lung mucormycosis were found to be similar to the CT scan of 94 patients' aspergillosis. Whereas, RHS was more prevalent in mucormycosis patients (54%) than in aspergillosis patient (6%)75. Despite the fact, manipulation. these results are not conclusive, but can be only seen as starting point for further studies. The emission positron tomography-computed tomography (PET/CT) with (18F)-fuorodeoxyglucose (FDG) is yet transpiring imaging strategy which may be helpful in the diagnosis and management of mucormycosis76. Endobronchial ultrasound guided fne-needle aspiration is also a helpful tool in screening of mucormycosis77.

V. CULTURE AND MICROSCOPIC **EXAMINATION**

Different microscopic techniques and other clinical culture specimens are diagnosing mucormycosis's cornerstone. The samples from infected individuals are examined under direct microscopy. Clinical samples which are white, are allowed for quick preliminary analysis of mucormycosis78. The hyphae of mucoralean fungi haver variable diameter generally 6-25 micron, are non-septate or pauci-shaped and are irregularly shaped. Branching angle varies with wide angle (90°) bifurcations being common. Fungal elements are easily visible on hematoxylin and eosin. Gomori's silver staining is frequently used to elucidate fungal hyphae with a detailed analysis of anatomy79. Inflammation usually dominates tissue histopathological results in a few cases. It is absent in immunocompromised patients. Prominent infarcts and angioinvasion are main characters of invasive disease. Perineural invasion can be seen if nerve structures are involved. Histopathological examination of tissue samples is not always capable to distinguish Mucorales hyphae with Aspergillus or other morphological characters related to fungi. Tissue identification is a

between the presence of a pathogen in a tissue culture and culture contamination. Mucorales grow rapidly on most fungal culture media like Potato dextrose agar and sabouraud agar incubated at 25-30 °C(3 to7 days). A microaerophilic condition increases culture yield for certain varieties. Exceptionally, even though fungal hyphae are visible in the histopathological examination, only 50% of fungal cultures are positive. As fungal hyphae brittle, they could be harmed in tissue

VI. SEROLOGY

Certain rational tests i.e., enzyme-linked immunosorbent assay (ELISA), immunoblots and immune-diffusion were evaluated based on the degree of their effectiveness. Out of three hematological patients who developed invasive mucormycosis, enzyme-linked immunospot (ELISpot) assay has been used to identify Mucorales-specific T cells. In addition, Mucoralesspecific T-cells were used in infected patients to recover over the disease80 albeit; further research is required towards the use of T-cells as surrogate diagnostic markers.

VII. MOLECULAR ASSAYS

Conventional PCR, RFLP, and DNA sequencing of identified gene regions81,82,83 and melt curve analysis of PCR products are all examples of molecular-based assays84. Many of the assays mentioned above can be used to detect or identify Mucorales. The internal transcribed spacer or the 18S rRNA genes are the focus of the majority of molecular assays79. Several studies have been conducted using paraffin-embedded or fresh tissue samples, formalin-fixed, with varying results. The studies performed for sensitivity (70-100%) and specificity (not measured to 100%) shows varied results, but a lower number of patients examined being a critical shortcoming. Since the efficacy of these in-house assays has not been extensively tested and clinically evaluated, they cannot be put forward as a single, stand-alone in clinical routine

diagnostics, this approach is used. Molecular diagnosis from blood and serum has yielded positive clinical results in 39% of cases85,86. When opposed to culture, early diagnosis and overall confirmed culture-proven cases were achieved using molecular-based diagnosis from serum. At this time, molecular based diagnostic assays may put forth as useful supplements to traditional diagnostic procedures87.

VIII. ADVANCEMENT IN DIAGNOSIS

Cultures and histopathology are used to diagnose mucormycosis88. Mucoralean fungi are vulnerable to vascular invasion and are capable of damaging the tissues. Tissue infraction occurs after blood vessel thrombosis, consequently leads to the formation of black eschar. Gram stain is ineffective for fungi. Fungi of order Mucorales have long nonseptate ribbon like irregular hyphae with branches. Mucormycotic infections may comorbidly cause neutrophilic, granulomatous or non- specific inflammatory changes along with angioinvasion. Fine needle aspiration biopsy may be used to confirm the infection especially if pulmonary or masses are present77,89. histopathology can revel false results. Grinding tissue specimens for culture are results in hyphae damage due to scarcity of septations which prevents growth in culture.

For certain causative agents of order Mucorales i.e., Rhizopus, Mucor, Rhizomucor, Lichthemia quantitative PCR in serum or tissues can be found90. Matrix- assisted laser desorption or ionization-time of fight tends to a great tool with high precision for separating mold from culture91,92. Next generation sequencing can detect IMIs in blood samples which could lead to earlier detection of mucormycosis93.

THERAPY

Mucormycosis is an uncommon disease causing a deadliest opportunity in the immunocompromized patients. Various research groups from all across the globe are working on it. Many suggestions are provided by the researchers for its therapy and treatment. Several researchers advice that randomized controlled trials are not possible in

millions of people due to rarity of mucormycosis. But, LFAB can be used as primary treatment to cure mucormycosis94,95. Triazole was approved by the FDA to treat adult mucormycosis in advance condition whereas, POSA with Mucorales activity was used earlier as salvage and induction therapy96,97. Laterally, surgical debridement serves an essential supporting part, especially when if it is related to soft tissue or rhino cerebral98,95. The significance of reversing the underpinning threat factors similar glucocortico steroid to deferoxamine discontinuation, neutropenia, discontinuation and diabetes regulation and immune-suppressant cannot be exaggerated99. Numerous antifungals are vulnerable to Mucorales. The most active agents are including LFAB100 along with some newer triazoles, POSA and ISAV. Furthermore, the echinocandins and VORI had inadequate exertion against mucoralean fungi. Invitro, ISAV and POSA101 showed activity against various fungi and molds, including fungi from Mucorales order102,103. In spite of the fact that this amount of activity for both agents vary depending on the organisms and also on mucoralean fungi104. In refractory cases of black fungus, both POSA and ISAV are known to be a useful tool as therapy or salvage105. For the patients dealing with mucormycosis who have failed POSA, ISAV has shown to be a successful recovery therapy104. In the VITAL study, patients with disseminated mucormycosis were given ISAV, which was an open label, nonrandomized 106.

TREATMENT

Successful treatment of mucormycosis is based on multiple factors like reversal of underlying predisposing factors, early administration or introduction antifungal agents, complete to eradication of infected tissues from body along with getting therapies99. Early diagnosis is crucial to initiate the therapeutic interventions necessary for preventing progressive tissue invasion and its devastating sequelae, minimizing the effect of disfiguring corrective surgery and improving outcome and survival107. Mucoralean fungi are resistant to most of the antifungals in-vitro, for Voriconazole. instance Fluconazole and Amphotericin B is the most effective drug, except

for species, Cunninghamella some and Apophysomyces 108. Posaconazole Isavuconazole are effective to a certain limit. whereas itraconazole and terbinafine also showed anti-Mucorales activity against specific strains as reported by Borman et al. The mucormycosis response to antifungal agents is host dependent and particularly problematic in immunosuppressed individuals 109. Causative agents of order Mucorales have ordinary characteristics with other molds and fugus including the mode of invasion in host body, innate host defence. Nevertheless, Rhizopus oryzae, Lichtheimia, Rhizomucor spp. are characterized by distinguishing virulence factors which able them to cause manifestation in patients with diabetic ketoacidosis or other manifestation, encouraging host invasion and progression in body despite the Additionally, mucormycosis treatment37. specified by immense expansion of angio-invasion leading to vessel thrombosis and tissue necrosis111. Angioinvasion accelerates towards hematogenous dissemination of the organ although tissue necrosis prevents penetration in immune cells112. Some species like Rhizopus oryzae have diminished vulnerability to innate host defence as compared to Aspergillus and Candida, concluding these fungi difficult to treat113. Posaconazole and Isavucozole are used as salvage therapy. The surfacing of intravenous and oral drugs of Posaconazole has been enhancing the bioavailability and increased drug exposure114.

Isavaconazole is also an emerging drug with a great spectrum of antifungal activity against various pathogens, Mucorales being included111. The oral formulations of antifungal agents such as Posaconazole and Isavuconazole are proffered over administration in medical health care unit112. Surgeries are only performed in severe cases, as in the healthy tissue around the damaged or necrotic tissues must be removed. The fungus spreads and proliferates aggressively.

IX. NATURAL ANTIMICROBIALS FOR TREATMENT OF MUCORMYCOSIS

The Mucoralean fungi are mostly resistant to antifungal agents available commercially i.e., polyene such as Amphotericin B and triazoles such as Posaconazole. These drugs are only effective if introduced in early stages of infection113. The genetic information obtained from Rhizopus oryzae revealed that initial resistance of mucoralean fungi to the therapy is the result of duplication within the genome of ergosterol biosynthesis pathway genes and mitochondrial protein complexes associated with respiratory electron transport chains110. Accordingly, the need of newer antifungal agents with distinct methods of action for mucormycosis necessitates medicine.

PLANTS WITH MEDICINAL PROPERTIES

Plant kingdom has been a tremendous pivot for natural compounds with novel properties, which leads scientist to lean towards plants till date. Recent researches showed that plants enhance bioactive secondary metabolites i.e., flavonoids, saponins, alkaloids, and terpenoids with antimicrobial properties. Hence, these bear potential for future source for antibacterial and antifungal drugs115. In current scenario obscurity lies with antifungal therapy for patients dealing with AIDS, diabetes, chemotherapy or organ transplant and also recent emergence of COVID-19, as the drugs become inactive due to co-morbidity of other infections 116. The multidrug resistance obtained by various fungi and diminished number of available active antifungal agents attribute for the discovery novel antifungal secondary metabolites. Medicinal plants have been in highlight for providing the treatment of both mankind and mycoses. These plants as well as endophytes residing inside them are thought to be invaluable source for the discovery of antimycotic drugs.

X. CONCLUSION

Although the actual pervasiveness of mucormycosis is unknown, it is believed to be substantially greater in developing countries as compared to developed countries. The prevalence of Mucorales in the community and hospital environment, the immense number of susceptible hosts, peculiarly diabetics and also the Indian population's negligence for regular health check-ups are all major reasons contributing to high prevalence of mucormycosis. A number of people are still unaware of their diabetic

status until they develop mucormycosis. Pulmonary 7. tuberculosis, chronic kidney disease and critically ill patients are all significant risk factors for mucormycosis. Due to late diagnosis of condition and also intricacy in sway over in the advanced 8. stage of infection, the mortality rate linked with mucormycosis is comparatively high. Despite of crucial advances in mucormycosis treatment in recent years, the fatality rate is still at the peak. 9. Although, interlude in medicaments remain due to delays in diagnosis, limited antifungals as resources and difficult management alternatives. The progress in the clinical trials advice to use the surgical procedures for the treatment of mucormycosis. The rapid rise in incidences of mucormycosis paves a greater appreciation and probabilities of the contriving the newer management techniques and medication protocols to reduce the mortality and fatality overall the globe117.

REFERENCES

- Chakrabarti, A., Das. A. and Mandal, J. (2006). The rising trend of invasive zygomycosis in patients with uncontrolled diabetes mellitus. Med. Mycol. 44: 335–342.
- Lazar, S., Lukaszewicz, J., Persad, K. and Reinhardt, J. (2014). Rhinocerebral Mucor circinelloides infection in immunocompromised patient following yogurt ingestion. Del. Med. J. 86: 245–248.
- 3. Lelievre, L., Garcia-Hermoso, D. and Abdoul, H. (2014). Posttraumatic mucormycosis: a nationwide study in France and review of the literature. Med (United States). 93: 395–404.
- Nasa, M., Sharma, Z., Lipi, L. and Sud, R. (2017). Gastric angioinvasive mucormycosis in immunocompetent adult, a rare occurrence. J. Assoc. Physicians. India. 65:103–104.
- 5. Wang, Y, Zhu, M. and Bao, Y. (2018). Cutaneous mucormycosis caused by Rhizopus microsporus in an immunocompetent patient: A case report and review of literature. Med (united States). 97(25): e10630.
- Petrikkos, G., Drogari-Apiranthitou, M. (2011).
 Zygomycosis in immunocompromised non-haematological patients. Mediterr. J. Hematol. Infect. Dis. 3:e2011012.

- 7. Moreira, J., Ridolf, F., Almeida-Paes, R., Varon, A. and Lamas, C. C. (2016a). Cutaneous mucormycosis in advanced HIV disease. Brazilian J. Infect. Dis. 20: 637–640.
- Petrikkos, G., Skiada, A., Lortholary, O., Roilides, E., Walsh, T. J. and Kontoyiannis, D. P. (2012). Epidemiology and clinical manifestations of mucormycosis. Clin. Infect. Dis. 54:23–34.
- Riley, T. T, Muzny, C. A., Swiatlo, E. and Legendre, D. P. (2016). Breaking the mold: a review of mucormycosis and current pharmacological treatment options. Ann. Pharmacother. 50: 747–757
- Jeong, W., Keighley, C. and Wolfe, R. (2019). The epidemiology and clinical manifestations of mucormycosis: a systematic review and metaanalysis of case reports. Clin. Microbiol. Infect. 25: 26–34.
- Corzo-León, D. E., Chora-Hernández, L. D., Rodríguez-Zulueta, A. P. and Walsh, T. J. (2018). Diabetes mellitus as the major risk factor for mucormycosis in Mexico: epidemiology, diagnosis, and outcomes of reported cases. Med. Mycol. 56: 29–43.
- 12. Bonifaz, A., Stchigel, A. M., Guarro, J. (2014). Primary cutaneous mucormycosis produced by the new species Apophysomyces mexicanus. J. Clin. Microbiol. 52: 4428–4431.
- Rodríguez, J. Y., Morales-López, S. E. and Rodríguez, G. J. (2018). Necrotizing fasciitis caused by Apophysomyces variabilis in an immunocompetent patient. Med. Mycol. Case Rep. 20: 4–6.
- Kwon-Chung, K.J, Bennett, J. E. (1992). Mucormycosis In Medical mycology (ed. Kwon-Chung KJ, Bennett JE). Lea & Febiger, Philadelphia. 524–559.
- Gamarra, S., Chaves, M. S. and Cabeza, M. S. (2018). Mucormycosis outbreak due to Rhizopus microsporus after arthroscopic anterior cruciate ligament reconstruction surgery evaluated by RAPD and MALDI-TOF Mass spectrometry. J. Mycol. Med. 28: 617–622.
- Kontoyiannis, D.P. and Lewis, R. E. (2006). Invasive zygomycosis: update on pathogenesis, clinical manifestations, and management. Infect. Dis. Clin. North Am. 20: 581–607.

- 17. Ibrahim AS, Spellberg B, Walsh TJ, Kontoyiannis DP (2012) Pathogenesis of mucormycosis. Clin Infect Dis 54: 1–7.
- 18. Chamilos, G., Lewis, R. E., Lamaris, G., Walsh, T. J and Kontoyiannis, D. P. (2008). Zygomycetes polymorphonuclear response in human neutrophils through tolllike receptor induction but display relative resistance to oxidative damage. Antimicrob Chemother 52: 722-724.
- 19. Rodney Frare e Silva. (2010). Fungal infections in immunocompromised patients. J Bras Pneumol. 36(1):142-147.
- 20. Boelaert, J. R., De Locht, M. and Van Cutsem, J. 30. Al-Ajam, M. R., Bizri, A. R., Mokhbat, J., Weedon, (1993) Mucormycosis during deferoxamine therapy is a siderophore-mediated infection: in vitro and in vivo animal studies. J. Clin. Invest. 91: 1979-1986.
- 21. Danion. F., Aguilar, C. and Catherinot, E. (2015). Mucormycosis: new developments into a persistently devastating infection. Semin. Respir. Crit. Care. Med. 36: 692-705.
- Thomas, R. K., Correa, M. A., D'Souza, O. and (2003). Rhino-orbito-cerebral mucormycosis. A retrospective analysis of clinical features and treatment outcomes. Indian J. Ophthalmol. 51(3): 231.
- 23. Chakrabarti, A., Chatterjee, S. S. and Das, A. zygomycosis (2009).Invasive in experience in a tertiary care hospital. Postgrad. Med. J. 85: 573-581.
- (2021).Mucormycosis in COVID-19: systematic review of cases reported worldwide and in India. Diabetes Metab. Syndr. 15(4): 102146.
- 25. John, T. M., Jacob, C. N. and Kontoyiannis, D. P. 35. Chamilos G, Lewis RE, Kontoyiannis DP. (2008). (2021). When uncontrolled diabetes mellitus and severe COVID-19 converge: the perfect storm for mucormycosis. J. Fungi. 7 (4): 298.
- 26. Ravani, S. A., Agrawal, G. A., Leuva, P. A., Modi, mucormycosis in COVID-19 times. Indian J. Ophthalmol. 69(6): 1563-1568.
- 27. Sen, M., Honavar, S. G. and Bansal, R. (2021). Epidemiology, clinical profile, management, and

- outcome of COVID-19-associated rhino-orbitalcerebral mucormycosis in 2826 patients in India-collaborative **OPAI-IJO** studv mucormycosis in COVID-19 (COSMIC), report 1. Indian J. Ophthalmol. 69(7): 1670-1692.
- hyphae trigger an early, robust proinfammatory 28. Staats, C. C., Kmetzsch, L., Schrank, A. and Vainstein, M. H. (2013). Fungal zinc metabolism and its connections to virulence. Front. Cell Infect. Microbiol. 3:65.
 - Agents 29. Leonardelli, F., Macedo, D. and Dudiuk, C. (2019). In vitro activity of combinations of zinc chelators with amphotericin posaconazole against six mucorales species. Antimicrob. Agents Chemother. 63: (5).
 - J., Lutwick, L. (2006). Mucormycosis in the Eastern Mediterranean: a seasonal disease. Epidemiol. Infect. 134 (2): 341-346.
 - 31. Ambrosioni, J., Bouchuiguir-Wafa, K. and (2010). **Emerging** Garbino, J. invasive zygomycosis in a tertiary care center: Epidemiology and associated risk factors. Int. J. Infect. Dis. 14:e100-e103.
- 22. Nithyanandam, S., Jacob, M. S., Battu, R. R., 32. Salehi, M., Ahmadikia, K., Badali, H. and Khodavaisy, S. (2020). Opportunistic fungal infections in the epidemic area of COVID-19: A clinical and diagnostic perspective from Iran. Mycopathologia 185, 607–611.
 - 33. Saegeman, V., Maertens, J., Meersseman, W., Spriet, I., Verbeken, E. and Lagrou, K. (2010). Increasing incidence of Mucormycosis in university hospital, Belgium. Emerg. Infect. Dis. 16: 1456-1458.
- 24. Singh, A. K., Singh, R., Joshi, S. R. and Misra, A. 34. Jung, J., Kim, M. Y and Lee, H. J. (2015). Comparison of computed tomographic fndings in pulmonary mucormycosis and invasive pulmonary aspergillosis. Clin. Microbiol. Infect. 21:684.e11.
 - amphotericin B-based frontline Delaying therapy significantly increases mortality among patients with hematologic malignancy who have zygomycosis. Clin Infect Dis 47: 503–509.
 - P. H. and Amin, K. D. (2021). Rise of the phoenix: 36. Guinea, J., Escribano, P. and Vena, A. (2017). Increasing incidence of mucormycosis in a large Spanish hospital 2007 to from 2015: Epidemiology and microbiological

- 1-10.
- 37. Sahu, R. K., Salem-Bekhit, M. M., Bhattacharjee, B., Almoshari, Y., Ikbal, A. M. A., Alshamrani, M., 47. Meyers, Bharali, A., Salawi, A., Widyowati, R., Alshammari, A. and Elbagory, I. (2021). Mucormycosis in Indian COVID-19 patients: Insight into its pathogenesis, clinical manifestation and management strategies. Antibiotics Basel. 10(9): 1079.
- 38. Rodriguez-Morales, A. J., Mamani-García, C. S., NuñezLupaca, J. N., León-Figueroa, D. A., Olarte-Durand, M., YreneCubas, R. A., Ticona, D. M. and Abanto-Urbano, S. (2021). COVID-19 and mucormycosis in Latin America- An emerging concerm. Travel Med. and Infect. Dis. 44: 102156.
- 39. Nucci, M., Barreiros, G., Guimarães, L.F., Deriquehem, V.A.S., Castiñeiras, A.C. and Nouér, S.A. (2021). Increased incidence of candidemia in a tertiary care hospital with the COVID-19 pandemic. Mycoses. 64, 152-156.
- 40. Farmakiotis, D. and Kontoyiannis, D. P. (2016). Mucormycosis. Infectious Disease Clinics of North America. 30: 143-163.
- 41. Chander, J., Singla, N. and Kaur, M. (2017). erythrospora, Saksenaea emerging mucoralean fungus causing severe necrotizing skin and soft tissue infections a study from a tertiary care hospital in north India. Infec. Dis. 49: 170- 177.
- 42. Kirby, T. (2021). New variant of SARS-CoV-2 in UK causes surge of COVID-19. Lancet Respir. Med. 9 (2): e20-e21.
- 43. Revannavar, S. M., SS, P., Samaga, L. and KV, V., 2021. COVID-19 triggering mucormycosis in a susceptible patient: a new phenomenon in the developing world? BMJ Case Rep. 14(4): e241663.
- 44. Werthman-Ehrenreich, A. (2021). Mucormycosis with orbital compartment syndrome in a patient with COVID-19. Am. J. Emerg. Med. 42: 264 e5- e8.
- 45. Kumar, M., Sarma, D. K., Shubham, S., Kumawat. M., Verma, V., Singh, B., Nagpal, R. and Tiwari, R. Risk factors and linkages. Curr. Res. Microb. Sci. 2: 100057.

- characterization of the isolates. PLoS ONE. 12: 46. Sugar, A. M. (1995). Agents of mucormycosis and related species. Principles Pract. Infect Dis. 2311-2321.
 - B. and Gurtman, Α. (1998).Phycomycetes. Infectious Diseases, 2nd edn. WB Saunders, Philadelphia, 23822387.
 - 48. Bhatt, K., Agolli, A., Patel, M. H., Garimella, R. Devi, M., Garcia, E., Amin, H., Domingue, C., Del Castillo, R. G. and Sanchez-Gonzalez, M. (2021). High mortality co-infections of COVID-19 patients: Mucormycosis and other fungal infections. Discoveries. 9, 126.
 - 49. Eucker, J., Sezer, O. and Lehmann, R. (2000). Disseminated mucormycosis caused by Absidia corymbifera leading to cerebral vasculitis. Infection. 28(4): 246-250.
 - 50. Bhattacharyya, A. K., Deshpande, A. R., Nayak, S. R., Kirtane, M.V., Ingle, M.V. and Vora, I. M. (1992).Rhinocerebral mucormycosis: unusual case presentation. J. Laryngol. Otol. 106(1): 48-49.
 - 51. Radner, A. B., Witt, M. D., Edwards, J. E. (1995). Acute Invasive Rhinocerebral Zygomycosis in an Otherwise Healthy Patient. Clin. Infect. Dis. 20:163-166.
 - 52. Brown, S. R., Shah, I. A. and Grinstead, M. (1998). mucormycosis Rhinocerebral caused Apophysomyces elegans. Am. J. Rhinol. 12(4): 289-292.
 - 53. Roden, M. M., Zaoutis, T. E. and Buchanan, W. L. (2005). Epidemiology and outcome zygomycosis: a review of 929 reported cases. Clin. Infect. Dis. 41 (5): 634-653.
 - 54. Patel, A., Agarwal, R. and Rudramurthy, S. M. (2021). Multicenter epidemiologic study of coronavirus disease-associated mucormycosis, India. Emerg. Infect. Dis. 27:(9).
 - 55. Roglic, G. (2016). WHO Global report on diabetes: a summary. Int. J. Noncommun. Dis. 1 (1): 3-8.
 - 56. Zhou, B., Lu, Y. and Hajifathalian, K. (2016). Worldwide trends in diabetes since 1980: a pooled analysis of 751 population-based studies with 4. 4 million participants. Lancet North Am. Ed. 387 (10027): 1513-1530.
- R. (2021). Mucormycosis in COVID-19 pandemic: 57. Garg, D., Muthu, V. and Sehgal, I.S. (2021). Coronavirus disease (Covid-19) associated mucormycosis (CAM): case report

- 186 (2): 289-298.
- 58. To, India, 2021. 85% of Mucormycosis Patients Also Have Diabetes. indiatimes.com/city/gurgaon/85-of-mucorpatients-also-have%20diabetes/artic leshow/83128651.cms. accessed Jun 1, 2021 70. Koehler, P., Bassetti, M. and Chakrabarti, A. 2021).
- 59. Skiada, A., Pavleas, I. and rogari-Apiranthitou, M. (2020). Epidemiology and diagnosis Mucormycosis. J. of Fungi. 6: 265.
- 60. Raju, S. K., Kurdekar, R.S., Prakash, V. J. and Vyas, A. (2021). The nexus between mucormycosis 71. Pereira de Sa N, Taouil A, Kim J, Clement T, and COVID-19: A Review. International Journal of Oral Care and Research 9(3): 86-89.
- 61. Khoshbayan, A., Didehdar, M., Chegini, Z., Taheri, F. and Shariati, A. (2021). A closer look at pathogenesis of cerebral mucormycosis in diabetic condition- A mini review. J. of Basic Microbiol. 61(3): 212-218.
- 62. Kirkland, T.N. and Fierer, J. (2020). Innate Immune Receptors and Defense Against Primary Pathogenic Fungi. Vaccines. 8, 303.
- 63. Pana, Z. D., Seidel, D. and Skiada, A. (2016). mucormycosis in children: epidemiologic study in European and non-European countries based on two registries. BMC Infect. Dis. 16: 1-9.
- 64. Husain, S., Silveira, F. P., Azie, N., Franks, B. and Horn, D. (2017). Epidemiological features of invasive mold infections among solid organ transplant recipients: PATH Alliance registry analysis. Med. Mycol. 55:269-277
- 65. Lam, K. S. (2007). New aspects of natural products in drug discovery. Trends Microbiol. 15, 279-289.
- 66. Blauwkamp, T. A., Thair, S. and Rosen, M. J. (2019). Analytical and clinical validation of a microbial cell-free DNA sequencing test for 75. Kontoyiannis D. P. (2012). MUCORMYCOSIS. infectious disease. Nat. Microbiol. 4: 663-674.
- 67. Tribble, D. R., Krauss, M. R. and Murray, C. K. 76. Liu, Y., Wu, H., Huang, F., Fan, Z. and Xu, B. Epidemiology (2018)of trauma-related infections among a combat casualty cohort after initial hospitalization: the Trauma (larchmt). 19: 494-503.

- systematic review of literature. Mycopathologia. 68. Barshes, N. R., Goodpastor, S. E. and Goss, J. A. (2004). Pharmacologic immunosuppression. Front. Biosci.: J. Virtual Lib. 9, 411–420.
 - https://timesofindia. 69. Arastehfar, A., Carvalho, A., van de Veerdonk, F. (2020.)COVID19 associated from immunology to treatment. J. Fungi. 6:1–17.
 - (2021). Defining and managing COVID-19associated pulmonary aspergillosis: the 2020 ECMM/ISHAM consensus criteria for research and clinical guidance. Lancet Infect. Dis. 21: e149-e162.
 - Hoffmann RM, Burke JE, Rizzo RC, Ojima I, Del Poeta M and Airola MV: Structure and inhibition of Cryptococcus neoformans sterylglucosidase to develop antifungal agents. Nature Communications 2021; 12(1): 5885.
 - 72. Aranjani J. M., Manuel, A., Razack A., H. I. and Mathew, S. T. (2021). COVID-19-associated mucormycosis: Evidence-based critical review of an emerging infection burden during the pandemic's second wave in India. PLOS Negl Trop Dis. 15(11).
 - an 73. Chamilos, G., Lewis, R. E., Lamaris, G., Walsh, T. J and Kontoyiannis, D. P. (2008). Zygomycetes hyphae trigger an early, robust proinfammatory response in human polymorphonuclear neutrophils through tolllike receptor 2 induction but display relative resistance to oxidative damage. Antimicrob Agents Chemother 52: 722-724.
 - 74. Corzo-León, D.E., Chora-Hernández, Rodríguez-Zulueta, A.P. and Walsh, T.J. (2018). Diabetes mellitus as the major risk factor for mucormycosis in Mexico: Epidemiology, diagnosis, and outcomes of reported cases. Med Mycol. 1;56(1):29-43.
 - Goldman' Cecil Medicines. 1994-1997.
 - (2013) Utility of 18F-FDG PET/ CT in diagnosis and management of mucormycosis. Clin. Nucl. Med. 38:370-371.
- Infectious Disease Outcomes Study. Surg Infect 77. Haas, B. M., Clayton, J. D., Elicker, B. M., Ordovas, K. G and Naeger, D. M. (2017). CT-guided percutaneous lung biopsies in patients with

- information. Am. J. Roentgenol. 208: 459-463.
- 78. Lass-Flörl, C., Resch, G. and Nachbaur, D. (2007). The value of computed tomography-guided percutaneous lung biopsy for diagnosis of invasive fungal infection immunocompromised patients. Clin. Infect. Dis. 45: 101-104.
- 79. Potenza, L., Vallerini, D., Barozzi, P. (2011). Mucorales-specifc T cells emerge in the course of invasive mucormycosis and may be used as a surrogate diagnostic marker in high-risk 89. Shigemura, T., Nishina, S., Nakazawa, H., patients. Blood. 118: 5416-5419.
- 80. Ribesand, J. A., Vanover-Sams, C. L. and Baker, D. J. (2000). Zygomycetes in human disease. Clin. Microbiol. Rev. 13:236-301.
- 81. Nagao, K., Ota, T. and Tanikawa, A. (2005). Genetic identification and detection of human pathogenic Rhizopus species, major mucormycosis agent, by multiplex PCR based on internal transcribed spacer region of rRNA gene. J. Dermatol. Sci. 39: 23-31.
- 82. Shirley, M. and Scott, L. J. (2016). Isavuconazole: a review in invasive aspergillosis mucormycosis. Drugs. 6: 1647–1657.
- 83. Gebremariam, T., Alkhazraji, S., Alqarihi, A., Wiederhold, N. P., Najvar, L. K., Patterson, T. F., Filler, S. G. and Ibrahim, A. S. (2021). Evaluation of Sex Differences in Murine Diabetic Ketoacidosis and Neutropenic Models of 92. Rüping, M. J. G. T., Heinz, W. J. and Kindo, A. J. Invasive Mucormycosis. J. of Fungi. 7(4): 313.
- 84. Ino, K., Nakase, K. and Nakamura, A. (2017) Management of pulmonary mucormycosis based on a polymerase chain reaction (Pcr) diagnosis in patients with hematologic malignancies: a report of four cases. Intern Med. 56: 707-711.
- 85. Millon, L., Herbrecht, R. and Grenouillet, F. (2016). Early diagnosis and monitoring of in serum: retrospective analysis of 44 cases collected through the French Surveillance Network of Invasive Fungal Infections (RESSIF). Clin. Microbiol. Infect. 22(9): 810.e1-810.e8.
- 86. Yang, M., Lee, J. H., Kim, Y. K., Ki, C. S., Huh, H. J. and Lee, N. Y. (2016). Identification of mucorales from clinical specimens: A 4-year experience in a single institution. Ann. Lab. Med. 36: 60-63.

- suspicion for infection may yield clinically useful 87. Borman, A. M., Fraser, M., Patterson, Z., Palmer, M. D. and Johnson, E. M. (2021). In-vitro Antifungal Drug Resistance Profiles of Clinically Members of the Mucorales (Mucoromycota) Especially with the Newer Triazoles. J. of Fungi. 7(4): 271.
 - 88. Sharma, S., Gupta, P., Gupta, N., Lal, A., Behera, D. and Rajwanshi, A. (2017). Pulmonary infections in immunocompromised patients: the role of image-guided fne needle aspiration cytology. Cytopathology. 28: 46-54.
 - Matsuda, K., Yaguchi, T. and Nakazawa, Y. (2016). Early detection of Rhizopus DNA in the serum of a patient with rhino-orbital-cerebral mucormycosis following allogeneic hematopoietic stem cell transplantation. Int. J. Hematol. 103: 354-355.
 - 90. Cao, Y., Wang, L., Ma, P., Fan, W., Gu, B. and Ju, S. (2018). Accuracy of matrixassisted laser desorption ionization-time of fight mass spectrometry for identification of mycobacteria: a systematic review and meta-analysis. Sci Rep. 8:1-9.
 - 91. Gholinejad-Ghadi, N., Shokohi, T. and Seif, Z. (2018). Identification of Mucorales in patients with proven invasive mucormycosis polymerase chain reaction in tissue samples. Mycoses 61: 909-915.
 - (2009). Forty-one recent cases of invasive zygomycosis from a global clinical registry. J. Antimicrob. Chemother. 65: 296-302.
 - 93. Skiada, A., Lanternier, F. and Groll, A. H. (2013). Diagnosis and treatment of mucormycosis in patients with hematological malignancies: Guidelines from the 3rd European Conference Infections in Leukemia (ECIL Haematologica. 98: 492-504.
- mucormycosis by detection of circulating DNA 94. Bagshaw, E., Enoch, D. A., Blackney, M., Posthumus, J. and Kuessner, D. (2018).
 - 95. Jenks, J. D., Salzer, H. J. F., Prattes, J., Krause, R., Buchheidt, D. and Hoenigl, M. (2018). Spotlight on isavuconazole in the treatment of invasive aspergillosis and mucormycosis: development, and place in therapy. Drug Des. Devel. Ther. 12: 1033-1044.

- 96. Schwarz, P., Guedouar, H., Laouiti, F., Grenouillet, F. and Dannaoui, E. (2019) Identification of mucorales by matrix-assisted laser desorption ionization time-of-fight mass spectrometry. J. Fungi. 5: 1–11.
- 97. Arendrup, M. C., Boekhout, T., Akova, M. (2014). ESCMID and ECMM joint clinical guidelines for the diagnosis and management of rare invasive yeast infections. Clin. Microbiol. Infect. 20: 76–98.
- 98. Tissot, F., Agrawal, S. and Pagano, L. (2017). ECIL-6 guidelines for the treatment of invasive candidiasis, aspergillosis and mucormycosis in leukemia and hematopoietic stem cell transplant patients. Haematologica. 102: 433–444.
- Bagshaw E, Enoch DA, Blackney M, Posthumus J, Kuessner D. Economic impact of treating 108. invasive mold disease with isavuconazole compared with liposomal amphotericin B in the UK. Future Microbiol. 2018 Sep;13(11):1283- 109. 1293.
- 100. Skiada, A. C., Lass-Floerl, N., Klimko, A., Ibrahim, E. and Petrikkos, G. (2018). Challenges in the diagnosis and treatment of mucormycosis. Med. Myco. 56: 93-101.
- 101. Perfect, J. R., Cornely, O. A and Heep, M. (2018). Isavuconazole treatment for rare fungal diseases and for invasive aspergillosis in patients with renal impairment: challenges and lessons of the VITAL trial. Mycoses. 61: 420–429.
- 102. Denis, J., Ledoux, M. P., Nivoix, Y. and Herbrecht, R. (2018). Isavuconazole: A new broad-spectrum azole. Part 1: In vitro activity. J. Mycol. Med. 28: 8–14.
- Graves, B., Morrissey, C. O. and Wei, A. (2016). Isavuconazole as salvage therapy for mucormycosis. Med. Mycol. Case Rep. 11: 36–39.
- 104. Marty, F. M., Ostrosky-Zeichner, L. and Cornely, O. A. (2016). Isavuconazole treatment for mucormycosis: A single-arm open-label trial and case-control analysis. Lancet. Infect. Dis 16:828–837.
- 105. Malhotra, H. S., Gupta, P., Mehrotra, D., Dandu, H., Kohli, N., Verma, V., Kaur, A., Kumar, N., Prabhu, V., Singh, M. K., Jaiswal, R., Mishra, B., Ojha, B. K., Bhardwaj, N. D., Atam, V. and Puri, B.

- (2021). COVID-19 associated mucormycosis: Staging and management recommendations (Report of a multidisciplinary expert committee). J. of Oral Biol. and Craniofacial Res. 11(4): 569-580.
- 106. Hu, Z. M., Wang, L. L., Zou, L., Chen, Z. J., Yi, Y., Meng, Q. B. and Feng, Y. (2021). Coinfection pulmonary mucormycosis and aspergillosis with disseminated mucormycosis involving gastrointestinalin in an acute B-lymphoblastic leukemia patient. Braz. J. of Microbio. 1-6.
- 107. Hussain, S., Baxi, H., Riad, A., Klugarová, J., Pokorná, A., Slezáková, S., Líčeník, R., Najmi, A. K. and Klugar, M. (2021). COVID-19 associated mucormycosis (CAM): Updated evidence mapping. Int. J. Environ. Res. Pub. Health. 18(19): 10340.
- 108. Hamilos, G., Samonis, G. and Kontoyiannis,D. P. (2011). Pulmonary mucormycosis. Semin Respir Crit Care Med. 32: 693–702.
- 109. Gebremariam, T., Liu, M. and Luo, G. (2014). CotH3 mediates fungal invasion of host cells during mucormycosis. The J. of Clin. Invest. 124: 237–250.
- 110. Wadhwa, L. and Khurana, S. (2021). Rhino-Orbital Mucormycosis in a COVID-19 Patient Co-Infected With Klebsiella Pneumoniae. Cureus. 13(8): 17249.
- Ravindra, C. M., Rajaram, M., Madhusmita, M., ChToi, P. and Sneha, L. (2021). Pulmonary Aspergillus and Mucor Co-infection: A report of two cases. Sultan Qaboos Univer. J. 21(3): 495-498.
- 112. Wiederhold, N. P. (2016). Pharmacokinetics and safety of posaconazole delayedrelease tablets for invasive fungal infections. Clin. Pharmaco. 8: 1–8.
- 113. Abd El-Hameed, R. H., Sayed, A. I., Mahmoud Ali, S., Mosa, M. A., Khoder, Z. M. and Fatahala, S. S. (2021). Synthesis of novel pyrroles and fused pyrroles as antifungal and antibacterial agents. J. of Enz. Inhibition and Med. Chem. 36(1): 2183-2198.
- 114. Lee, S., O'Neill, A. H., Ihara, E. S. and Chae, D. H. (2013). Change in self-reported health status among immigrants in the United States: associations with measures of acculturation. PLoS One. 8(10): 76494.

Tamanna Tandon. International Journal of Science, Engineering and Technology, 2025, 13:3

115. Sharma, A. and Goel, A. (2022). Mucormycosis: risk factors, diagnosis, treatments, and challenges during COVID 19 pandemic. Folia Microbiologica. 67: 363–387.