
 Mrs V.Roopa, 2025, 13:3

ISSN (Online): 2348-4098

ISSN (Print): 2395-4752

© 2025 Mrs V.Roopa. This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly credited.

International Journal of Science,
Engineering and Technology

An Open Access Journal

Research Article

System core and mesh analyser
Mrs V.Roopa, Hariharan R, Anbarasu P, Eraiamudhan VD.

1. A/P Department of Cyber Security.

2,3,4 UG of Department of Cyber Security.

I. INTRODUCTION

This project introduces two essential Python scripts

aimed at system monitoring and security auditing.

The first script is focused on gathering real-time

system diagnostics using the psutil and platform

libraries. It provides detailed insights into system

specifications such as CPU usage, core count,

memory status, disk usage, system boot time, and

operating system details. This script is especially

useful for developers, administrators, or any users

who need a quick snapshot of their system’s

performance and health. It ensures that the

necessary psutil package is available, installing it if

needed, and handles potential permission errors

gracefully when accessing disk partitions. On the

other hand, the second script targets basic security

checks, helping to identify potential risks in the

system. It starts by ensuring that setuptools and the

pkg_resources module are installed so that installed

packages and their versions can be properly

assessed. It then checks for outdated or vulnerable

versions of known Python packages (such as

gitpython), which could be susceptible to Remote

Code Execution (RCE) vulnerabilities. In addition to

dependency checks, the script also scans the file

system for common misconfigurations, such as

hardcoded secrets within Python files or unsafe

permissions on sensitive files like .env or config.py. It

flags these issues and classifies them based on their

risk level—high, medium, or low—providing clear

guidance for remediation. Together, these scripts

offer a simple but powerful toolkit for maintaining a

secure and efficient computing environment. They

can be valuable in personal projects, educational

settings, or lightweight DevOps workflows, serving

as a starting point for more advanced monitoring

and security tools. Their modular design and

readability make them easy to extend or integrate

into larger automation frameworks, demonstrating

the power and flexibility of Python for real-world

system administration tasks. System Monitoring

Script

Overview

The first script is a compact, yet powerful tool that

helps in understanding how a system is currently

performing. Its core functionality is built around

psutil, a library that allows access to system-level

information in a platform-independent way.

Key features of the system monitoring script include:

System Information:

The script retrieves and displays general system

details such as the operating system name, version,

Abstract- The Python programs serve as comprehensive system diagnostic and security auditing tools. The first script

utilizes the psutil and platform libraries to collect and display detailed system information, including operating

system details, CPU specifications, memory usage, storage data, and boot time. It ensures the required psutil package

is installed dynamically, making the script portable and robust. This tool is useful for monitoring resource usage and

understanding system performance in real time.The second script focuses on basic security auditing and vulnerability

scanning. It checks for the presence of known vulnerable packages (e.g., older versions of gitpython), scans the

filesystem for common misconfigurations such as hardcoded secrets and insecure file permissions, and categorizes

the associated risk levels. Additionally, it ensures that the pkg_resources module is available by managing the

installation or upgrade of setuptools if needed.

Keywords: System Monitoring, Security Audit, Vulnerability, Detection RCE (Remote Code Execution), Hardcoded

Secrets, Python Automation System Info, Python Security Tool

 Mrs V.Roopa. International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 27 of 9

machine type, processor info, and node (host) name.

This is useful for quickly identifying the environment

the script is running on.

Boot Time:

It reports the last boot time of the machine. This

information can be helpful in determining uptime or

identifying if a system has restarted unexpectedly.

CPU Details:

The script calculates and displays the number of

physical and logical CPU cores. It also reads the CPU

frequency and tracks per-core and total CPU usage.

This is especially useful in environments where

performance bottlenecks may be CPU-related.

Memory Usage:

Memory status is shown, including total, available,

used memory, and the percentage of memory

currently in use. This is critical in assessing whether

the system has enough resources available to run

applications efficiently.

Disk Usage:

It iterates through all disk partitions and provides

data on their total size, used and free space, and

usage percentage. It gracefully handles permission

errors, which can occur if certain partitions are

restricted or system-reserved.

All of this information is gathered and printed in a

human-readable format, making it a handy

diagnostic tool. Whether you're setting up a new

server, troubleshooting an issue, or just curious

about your system’s performance, this script

provides the snapshot you need.

Security Audit Script Overview

While performance monitoring is important, security

cannot be overlooked—especially in today’s threat

landscape. Systems that are not regularly audited

may unknowingly harbor vulnerabilities, either due

to outdated software or poor configuration

practices.

This is where the second script comes in. Its primary

goal is to detect known package vulnerabilities and

unsafe coding or configuration practices, helping the

user proactively identify and mitigate security risks.

Here’s what the script does:

Dependency Check & Auto-install:

Before performing any analysis, the script checks for

the presence of the pkg_resources module, which is

part of setuptools. If it is missing, the script attempts

to install or upgrade setuptools automatically. This

ensures it can safely retrieve version data for

installed Python packages.

Vulnerability Detection:

The script has a built-in dictionary of packages and

their safe version thresholds. For instance, it checks

if an older, vulnerable version of the gitpython

package is installed. If such a package is found, the

script lists it and highlights the risk. This could be

extended to support more packages and integrate

with known vulnerability databases like CVE or PyUp.

Code Misconfiguration Checks:

One of the more advanced features is scanning the

file system (starting at /) for potential

misconfigurations:

Hardcoded Secrets: It looks for keywords like

API_KEY or SECRET in Python source files. These

could represent sensitive credentials that were

accidentally committed to the codebase.

nsecure Permissions: The script checks whether

certain config files, like config.py or .env, are too

permissive (e.g., world-readable or writable), which

could pose a security risk.

Risk Assessment:

For each issue found, the script assigns a risk level—

high, medium, or low—based on the nature of the

problem. This helps prioritize fixes.

Execution Summary:

At the end of its run, the script prints out all findings

along with the time taken to complete the scan. This

makes it easy to integrate into automated

environments or log for future reference.

Scripts Matter

 Mrs V.Roopa. International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 37 of 9

In modern computing environments, especially

where DevOps practices are prevalent, automation

plays a central role. These scripts, though simple,

reflect the kind of automation that can save time,

reduce errors, and improve security.

From a learning standpoint, they also demonstrate

how powerful Python is for scripting real-world

system tasks. The psutil and subprocess libraries

alone open up a wide range of capabilities, from

monitoring to automated installations and checks.

For anyone managing a Linux server, a cloud VM, or

even a personal development machine, these tools

can provide quick insights and early warnings about

system issues or vulnerabilities.

II. WORKING PROCESS

Working Process of System Monitoring and Security

Auditing Scripts

The system monitoring and security auditing scripts

work synergistically to ensure the health and security

of the system. These scripts are critical for system

administrators, developers, or anyone working with

a Python-based environment, as they provide a

comprehensive approach to both performance and

security analysis. By focusing on key system metrics

and known vulnerabilities, these scripts allow for

easy monitoring and vulnerability management

without requiring heavy third-party tools or complex

configurations. This content delves into the step-by-

step workings of both scripts, explaining the critical

components, their roles, and how they interact with

the underlying system.

System Monitoring Script: Comprehensive

Resource Management

The system monitoring script is designed to provide

real-time data on the various critical resources of a

computer system, ensuring that administrators or

users can make informed decisions when optimizing

their systems for performance or troubleshooting

issues. The core objective of the monitoring script is

to track the health of essential system resources such

as CPU, memory, storage, and system uptime, which

are the primary indicators of system performance.

Installing Required Libraries

One of the first steps the script takes is checking for

the required library, psutil, which is essential for

retrieving system performance metrics. psutil is a

powerful Python library that can interface with the

underlying system to fetch real-time data about CPU

usage, memory usage, disk usage, and more. If the

library is not installed on the system, the script

automatically handles the installation process via

Python’s package manager, pip. This ensures that the

script is always ready to run, regardless of the

environment, without requiring manual dependency

installation from the user.

Gathering General System Information

Once the required libraries are available, the script

gathers general system information. This includes

the operating system, node name (which refers to

the system’s hostname), release and version

numbers, machine type, and processor details. This

data is crucial for administrators to get an overview

of the system's architecture, ensuring that it aligns

with the intended usage and configurations. The

system’s name and version are particularly helpful

when determining compatibility with specific tools,

software, or operating environments.

System Uptime and Boot Time

System uptime is a critical aspect of monitoring, as it

provides insight into the last time the system was

rebooted. Knowing the system’s boot time can help

diagnose performance issues, as systems that have

been running for long periods without a reboot may

start showing degradation in performance or

stability. Using psutil, the script retrieves the exact

timestamp when the system was last booted. This

timestamp is converted into a human-readable

format, making it easy for users to understand when

the system was last restarted. This metric can also be

used to correlate system failures or crashes with

uptime, identifying whether the system is running as

expected or if it needs a reboot for optimal

performance.

CPU Usage and Performance Metrics

 Mrs V.Roopa. International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 47 of 9

One of the most important resources on any system

is the CPU, as it handles all computational tasks. The

script gathers detailed information about the

system’s CPU performance, such as the number of

physical and logical cores. Physical cores refer to the

actual hardware units responsible for processing,

while logical cores account for the CPU’s ability to

perform multiple tasks concurrently via hyper-

threading.

The script also tracks CPU frequencies, reporting the

maximum, minimum, and current operating

frequencies of the CPU. This data helps in identifying

if the system is being throttled or if the CPU is

operating below its expected performance range.

The script provides real-time CPU usage statistics per

core and an overall total CPU usage percentage,

allowing users to see which cores are under load and

how the workload is distributed across them. These

metrics are essential for detecting performance

bottlenecks, high CPU utilization, or identifying if

certain processes are monopolizing system

resources.

Memory Usage Monitoring

Memory usage is another vital system resource that

needs continuous monitoring. The script uses psutil

to retrieve virtual memory data, including total,

available, and used memory. Memory consumption

can impact the overall performance of the system,

particularly in environments running memory-

intensive applications. High memory usage can

cause the system to slow down or even crash if it

runs out of available RAM.

The script presents the memory usage in human-

readable terms such as megabytes (MB), making it

easier to understand and track usage trends over

time. It also calculates and displays the percentage

of memory being utilized. High memory usage may

indicate that certain applications or services are

consuming an abnormal amount of resources, which

may require intervention to ensure smooth system

operation.

Disk Usage and Storage Analysis

Disk storage is a finite resource, and it is crucial to

monitor the available space to avoid system crashes

or performance degradation. The system monitoring

script analyzes all mounted disk partitions and

gathers information such as the total size, used

space, and free space available for each partition. It

also calculates the usage percentage for each

partition, alerting users to partitions that are nearing

full capacity.

Knowing the available storage on critical system

partitions is important, especially for systems

running databases, log files, or applications that

require constant write access. If the disk space

becomes too limited, it can lead to data loss, file

corruption, or system failures. Therefore, this part of

the script ensures that users have the most up-to-

date information about their storage, allowing them

to take proactive measures before running out of

disk space.

Security Auditing Script: Identifying Vulnerabilities

and Misconfigurations

The security auditing script is designed to detect

potential security vulnerabilities in the system’s

configuration and package dependencies. By

focusing on security risks such as outdated software

versions, misconfigurations, and hardcoded secrets,

this script helps administrators maintain a secure

environment by ensuring that the system is not

susceptible to known vulnerabilities.

Ensuring Necessary Libraries Are Installed

Just as with the system monitoring script, the

security auditing script starts by ensuring that

necessary Python modules are available. One critical

module for this script is pkg_resources, which is part

of the setuptools package. This module is used to

inspect the versions of installed packages. If

pkg_resources is not available, the script

automatically installs or upgrades setuptools,

ensuring that the script can access the required

functionality to perform vulnerability checks.

Vulnerability Scanning of Installed Packages

The script checks for known vulnerabilities in

installed packages by maintaining a list of packages

that are known to have security flaws. For example,

older versions of certain libraries may have security

vulnerabilities that allow attackers to exploit them

 Mrs V.Roopa. International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 57 of 9

for remote code execution (RCE) or other malicious

activities. The script compares the installed versions

of critical packages with a predefined list of

vulnerable versions, flagging any outdated

packages.

By identifying vulnerable packages, the script helps

administrators take timely action, either by

upgrading the vulnerable packages or by finding

secure alternatives. This proactive approach helps

reduce the system’s exposure to potential security

risks.

Scanning for Misconfigurations and Hardcoded

Secrets

Misconfigurations are a common source of security

breaches, as they can inadvertently expose sensitive

information or grant excessive permissions. The

security auditing script scans the entire file system

for Python files that may contain hardcoded secrets,

such as API keys, passwords, or tokens. These secrets

can easily be exposed in public code repositories or

shared inadvertently with unauthorized individuals.

The script looks for specific keywords like API_KEY or

SECRET within the code, identifying files that may

contain sensitive information.

The script also checks the permissions of critical files

such as .env and config.py. These files often contain

sensitive configuration settings, and it is essential to

ensure that they are not overly permissive. The script

evaluates file permissions and flags any files that are

accessible by unauthorized users, helping

administrators secure these files by adjusting their

permissions.

Risk Assessment and Reporting

Once vulnerabilities and misconfigurations are

identified, the script assigns a risk level to each issue.

For example, hardcoded secrets are typically

classified as high risk, as they can lead to significant

data breaches if exposed. Insecure file permissions

are usually classified as medium risk, as they may

allow unauthorized users to access sensitive

configuration data but do not necessarily guarantee

a full security compromise. The script categorizes the

severity of each issue, making it easier for users to

prioritize remediation efforts based on the potential

impact.

The security auditing script then provides a detailed

report, listing all identified vulnerabilities and

misconfigurations, along with their associated risk

levels. This allows administrators to understand the

current security posture of their system and take

corrective action as necessary.

III. RESULTS AND DISCUSSION

This discussion evaluates the results and implications

of running two Python-based scripts developed for

system monitoring and basic security auditing. These

scripts demonstrate how lightweight, open-source

Python libraries can be leveraged to gather detailed

system diagnostics and identify potential security

issues, such as misconfigurations and outdated or

vulnerable packages.

System Monitoring Script

The first script utilizes the psutil and platform

modules to extract and display a variety of system-

level metrics. The script dynamically checks for and

installs psutil if it’s not already available, ensuring it

can run in environments with minimal setup.

Operating System and Hardware Information

The platform.uname() function is used to extract

basic system information, including:

 System Name: Identifies the operating system

(e.g., Windows, Linux).

 Node Name: The device or hostname.

 Release and Version: Helps determine

compatibility with software or tools.

 Machine Type and Processor Info: Indicates

architecture (e.g., x86_64, ARM) and CPU details.

 These details are important for both

compatibility and audit purposes, especially in

environments where systems vary significantly. It

allows administrators to have a clear record of

what kind of hardware and software their

applications are running on.

Boot Time and Uptime

By using psutil.boot_time(), the script converts the

system’s boot timestamp into a human-readable

 Mrs V.Roopa. International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 67 of 9

format. This tells us when the system was last

restarted. This is useful for understanding how long

a system has been running continuously (uptime),

which can be relevant for performance degradation

assessments, patch cycle planning, and general

maintenance routines.

CPU Information

The script uses several psutil features to report:

Physical and Logical Cores: Helpful for

understanding CPU virtualization.

CPU Frequencies: Shows minimum, maximum, and

current frequencies, allowing for detection of

throttling or frequency scaling.

Per-Core CPU Usage: Essential for identifying

overloaded or underutilized cores.

Total CPU Usage: Gives an overall load snapshot.

These details help in performance analysis. For

instance, if one core is consistently at high usage

while others are idle, it may indicate a single-

threaded application that needs optimization.

Memory Usage Statistics

Using psutil.virtual_memory(), the script reports

 Total RAM

 Used RAM

 Available RAM

 Percentage of RAM in Use

These values are especially important when

evaluating the performance of applications that

consume large amounts of memory or diagnosing

memory leaks.

Disk and Storage Information

Finally, the script uses psutil.disk_partitions() and

psutil.disk_usage() to retrieve disk usage stats:

Total, Used, and Free Disk Space

Disk Usage Percentages per partition

This provides insight into whether storage is nearing

capacity — a critical point in preventing data loss or

downtime due to insufficient space. It gracefully

handles partitions where permission is denied,

ensuring it doesn't crash.

Summary of System Monitoring Script

The script successfully offers a holistic view of system

health and resources. In a production environment,

this can be particularly helpful for setting

performance baselines, conducting pre-deployment

checks, and performing post-incident diagnostics. It

is also a valuable tool for system administrators and

developers who need real-time insights into the

environments their applications run on.

Output:

Security and Vulnerability Auditing Script

The second script is geared towards identifying basic

security flaws and vulnerabilities in a Python

environment. This script is not a substitute for

enterprise-level vulnerability scanners, but it

effectively demonstrates the potential of Python to

assist in security hygiene monitoring.

Package Vulnerability Check

The script checks the environment for known

vulnerable packages. In this case, it looks for

gitpython versions older than 3.1.30, known for

potential remote code execution (RCE)

vulnerabilities. By comparing installed versions using

pkg_resources, the script identifies any packages

that may pose a threat due to unpatched

vulnerabilities. Misconfiguration Detection

The script scans the entire filesystem recursively to

check for common misconfigurations:

Hardcoded Secrets in Python Files: By scanning .py

files for keywords like API_KEY or SECRET, the script

 Mrs V.Roopa. International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 77 of 9

flags locations where sensitive information may be

exposed. Secrets hardcoded in source files can easily

leak through version control or deployment, making

them one of the most dangerous yet common

coding mistakes.

File Permission Issues: Files like .env and config.py,

which typically contain sensitive environment

variables or credentials, are scanned for insecure file

permissions. Permissions such as 777 or 755 can

make these files readable or writable by

unauthorized users.

Risk Assessment Logic

The script uses simple rules to classify findings into:

High Risk: For secrets exposed in code

Medium Risk: For misconfigured permissions

Low Risk: Placeholder for any other minor concerns

While basic, this form of risk classification introduces

security awareness and highlights the importance of

prioritizing remediation steps based on severity.

When run together, these two scripts form a solid

foundation for automated diagnostics and risk

analysis. They are lightweight, easily extendable, and

offer several benefits

Output:

Practical Benefits

1. Improved Visibility: Knowing your system's CPU,

memory, disk usage, and software versions helps

in operational decision-making and capacity

planning.

2. Early Detection of Issues: Detecting secrets and

misconfigurations early in development or

deployment can prevent major security

breaches.

3. Automation-Ready: These scripts can be easily

integrated into DevOps or CI/CD pipelines to

ensure that system state and code security meet

predefined requirements before software moves

through development stages.

4. Learning Tool: These tools are also ideal in

academic or training settings, helping students

understand system internals and secure coding

practices.

Limitations

Despite their usefulness, there are some

limitations to note:

 Static Vulnerability Database: The package check

relies on a hardcoded list of vulnerable

packages. Without integration with CVE feeds or

vulnerability APIs, it will quickly become

outdated.

 Performance Bottleneck: Scanning the entire

filesystem for .py files can be slow and resource-

intensive. Optimizing it to scan only known

source code directories would be more efficient.

 False Positives: Secret detection uses keyword

matching, which may flag non-sensitive

variables. This can result in false alarms.

 Permissions: Certain directories and files may

require elevated privileges to read or scan,

potentially reducing the completeness of the

scan on a restricted user account.

 Opportunities for Enhancement

 To make these scripts more robust and

production-ready, the following improvements

are suggested:

 Configurable Scan Paths: Allow the user to

define which directories to scan for faster and

more relevant results.

 Integration with CVE/NVD Feeds: Automate

vulnerability detection using real-time data from

official security databases.

 Mrs V.Roopa. International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 87 of 9

 Use of Secret Detection Libraries: Integrate with

tools like detect-secrets, truffleHog, or git-

secrets for advanced secret scanning.

 Reporting: Export results in .txt, .json, or .html

formats for audit trails or automated reporting.

 Scheduled Execution: Integrate with task

schedulers like cron or Windows Task Scheduler

for regular scans.

 GUI or Web Interface: Build a dashboard using

Tkinter, Flask, or Streamlit to visualize the results

in real time.

IV. CONCLUSIONS

The system monitoring and security auditing scripts

work together to provide a comprehensive solution

for maintaining both the performance and security

of a system. The system monitoring script helps users

keep track of vital resources, such as CPU, memory,

and storage, ensuring the system runs efficiently. By

offering real-time data on how each of these

resources is being used, it helps identify any

performance issues early on, allowing users to take

corrective action before they become critical.

At the same time, the security auditing script focuses

on identifying vulnerabilities and misconfigurations

within the system. It scans for outdated or vulnerable

software packages, detects hardcoded secrets within

code, and checks for inappropriate file permissions.

This proactive approach to security helps prevent

potential breaches and ensures sensitive information

is protected. By assessing the severity of any

identified issues, it enables users to prioritize

remediation efforts based on the potential risks to

the system.

Together, these scripts form a powerful combination

for ensuring a system remains both efficient and

secure. They can be seamlessly integrated into

regular workflows, whether in a development

environment or a production setup, and help

administrators or developers maintain a healthy and

protected system. Their automation makes them an

invaluable asset in the ever-evolving landscape of

system management.

REFERENCES

1. L. He, D. Li, and C. Shen, "A System Resource

Monitoring Method Based on Data Mining in

Cloud Computing," IEEE Access, vol. 6, pp. 2591–

2601, 2018.

doi: 10.1109/ACCESS.2017.2778047

2. M. Almorsy, J. Grundy, and A. S. Ibrahim,

"Collaboration-Based Cloud Computing Security

Management Framework," 2011 IEEE 4th

International Conference on Cloud Computing,

Washington, DC, USA, 2011, pp. 364–371.

doi: 10.1109/CLOUD.2011.34

3. L. Chen and Y. Ye, "Automated Software

Vulnerability Detection with Machine Learning,"

2018 IEEE 27th International Conference on

Enabling Technologies: Infrastructure for

Collaborative Enterprises (WETICE), Paris, France,

2018, pp. 347–352.

doi: 10.1109/WETICE.2018.00067

4. B. Saltaformaggio, R. Biedermann, X. Zhang, and

D. Xu, "ACDC: An Automatic Cybersecurity Data

Collection Framework for Android Devices,"

2015 IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN), Rio

de Janeiro, Brazil, 2015, pp. 383–394.

doi: 10.1109/DSN.2015.43

5. S. Roy, H. Shirazi, and K. Salah, "A Machine

Learning Approach for Intrusion Detection on

Cloud Virtual Machines," 2018 IEEE International

Conference on Big Data (Big Data), Seattle, WA,

USA, 2018, pp. 2905–2914.

doi: 10.1109/BigData.2018.8621860

6. A. H. Lone and R. B. Mir, "A Comparative Study

of Various Machine Learning Techniques for

Detecting Malicious URLs," 2019 5th

International Conference on Computing

Communication and Automation (ICCCA),

Greater Noida, India, 2019, pp. 1–6.

doi: 10.1109/ICCCA47527.2019.8958656

7. Z. Xiao and Y. Xiao, "Security and Privacy in

Cloud Computing," IEEE Communications

Surveys & Tutorials, vol. 15, no. 2, pp. 843–859,

Second Quarter 2013.

 10.1109/SURV.2012.060912.00182

8. C. Modi, D. Patel, B. Borisaniya, H. Patel, A. Patel,

and M. Rajarajan, "A Survey of Intrusion

Detection Techniques in Cloud," Journal of

 Mrs V.Roopa. International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 97 of 9

Network and Computer Applications, vol. 36, no.

1, pp. 42–57, 2013.

doi: 10.1016/j.jnca.2012.05.003

9. A. H. Sung and S. Mukkamala, "Identifying

Important Features for Intrusion Detection Using

Support Vector Machines and Neural Networks,"

Proceedings of the 2003 Symposium on

Applications and the Internet, Orlando, FL, USA,

2003, pp. 209–216.

doi: 10.1109/SAINT.2003.1183050

10. M. Rouse and D. Pham, "Security Auditing in

Cloud-Based Infrastructures," 2020 IEEE

International Conference on Cloud Engineering

(IC2E), Sydney, Australia, 2020, pp. 71–79.

doi: 10.1109/IC2E48784.2020.00019

