Mrs V.Roopa, 2025, 13:3 International Journal of Science,

ISSN (Online): 2348-4098 Engineering and Technology
ISSN (Print): 2395-4752
An Open Access Journal

Research Article

System core and mesh analyser

Mrs V.Roopa, Hariharan R, Anbarasu P, Eraiamudhan VD.
1. A/P Department of Cyber Security.
2,3,4 UG of Department of Cyber Security.

Abstract- The Python programs serve as comprehensive system diagnostic and security auditing tools. The first script
utilizes the psutil and platform libraries to collect and display detailed system information, including operating
system details, CPU specifications, memory usage, storage data, and boot time. It ensures the required psutil package
is installed dynamically, making the script portable and robust. This tool is useful for monitoring resource usage and
understanding system performance in real time.The second script focuses on basic security auditing and vulnerability
scanning. It checks for the presence of known vulnerable packages (e.g., older versions of gitpython), scans the
filesystem for common misconfigurations such as hardcoded secrets and insecure file permissions, and categorizes
the associated risk levels. Additionally, it ensures that the pkg_resources module is available by managing the
installation or upgrade of setuptools if needed.

Keywords: System Monitoring, Security Audit, Vulnerability, Detection RCE (Remote Code Execution), Hardcoded
Secrets, Python Automation System Info, Python Security Tool

hardcoded secrets within Python files or unsafe
I. INTRODUCTION permissions on sensitive files like .env or config.py. It
flags these issues and classifies them based on their

This project introduces two essential Python scripts fisk level—high, medium, or low—providing clear
aimed at system monitoring and security auditing. 9uidance for remediation. Together, these scripts
The first script is focused on gathering real-time offer a simple but powerful toolkit for maintaining a
system diagnostics using the psutil and platform secure and efficient computing environment. They
libraries. It provides detailed insights into system ¢an be valuable in personal projects, educational
specifications such as CPU usage, core count, Settings, or lightweight DevOps workflows, serving
memory status, disk usage, system boot time, and as a starting point for more advanced monitoring
operating system details. This script is especially and security tools. Their modular design and
useful for developers, administrators, or any users readability make them easy to extend or integrate
who need a quick snapshot of their system's into larger automation frameworks, demonstrating
performance and health. It ensures that the the power and flexibility of Python for real-world
necessary psutil package is available, installing it if System administration tasks. System Monitoring
needed, and handles potential permission errors SCript
gracefully when accessing disk partitions. On the
other hand, the second script targets basic security Overview
checks, helping to identify potential risks in the The first script is a compact, yet powerful tool that
system. It starts by ensuring that setuptools and the helps in understanding how a system is currently
pkg_resources module are installed so that installed performing. Its core functionality is built around
packages and their versions can be properly psutil, a library that allows access to system-level
assessed. It then checks for outdated or vulnerable information in a platform-independent way.
versions of known Python packages (such as Key features of the system monitoring script include:
gitpython), which could be susceptible to Remote
Code Execution (RCE) vulnerabilities. In addition to System Information:
dependency checks, the script also scans the file The script retrieves and displays general system
system for common misconfigurations, such as details such as the operating system name, version,
© 2025 Mrs V.Roopa. This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly credited.

Mrs V.Roopa. International Journal of Science, Engineering and Technology,

2025, 13:3

machine type, processor info, and node (host) name.
This is useful for quickly identifying the environment
the script is running on.

Boot Time:

It reports the last boot time of the machine. This
information can be helpful in determining uptime or
identifying if a system has restarted unexpectedly.

CPU Details:

The script calculates and displays the number of
physical and logical CPU cores. It also reads the CPU
frequency and tracks per-core and total CPU usage.
This is especially useful in environments where
performance bottlenecks may be CPU-related.

Memory Usage:

Memory status is shown, including total, available,
used memory, and the percentage of memory
currently in use. This is critical in assessing whether
the system has enough resources available to run
applications efficiently.

Disk Usage:

It iterates through all disk partitions and provides
data on their total size, used and free space, and
usage percentage. It gracefully handles permission
errors, which can occur if certain partitions are
restricted or system-reserved.

All of this information is gathered and printed in a
human-readable format, making it a handy
diagnostic tool. Whether you're setting up a new
server, troubleshooting an issue, or just curious
about your system’'s performance, this script
provides the snapshot you need.

Security Audit Script Overview

While performance monitoring is important, security
cannot be overlooked—especially in today's threat
landscape. Systems that are not regularly audited
may unknowingly harbor vulnerabilities, either due
to outdated software or poor configuration
practices.

This is where the second script comes in. Its primary
goal is to detect known package vulnerabilities and

unsafe coding or configuration practices, helping the
user proactively identify and mitigate security risks.

Here’s what the script does:

Dependency Check & Auto-install:

Before performing any analysis, the script checks for
the presence of the pkg_resources module, which is
part of setuptools. If it is missing, the script attempts
to install or upgrade setuptools automatically. This
ensures it can safely retrieve version data for
installed Python packages.

Vulnerability Detection:

The script has a built-in dictionary of packages and
their safe version thresholds. For instance, it checks
if an older, vulnerable version of the gitpython
package is installed. If such a package is found, the
script lists it and highlights the risk. This could be
extended to support more packages and integrate
with known vulnerability databases like CVE or PyUp.

Code Misconfiguration Checks:

One of the more advanced features is scanning the
file system (starting at /) for potential
misconfigurations:

Hardcoded Secrets: It looks for keywords like
API_KEY or SECRET in Python source files. These
could represent sensitive credentials that were
accidentally committed to the codebase.

nsecure Permissions: The script checks whether
certain config files, like config.py or .env, are too
permissive (e.g., world-readable or writable), which
could pose a security risk.

Risk Assessment:

For each issue found, the script assigns a risk level—
high, medium, or low—based on the nature of the
problem. This helps prioritize fixes.

Execution Summary:

At the end of its run, the script prints out all findings
along with the time taken to complete the scan. This
makes it easy to integrate into automated
environments or log for future reference.

Scripts Matter

Page 27 of 9

Mrs V.Roopa. International Journal of Science, Engineering and Technology,

2025, 13:3

In modern computing environments, especially
where DevOps practices are prevalent, automation
plays a central role. These scripts, though simple,
reflect the kind of automation that can save time,
reduce errors, and improve security.

From a learning standpoint, they also demonstrate
how powerful Python is for scripting real-world
system tasks. The psutil and subprocess libraries
alone open up a wide range of capabilities, from
monitoring to automated installations and checks.
For anyone managing a Linux server, a cloud VM, or
even a personal development machine, these tools
can provide quick insights and early warnings about
system issues or vulnerabilities.

II. WORKING PROCESS

Working Process of System Monitoring and Security
Auditing Scripts

The system monitoring and security auditing scripts
work synergistically to ensure the health and security
of the system. These scripts are critical for system
administrators, developers, or anyone working with
a Python-based environment, as they provide a
comprehensive approach to both performance and
security analysis. By focusing on key system metrics
and known vulnerabilities, these scripts allow for
easy monitoring and vulnerability management
without requiring heavy third-party tools or complex
configurations. This content delves into the step-by-
step workings of both scripts, explaining the critical
components, their roles, and how they interact with
the underlying system.

System Monitoring
Resource Management
The system monitoring script is designed to provide
real-time data on the various critical resources of a
computer system, ensuring that administrators or
users can make informed decisions when optimizing
their systems for performance or troubleshooting
issues. The core objective of the monitoring script is
to track the health of essential system resources such

Script: Comprehensive

as CPU, memory, storage, and system uptime, which
are the primary indicators of system performance.

Installing Required Libraries

One of the first steps the script takes is checking for
the required library, psutil, which is essential for
retrieving system performance metrics. psutil is a
powerful Python library that can interface with the
underlying system to fetch real-time data about CPU
usage, memory usage, disk usage, and more. If the
library is not installed on the system, the script
automatically handles the installation process via
Python’s package manager, pip. This ensures that the
script is always ready to run, regardless of the
environment, without requiring manual dependency
installation from the user.

Gathering General System Information

Once the required libraries are available, the script
gathers general system information. This includes
the operating system, node name (which refers to
the system’'s hostname), release and version
numbers, machine type, and processor details. This
data is crucial for administrators to get an overview
of the system's architecture, ensuring that it aligns
with the intended usage and configurations. The
system’s name and version are particularly helpful
when determining compatibility with specific tools,
software, or operating environments.

System Uptime and Boot Time

System uptime is a critical aspect of monitoring, as it
provides insight into the last time the system was
rebooted. Knowing the system’s boot time can help
diagnose performance issues, as systems that have
been running for long periods without a reboot may
start showing degradation in performance or
stability. Using psutil, the script retrieves the exact
timestamp when the system was last booted. This
timestamp is converted into a human-readable
format, making it easy for users to understand when
the system was last restarted. This metric can also be
used to correlate system failures or crashes with
uptime, identifying whether the system is running as
expected or if it needs a reboot for optimal
performance.

CPU Usage and Performance Metrics

Page 37 of 9

Mrs V.Roopa. International Journal of Science, Engineering and Technology,

2025, 13:3

One of the most important resources on any system
is the CPU, as it handles all computational tasks. The
script gathers detailed information about the
system’s CPU performance, such as the number of
physical and logical cores. Physical cores refer to the
actual hardware units responsible for processing,
while logical cores account for the CPU’s ability to
perform multiple tasks concurrently via hyper-
threading.

The script also tracks CPU frequencies, reporting the
maximum, minimum, and current operating
frequencies of the CPU. This data helps in identifying
if the system is being throttled or if the CPU is
operating below its expected performance range.
The script provides real-time CPU usage statistics per
core and an overall total CPU usage percentage,
allowing users to see which cores are under load and
how the workload is distributed across them. These
metrics are essential for detecting performance
bottlenecks, high CPU utilization, or identifying if
certain processes are monopolizing system
resources.

Memory Usage Monitoring

Memory usage is another vital system resource that
needs continuous monitoring. The script uses psutil
to retrieve virtual memory data, including total,
available, and used memory. Memory consumption
can impact the overall performance of the system,
particularly in environments running memory-
intensive applications. High memory usage can
cause the system to slow down or even crash if it
runs out of available RAM.

The script presents the memory usage in human-
readable terms such as megabytes (MB), making it
easier to understand and track usage trends over
time. It also calculates and displays the percentage
of memory being utilized. High memory usage may
indicate that certain applications or services are
consuming an abnormal amount of resources, which
may require intervention to ensure smooth system
operation.

Disk Usage and Storage Analysis
Disk storage is a finite resource, and it is crucial to
monitor the available space to avoid system crashes

or performance degradation. The system monitoring
script analyzes all mounted disk partitions and
gathers information such as the total size, used
space, and free space available for each partition. It
also calculates the usage percentage for each
partition, alerting users to partitions that are nearing
full capacity.

Knowing the available storage on critical system
partitions is important, especially for systems
running databases, log files, or applications that
require constant write access. If the disk space
becomes too limited, it can lead to data loss, file
corruption, or system failures. Therefore, this part of
the script ensures that users have the most up-to-
date information about their storage, allowing them
to take proactive measures before running out of
disk space.

Security Auditing Script: Identifying Vulnerabilities
and Misconfigurations

The security auditing script is designed to detect
potential security vulnerabilities in the system'’s
configuration and package dependencies. By
focusing on security risks such as outdated software
versions, misconfigurations, and hardcoded secrets,
this script helps administrators maintain a secure
environment by ensuring that the system is not
susceptible to known vulnerabilities.

Ensuring Necessary Libraries Are Installed

Just as with the system monitoring script, the
security auditing script starts by ensuring that
necessary Python modules are available. One critical
module for this script is pkg_resources, which is part
of the setuptools package. This module is used to
inspect the versions of installed packages. If
pkg_resources is not available, the script
automatically installs or upgrades setuptools,
ensuring that the script can access the required
functionality to perform vulnerability checks.

Vulnerability Scanning of Installed Packages

The script checks for known vulnerabilities in
installed packages by maintaining a list of packages
that are known to have security flaws. For example,
older versions of certain libraries may have security
vulnerabilities that allow attackers to exploit them

Page 47 of 9

Mrs V.Roopa. International Journal of Science, Engineering and Technology,

2025, 13:3

for remote code execution (RCE) or other malicious
activities. The script compares the installed versions
of critical packages with a predefined list of
vulnerable versions, flagging any outdated
packages.

By identifying vulnerable packages, the script helps
administrators take timely action, either by
upgrading the vulnerable packages or by finding
secure alternatives. This proactive approach helps
reduce the system’s exposure to potential security
risks.

Scanning for Misconfigurations and Hardcoded
Secrets

Misconfigurations are a common source of security
breaches, as they can inadvertently expose sensitive
information or grant excessive permissions. The
security auditing script scans the entire file system
for Python files that may contain hardcoded secrets,
such as API keys, passwords, or tokens. These secrets
can easily be exposed in public code repositories or
shared inadvertently with unauthorized individuals.
The script looks for specific keywords like API_KEY or
SECRET within the code, identifying files that may
contain sensitive information.

The script also checks the permissions of critical files
such as .env and config.py. These files often contain
sensitive configuration settings, and it is essential to
ensure that they are not overly permissive. The script
evaluates file permissions and flags any files that are
accessible by unauthorized users, helping
administrators secure these files by adjusting their
permissions.

Risk Assessment and Reporting

Once vulnerabilities and misconfigurations are
identified, the script assigns a risk level to each issue.
For example, hardcoded secrets are typically
classified as high risk, as they can lead to significant
data breaches if exposed. Insecure file permissions
are usually classified as medium risk, as they may
allow unauthorized users to access sensitive
configuration data but do not necessarily guarantee
a full security compromise. The script categorizes the
severity of each issue, making it easier for users to

prioritize remediation efforts based on the potential
impact.

The security auditing script then provides a detailed
report, listing all identified vulnerabilities and
misconfigurations, along with their associated risk
levels. This allows administrators to understand the
current security posture of their system and take
corrective action as necessary.

I1l. RESULTS AND DISCUSSION

This discussion evaluates the results and implications
of running two Python-based scripts developed for
system monitoring and basic security auditing. These
scripts demonstrate how lightweight, open-source
Python libraries can be leveraged to gather detailed
system diagnostics and identify potential security
issues, such as misconfigurations and outdated or
vulnerable packages.

System Monitoring Script

The first script utilizes the psutil and platform
modules to extract and display a variety of system-
level metrics. The script dynamically checks for and
installs psutil if it's not already available, ensuring it
can run in environments with minimal setup.
Operating System and Hardware Information

The platform.uname() function is used to extract
basic system information, including:

e System Name: Identifies the operating system
(e.g., Windows, Linux).

¢ Node Name: The device or hostname.

e Release and Version: Helps
compatibility with software or tools.

e Machine Type and Processor Info: Indicates
architecture (e.g., x86_64, ARM) and CPU details.

e These details are important for both
compatibility and audit purposes, especially in
environments where systems vary significantly. It
allows administrators to have a clear record of
what kind of hardware and software their
applications are running on.

determine

Boot Time and Uptime
By using psutil.boot_time(), the script converts the
system'’s boot timestamp into a human-readable

Page 57 of 9

Mrs V.Roopa. International Journal of Science, Engineering and Technology,

2025, 13:3

format. This tells us when the system was last
restarted. This is useful for understanding how long
a system has been running continuously (uptime),
which can be relevant for performance degradation
assessments, patch cycle planning, and general
maintenance routines.

CPU Information

The script uses several psutil features to report:
Physical and Logical Cores: Helpful for
understanding CPU virtualization.

CPU Frequencies: Shows minimum, maximum, and
current frequencies, allowing for detection of
throttling or frequency scaling.
Per-Core CPU Usage: Essential
overloaded or underutilized cores.
Total CPU Usage: Gives an overall load snapshot.
These details help in performance analysis. For
instance, if one core is consistently at high usage
while others are idle, it may indicate a single-
threaded application that needs optimization.

for identifying

Memory Usage Statistics

Using psutil.virtual_memory(), the script reports
e Total RAM

Used RAM

Available RAM

Percentage of RAM in Use

These values are especially important when
evaluating the performance of applications that
consume large amounts of memory or diagnosing
memory leaks.

Disk and Storage Information
Finally, the script uses psutil.disk_partitions() and
psutil.disk_usage() to retrieve disk usage stats:

Total, Used, and Free Disk Space

Disk Usage Percentages per partition

This provides insight into whether storage is nearing
capacity — a critical point in preventing data loss or
downtime due to insufficient space. It gracefully
handles partitions where permission is denied,
ensuring it doesn't crash.

Summary of System Monitoring Script

The script successfully offers a holistic view of system
health and resources. In a production environment,
this can be particularly helpful for setting
performance baselines, conducting pre-deployment
checks, and performing post-incident diagnostics. It
is also a valuable tool for system administrators and
developers who need real-time insights into the
environments their applications run on.

Security and Vulnerability Auditing Script

The second script is geared towards identifying basic
security flaws and vulnerabilities in a Python
environment. This script is not a substitute for
enterprise-level vulnerability scanners, but it
effectively demonstrates the potential of Python to
assist in security hygiene monitoring.

Package Vulnerability Check

The script checks the environment for known
vulnerable packages. In this case, it looks for
gitpython versions older than 3.1.30, known for
potential remote code execution (RCE)
vulnerabilities. By comparing installed versions using
pkg_resources, the script identifies any packages
that may pose a threat due to unpatched
vulnerabilities. Misconfiguration Detection

The script scans the entire filesystem recursively to
check for common misconfigurations:

Hardcoded Secrets in Python Files: By scanning .py
files for keywords like API_KEY or SECRET, the script

Page 67 of 9

Mrs V.Roopa. International Journal of Science, Engineering and Technology,

2025, 13:3

flags locations where sensitive information may be
exposed. Secrets hardcoded in source files can easily
leak through version control or deployment, making
them one of the most dangerous yet common
coding mistakes.

File Permission Issues: Files like .env and config.py,
which typically contain sensitive environment
variables or credentials, are scanned for insecure file
permissions. Permissions such as 777 or 755 can
make these files readable or writable by
unauthorized users.

Risk Assessment Logic

The script uses simple rules to classify findings into:
High Risk: For secrets exposed in code

Medium Risk: For misconfigured permissions

Low Risk: Placeholder for any other minor concerns
While basic, this form of risk classification introduces
security awareness and highlights the importance of
prioritizing remediation steps based on severity.

When run together, these two scripts form a solid
foundation for automated diagnostics and risk
analysis. They are lightweight, easily extendable, and
offer several benefits

Output:

Practical Benefits

1. Improved Visibility: Knowing your system's CPU,
memory, disk usage, and software versions helps
in operational decision-making and capacity
planning.

2. Early Detection of Issues: Detecting secrets and
misconfigurations early in development or
deployment can prevent major security
breaches.

3. Automation-Ready: These scripts can be easily
integrated into DevOps or CI/CD pipelines to
ensure that system state and code security meet
predefined requirements before software moves
through development stages.

4. Learning Tool: These tools are also ideal in
academic or training settings, helping students
understand system internals and secure coding
practices.

Limitations

Despite their usefulness,

limitations to note:

e Static Vulnerability Database: The package check
relies on a hardcoded list of wvulnerable
packages. Without integration with CVE feeds or
vulnerability APIs, it will quickly become
outdated.

e Performance Bottleneck: Scanning the entire
filesystem for .py files can be slow and resource-
intensive. Optimizing it to scan only known
source code directories would be more efficient.

e False Positives: Secret detection uses keyword
matching, which may flag non-sensitive
variables. This can result in false alarms.

e Permissions: Certain directories and files may
require elevated privileges to read or scan,
potentially reducing the completeness of the
scan on a restricted user account.

e Opportunities for Enhancement

e To make these scripts more robust and
production-ready, the following improvements
are suggested:

e Configurable Scan Paths: Allow the user to
define which directories to scan for faster and
more relevant results.

e Integration with CVE/NVD Feeds: Automate
vulnerability detection using real-time data from
official security databases.

there are some

Page 77 of 9

Mrs V.Roopa. International Journal of Science, Engineering and Technology,

2025, 13:3

e Use of Secret Detection Libraries: Integrate with
tools like detect-secrets, truffleHog, or git-
secrets for advanced secret scanning.

e Reporting: Export results in .txt, json, or .html
formats for audit trails or automated reporting.

e Scheduled Execution: Integrate with task
schedulers like cron or Windows Task Scheduler
for regular scans.

e GUI or Web Interface: Build a dashboard using
Tkinter, Flask, or Streamlit to visualize the results
in real time.

IV. CONCLUSIONS

The system monitoring and security auditing scripts
work together to provide a comprehensive solution
for maintaining both the performance and security
of a system. The system monitoring script helps users
keep track of vital resources, such as CPU, memory,
and storage, ensuring the system runs efficiently. By
offering real-time data on how each of these
resources is being used, it helps identify any
performance issues early on, allowing users to take
corrective action before they become critical.

At the same time, the security auditing script focuses
on identifying vulnerabilities and misconfigurations
within the system. It scans for outdated or vulnerable
software packages, detects hardcoded secrets within
code, and checks for inappropriate file permissions.
This proactive approach to security helps prevent
potential breaches and ensures sensitive information
is protected. By assessing the severity of any
identified issues, it enables users to prioritize
remediation efforts based on the potential risks to
the system.

Together, these scripts form a powerful combination
for ensuring a system remains both efficient and
secure. They can be seamlessly integrated into
regular workflows, whether in a development
environment or a production setup, and help
administrators or developers maintain a healthy and
protected system. Their automation makes them an
invaluable asset in the ever-evolving landscape of
system management.

REFERENCES

L. He, D. Li, and C. Shen, "A System Resource
Monitoring Method Based on Data Mining in
Cloud Computing," IEEE Access, vol. 6, pp. 2591-
2601, 2018.

doi: 10.1109/ACCESS.2017.2778047

M. Almorsy, J. Grundy, and A. S. Ibrahim,
"Collaboration-Based Cloud Computing Security
Management Framework," 2011 |IEEE 4th
International Conference on Cloud Computing,
Washington, DC, USA, 2011, pp. 364-371.

doi: 10.1109/CLOUD.2011.34

L. Chen and Y. Ye, "Automated Software
Vulnerability Detection with Machine Learning,"
2018 IEEE 27th International Conference on
Enabling Technologies: Infrastructure for
Collaborative Enterprises (WETICE), Paris, France,
2018, pp. 347-352.

doi: 10.1109/WETICE.2018.00067

B. Saltaformaggio, R. Biedermann, X. Zhang, and
D. Xu, "ACDC: An Automatic Cybersecurity Data
Collection Framework for Android Devices,"
2015 IEEE/IFIP International Conference on
Dependable Systems and Networks (DSN), Rio
de Janeiro, Brazil, 2015, pp. 383-394.

doi: 10.1109/DSN.2015.43

S. Roy, H. Shirazi, and K. Salah, "A Machine
Learning Approach for Intrusion Detection on
Cloud Virtual Machines," 2018 IEEE International
Conference on Big Data (Big Data), Seattle, WA,
USA, 2018, pp. 2905-2914.

doi: 10.1109/BigData.2018.8621860

A. H. Lone and R. B. Mir, "A Comparative Study
of Various Machine Learning Techniques for
Detecting Malicious URLs," 2019 5th
International Conference on Computing
Communication and Automation (ICCCA),
Greater Noida, India, 2019, pp. 1-6.

doi: 10.1109/ICCCA47527.2019.8958656

Z. Xiao and Y. Xiao, "Security and Privacy in
Cloud Computing,” IEEE Communications
Surveys & Tutorials, vol. 15, no. 2, pp. 843-859,
Second Quarter 2013.
10.1109/SURV.2012.060912.00182

C. Modi, D. Patel, B. Borisaniya, H. Patel, A. Patel,
and M. Rajarajan, "A Survey of Intrusion
Detection Techniques in Cloud," Journal of

Page 87 of 9

Mrs V.Roopa. International Journal of Science, Engineering and Technology,

2025, 13:3

10.

Network and Computer Applications, vol. 36, no.
1, pp. 42-57, 2013.

doi: 10.1016/j.jnca.2012.05.003

A. H. Sung and S. Mukkamala, "Identifying
Important Features for Intrusion Detection Using
Support Vector Machines and Neural Networks,"
Proceedings of the 2003 Symposium on
Applications and the Internet, Orlando, FL, USA,
2003, pp. 209-216.

doi: 10.1109/SAINT.2003.1183050

M. Rouse and D. Pham, "Security Auditing in
Cloud-Based Infrastructures,” 2020 IEEE
International Conference on Cloud Engineering
(IC2E), Sydney, Australia, 2020, pp. 71-79.

doi: 10.1109/1C2E48784.2020.00019

Page 97 of 9

