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I. INTRODUCTION 
 

In the field of quality-of-life technology, we envision 

service robots playing an important role in our daily 

lives. Among the multifaceted roles of autonomous 

robots, one of the most captivating potentials is their 

ability to serve as personal assistants. They have 

been major contributors to enhancing personal care 

assistant tasks. These robots will operate in close 

proximity to human operators, so they must be safe 

and trustworthy. Let us delve into the world of 

autonomous robots as personal assistants and 

explore how they efficiently function in our homes 

and workplaces. 

 

In the modernization of technology, current robots 

equipped with a variety of refined sensors are 

capable of navigation and operation. Robots must 

be capable of making decisions and they learn to 

recognize changes by fixing themselves. Robotic 

systems designed for structured environments,  

 

 

 

including those mounted on wheelchairs and mobile 

companions, are used for personal assistance and 

caregiving tasks, closely interacting with the user 

[21]. 

The Swiss F&P Robot Company has revolutionized 

the nursing industry with the development of Lio, a 

highly advanced artificial intelligence nursing robot 

that emulates various human capabilities. Amid the 

COVID-19 pandemic, Lio was swiftly modified to 

offer extra features like disinfection and monitoring 

body temperature remotely. Lio is fully compliant 

with ISO13482 safety standards, ensuring 

confidently tested and utilized in care facilities [38]. 

In 2007, Waseda University in Japan introduced 

’TWENDYONE,’ a high-tech nursing robot with 13 

sensors in its hand. These sensors include one on its 

fingertips to detect force and others on its palm to 

sense pressure, helping it move precisely and offer a 

more natural, gentle touch with its soft palm. 

Equipped with a high-powered motor in its arm, 

Abstract- An autonomous robot is a of machine equipped with sensors, actuators and processors, that empower it 

to detect its surroundings, handle information, and undertake tasks without human involvement. These robots are 

a demonstration of AI technology, as they depend on machine learning and deep learning algorithms to carry out 

tasks. Personal assistant robots are robots formulated to guide individuals with assorted tasks and activities. From 

automating household activities and repetitive tasks, robots rise above their traditional roles, by serving as 

companions and support systems. In essence, Autonomous robots beckon us forward to be used as personal 

assistant due to their potential to solve daily tasks and enhance productivity with human capabilities. These robots 

aim to strengthen the quality of life by automating regular duties and delivering personalized guidance. By closing 

the divide between humans and machines, this advancement opens up a world of eternal avenues. 
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”TWENDYONE” boasts exceptional power and 

versatility [16]. 

 

The burgeoning field of personal assistant robots 

has indeed seen a significant increase in survey 

papers, yet there remains a gap in comprehensive 

analysis and practical demonstrations of the 

methodologies employed. Recent literature 

indicates a trend towards integrating advanced 

machine learning techniques, such as reinforcement 

learning and artificial neural networks, to enhance 

the capabilities of these robots. Moreover, the 

development of virtual personal assistants (VPAs) 

has been propelled by advancements in computer 

vision, deep learning, speech generation, and 

recognition, aiming to create more natural and 

intuitive user experiences. 

 

Robotics technology has evolved concentrated 

focused on three key areas of development 

generalities stable systems that function in 

structured surroundings, robotic systems mounted 

on wheelchairs, along with mobile companion 

robots able to follow its stoner for particular and care 

operations [21]. 

The initial category of robotic systems includes 

veritably beneficial for individuals requiring backing 

in a confined living space and for a specific range of 

tasks, similar to eating/drinking. The Handy 1 Robot 

Arm serves as a great example of a stationary robotic 

system. It offers an affordable solution for personal 

care and assistance. However, a significant drawback 

of static robotic systems is their limited mobility, 

making it difficult, and sometimes nearly impossible, 

to change their position. Using the robot for tasks 

like eating on a different floor might require 

frequently carrying it up and down stairs and 

manually attaching and detaching it repeatedly! [58]. 

 

The next category of robotic systems is the 

wheelchairmounted type, with the MANUS system 

being a leading example. The robotic arm is 

permanently attached to either the left or right side 

of the wheelchair, which can be inconvenient for 

performing certain tasks. Additionally, this design 

can cause mobility challenges, particularly when 

navigating through doors or stairs. Moreover, the 

cost of these systems is typically quite high. 

The third concept proposes a mobile manipulator 

that trails behind the user’s wheelchair in a 

structured environment. While it shares some of the 

same drawbacks as previous designs, it offers one 

significant benefit: the robot can navigate the area 

independently of both the wheelchair and the user. 

A well-known example of this type of robotic system 

is the KARES II mobile manipulator [2]. 

These studies underscore the importance of not only 

presenting theoretical frameworks but also 

providing empirical evidence and detailed 

illustrations of how these state-ofthe-art techniques 

can address the key challenges faced by personal 

assistant robots. As the technology progresses, 

future survey papers could benefit from a more 

hands-on approach, showcasing real-world 

applications and user evaluations to bridge the gap 

between theory and practice. 

In this paper, we embark on the intricate realms of 

Computer Vision, Voice recognition and generator, 

Gesture Movements, Information retrieval and 

processing, Sensors, autonomous navigation, and 

Interconnectivity or Interoperability with other 

autonomous devices. 

 

II. SYSTEM OVERVIEW 
 

The paper discusses the path planning for personal 

assistant robots which includes Navigation, human-

robot collaboration as gesture recognition 

techniques, Voice recognition to issue commands, 

Sensors that are used to implement and techniques 

behind them and methods of providing data 

essential data to autonomous robots. First, we 

discuss about the navigational framework for 

autonomous personal assistant robots revolves 

around employing Simultaneous Localization and 

Mapping (SLAM) techniques, including LiDAR-based 

SLAM, Visual SLAM (VSLAM), and sensor data fusion, 

to facilitate accurate and efficient navigation to avoid 

obstacles. Through comparison of SLAM methods, 

such as utilizing LiDAR sensors, stereo cameras, and 

inertial measurement units (IMUs), developers can 

ensure optimal performance in various 

environments. Leveraging frameworks like the 

Robotic Operating System (ROS) and algorithms like 

ORB SLAM and RTABMap, these robots can 

effectively navigate and interact with their 
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environment, enhancing their ability to assist users 

in daily tasks. The next section addresses challenges 

such as the communication gap between humans 

and robots and ambiguity in gestures by employing 

vision-based sensors like depth cameras, particularly 

Kinect depth sensors, which offer accuracy and 

robustness in cluttered environments. These sensors 

capture gestures in real time, which are then 

processed using some machine learning algorithms 

such as Hidden Markov Models (HMMs) or 

Convolutional Neural Networks (CNNs).  

 

Next, part of this paper provides a comprehensive 

overview of the sensors and techniques employed in 

autonomous personal assistant robots, focusing on 

their role in navigation, obstacle detection, and 

interaction with the environment. Sensors, including 

LiDAR, RADAR, IMU, Ultrasonic, Camera, Infrared, 

Depth, and Voice Recognition sensors, serve as the 

robot’s sensory apparatus, enabling it to perceive 

and understand its surroundings. Through advanced 

signal processing algorithms and machine learning, 

these sensors contribute to the development of 

autonomous personal assistant robots, enhancing 

their functionality, adaptability, and user interaction 

in various environments. Next, we described about 

the microphone sensors for voice recognition, which 

are used for issuing commands to the robots. 

Methodologically, a dedicated Voice Recognition 

Processor (VRP) combined with a low-power 

microcontroller is employed, allowing recognition of 

a limited number of voices organized under 

directories for efficient control of multiple robots.  

 

The next section explores data loading strategies for 

enhancing the autonomy, accuracy, and 

performance of autonomous robots, with a focus on 

the Reinforcement Learning (RL) framework. RL 

stands for its ability to enable robots to learn and 

interact with their environment without requiring 

extensive labelled data, thus improving time 

efficiency in task accomplishment and decision-

making. Its capability to handle delayed rewards and 

transfer knowledge between related tasks ensures 

sustained benefits and high performance in diverse 

scenarios, such as route planning for personal 

assistant robots. Finally, we conclude this paper by 

providing the techniques which are higher in 

accuracy and efficiency. 

 

III. NAVIGATIONAL FRAMEWORK 

 
Overview 

An autonomous robot can observe its surroundings, 

make judgments, and act accordingly. Autonomous 

personal assistant robots are capable of 

independent decision-making and autonomously 

correcting themselves by taking action. The objective 

of navigation is to guide the rover from a starting 

point to its destination while steering clear of any 

obstacles along the way. In robotics, various 

techniques are used for robot localization and 

navigation. These techniques vary in terms of their 

accuracy, cost, and complexity. The table below will 

compare and contrast several different robot 

localization and navigation techniques. 

 

SLAM Approaches in Navigation 

Using ROS the simulation results of plan generation 

and navigation in an office-like environment can be 

done. 

 

TABLE I NAVIGATION TECHNIQUES FROM VARIOUS ARTICLES 

S.No Method Description Battery 
Consumption Accuracy Rate Cost Execution 

Time Environment 

1 Odometry Uses encoders on wheels to 

track robot movement. Low Low (Drift Errors) Low Fast Indoor, Flat Surfaces 

2 LiDAR SLAM [18] 
Builds a map and localizes 

the robot using a LiDAR 

sensor (laser radar). 
High High (Excellent Obstacle 

Detection) High Moderate Indoor / Outdoor (Lighting 

Dependent) 

3 Camera SLAM [62] Builds a map and localizes the 

robot using a camera. Moderate Moderate (Less accurate 

outdoors / low light) Moderate Moderate Indoor (Well-lit) 

4 Ultrasonic SLAM [9] 
Builds a map and localizes 

the robot using ultrasonic 

sensors. 
Low 

Moderate (Shorter range, less 

complex 
environments) 

Low-Moderate Fast Indoor (Limited Outdoor Use) 
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5 WiFi / Radio 
Fingerprint [20] 

Locates robot in a 

premapped environment 

using signal strength. 
Low Moderate (Reliant on 

PreExisting Map) Low Fast Indoor (Pre-mapped Loca- 
tions) 

6 Visual SLAM [34] 
Builds map and localizes 

using cameras (monocular, 

stereo). 

Moderate-High 

(depends 

processing) 
on Moderate-High (Lighting 

dependent) Moderate Moderate Indoor / Outdoor (Lighting 

Dependent) 

7 MiR Mapping [39]. 
Pre-built map loaded on the 

robot for navigation (Not 

suitable for real-time 

environments) 

Moderate 
(Reliant 
Pre-Existing 
Map) 

on 
Varies (can be expensive) Low Known Static Environment 

8 Dijkstra’s Algorithm [40] Finds the shortest path between 

two points. Moderate  High (Guaranteed Optimal 

Path) Low 
Slow 
(Large 

Maps) 
Static environments 

(Precomputed) 

9 A* Search Algorithm [51] 
Similar to Dijkstra’s with 

heuristic prioritization. Moderate  High (Faster for

 Large Maps) Low Moderate 
Static / Dynamic 

environments 

10 Artificial Potential Fields 

(APF) 
Create a virtual force field 

around obstacles to guide 

the robot. 
Low  Moderate (Can get stuck in 

local minima) Low Fast Dynamic environments 
(obstacle avoidance) 

11 Reactive Control 
Relies on sensors to react to 

immediate surroundings. High  Moderate (Limited Planning 

Ability) Low Very 

Fast 
Dynamic environments 

(simple navigation) 

12 Kalman Filter [62] 
Combines data from 

multiple sensors for 

accuracy/robustness. 

Moderate 

(Dependent on 

sensor usage) 
 High (Reduces Sensor 

Noise) Moderate Moderate Varied (Depends on sensors 

used) 

13 Particle Filter [62] 

Represents the robot’s 

location with a set of 

particles (samples) and 

updates them based on 

sensor data. 

High High (Handles non- 
Gaussian noise well) Moderate Slow Dynamic/Uncertain

 environments 

 

This paper [32] covers the introduction of LiDAR-

based SLAM, Visual-based SLAM, and the combined 

approach. The focus is on achieving three main 

objectives and contributions: 1) creating a 3D 

reconstructed map point cloud using LiDAR sensor 

and RGB-D camera, 2) streamlining the point cloud 

data collection and registration process to enhance 

construction quality and safety while saving time and 

effort, and 3) delivering a high-resolution registered 

RGB-mapped point cloud. 

 

Evaluating Optimal Navigation

 Approaches (Literature Review) 

Simultaneous Localization and Mapping (SLAM) is 

considered the most efficient navigation technique 

due to its ability to seamlessly integrate hardware 

and software components, resulting in superior 

accuracy and ease of implementation. Before opting 

for SLAM, thorough research is conducted on the 

different methods proposed by technical, surveys, 

and empirical evidence presented in various articles 

and papers. By carefully analyzing and comparing 

the benefits and drawbacks of each technique, the 

decision to choose SLAM is made with confidence, 

knowing that it offers the best solution for achieving 

accurate and efficient navigation in various 

environments. 

 

This paper [18] describes the autonomous 

navigation of robots in factory settings using 

minimal sensors and advanced technologies for 

efficient and safe movement. The sensors used in this 

paper are 

 

 Internal Sensors: Inertial Measurement Units 

(IMU) and motor encoders are commonly used 

for internal sensing. 

 External Sensors: Global Navigation Satellite 

System (GNSS) sensors are mentioned as 

external sensors for localization. 

 Camera: Stereo cameras are utilized for visual 

SLAM onboard. 

 LIDAR: 2D LIDAR sensors are evaluated for 

SLAM, but limitations in object detection are 

highlighted. 

 Industry Adaptor: Object recognition and 

augmentation modules are introduced to 

enhance sensor data for SLAM. 

 

The tools used for this technique are the Robotic 

Operating System (ROS) framework and the 
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packages are ORB SLAM and Intel tracking camera 

T265. 

This paper [62] analyzes various LiDAR SLAM 

methods for indoor navigation of autonomous 

vehicles, comparing seven representative methods 

and evaluating them on the same dataset. The 

techniques are Gaussian Filter-Based Solution, 

 

 
Figure 1. Navigation using Slam 

 

Particle Filter-Based Solution, Graph Optimization-

Based Solution, Sparse Pose Adjustment Algorithm, 

CoreSLAM Algorithm, Iterative Closest Point 

Algorithm (ICP), Loop-Closure Mechanism, Bayesian 

Filter. 

 

This paper [34] explained the OpenVSLAM which is 

most suitable for general-purpose service robots, 

ORB-SLAM3 with inertial fusion is also viable, 

RTABMap stable but less accurate. The techniques 

are about to be described here are ORB-SLAM3, 

OpenVSLAM, RTABMap, Kimera and VINS- 

Fusionsupport. 

 

The Simulation and experimental evaluation is done 

and explained in [52]. The Slam technique or method 

is used here for the navigation of the autonomous 

robot. It helps you to experience how to train the 

robot in an unknown environment. 

This paper [32] explains the integration of LiDAR 

Visualbased SLAM for 3D construction navigation 

which gives better accuracy than the others. 

Collaboration of multiple mobile robots and real-life 

applications is suggested for further development. 

Self-tuning Fuzzy-PID controller enhances robot 

navigation accuracy. 

 

Object detection and obstacle avoidance are 

illustrated clearly in [41]. It implements a landmark-

based V-SLAM algorithm using object detection for 

loop closure in industrial environments. This paper 

uses the Utilize YOLOv5 for object detection, Bag-of-

Visual-Words for loop closure, and SURF features for 

frame comparison. 

In summary, SLAM techniques, including LiDAR 

SLAM, VSLAM, and sensor data fusion, play a crucial 

role in enabling autonomous robotic personal 

assistants to navigate and interact with their 

environment effectively. By combining different 

sensing modalities and advanced algorithms, SLAM 

enhances localization accuracy, adaptability, and 

overall performance, making it a fundamental 

technology in robotics applications. 

 

IV. GESTURE RECOGNITION SYSTEM 

 
In the human-robot collaboration, It has been noted 

that the increasing popularity of personal assistant 

robots presents several challenges, one of which is 

security. Another challenge relevant to this paper is 

the communication barrier between robots and 

humans. For robots to effectively work alongside 

people, they need to understand spoken language 

or use gestures to facilitate natural interactions. Their 

reliability has improved thanks to continuous 

progress in programming frameworks, algorithms, 

and the extensive datasets required for these 

models. When it comes to gesture recognition and 

tracking, it’s crucial to select the right combination 

of sensors that can accurately track gestures even in 

challenging conditions like occlusion, low light, and 

ensuring user comfort while using the sensors. 

Gestures can be unclear and not always welldefined. 

For instance, to signal ”stop,” a person might raise a 

hand with the palm facing forward. Like spoken 

language and handwriting, gestures can differ from 

one person to another, and even the same person 

may use different gestures in different situations. The 

interpretation of a gesture can be influenced by 

various factors. 

 

 spatial information: where it occurs; 

 pathic information: the path it takes; 

 symbolic information: the sign it makes; 

 affective information: its emotional quality; 
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Moreover, gestures can be the following types: hand 

and arm gestures, head and face gestures and body 

gestures [36]. 

A. RELATED WORKS 

Recently, several surveys have primarily 

concentrated on general hand gesture recognition 

[10], [36]. Unlike these broader reports on gesture 

recognition, our focus is specifically on some of the 

most significant gesture recognition systems and 

datasets within this field. 

 

The authors of the paper [31] introduced a hand 

gesture recognition system that was specifically 

developed to function effectively in crowded and 

noisy environments. The important feature of their 

system is to modify its height by changing the 

alignment of the torso to enhance its ability to 

interact. They introduced a AI-based gesture 

recognition system which is able to follow human 

commands accurately. 

 

The authors of the paper [7] describe 3D hand 

gesture recognition approaches. The 3-D depth 

recognition can be employed to obtain hand 

contours for reliable hand gesture recognition 

comfortably and efficiently by easily applying 

thresholding to a depth map to separate the hands. 

The authors of the paper [14] developed a a multi-

modal system that integrates inertial and visual data 

to provide Accurate identification of human gestures 

in a typical daily life setting. In this method, data 

regarding movements was gathered using a 

wearable device, even when the individual was 

outside the robot’s optimal field of view. 

The authors of the paper [46] discuss the role of 

gestures in sign language. Signers employ gestures 

to produce signs, which consist of movements, 

shapes, and locations. 

 

Vision Based Gesture recognition 

Vision-based sensors provide a much larger working 

distance when compared to other sensors. Vision-

based gesture recognition systems can be divided 

into two categories. 

 

 The first category is machine learning 

approaches. For a dynamic gesture, by treating 

it as the output of a stochastic sequence, hand 

gesture recognition can be 

TABLE II 

GESTURE RECOGNITION TECHNIQUES FROM VARIOUS SOURCES

 

S.No Dataset used Tools / Techniques Accuracy Description Applications Limitations 

1 Camera 
Sensor [14] 

Support vector machine 
(SVM), Random forest 

(RF), K-Nearest 

Neighbours (KNN) High Basic gesture: 
walking 

photography, 

surveillance and 

security, Medical 

Imaging 

Limited Dynamic Range 

2 Hidden Markov 

model [28] 
Baum-welch 

reestimation algorithm high 
Spatio-temporal 
variability of 
gestures 

Gesture recognition, 

Environmental 

monitoring 
limited memory, overfitting 

3 
Depth 

cameras 

[48] 
Finger-earth Mover’s 

distance (FEMD) High 
hand gesture 

recognition 

using Kinect 

sensors 

gaming, Entertainment, 
Gesture-controlled 

interfaces 
Resolution and Precision, Limited field of 

view 

4 
Inertial

 S

ensor Fusion 

[5] 

Depth motion 

maps(DMM), RGB- 
Depth camera sensor High Wearable 

device 
Motion tracking and 

analysis, wearable 

devices 
Integration errors, Limited dynamic range 

5 
HaGRID 

dataset 
[31] 

convolutional neural 

network(CNN) High Hand 

recognition 
Assistive technology, 

automatic transcription 

services 
limited variability, size and coverage 

6 
Multisensor 

Data Fusion 

[29] 

Ensemble classifiers 

with multisensors high basic gesture 
Gesture, Speech 

recogniton Sensor heterogeneity, privacy and security 
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approached using statistical modeling techniques, 

such as Hidden Markov Models (HMMs) and 

Principal Component Analysis (PCA) [28]. 

 The second category is rule-based methods: 

These approaches involve a collection of 

predefined rules that connect feature inputs, 

making them suitable for both dynamic and 

static gestures [54]. 

As we see, the hand gesture recognition methods 

apply restrictions to the user/surroundings because 

of the constraints of optical sensors due to their 

environmental sensitivity and limited range. To 

enhance hand gesture recognition techniques, a 

practical approach is to utilize additional sensors to 

detect hand gestures and movements. By analyzing 

various papers, we conclude that human gesture 

recognition involves focusing on depth sensors. 

 

TABLE III 

VARIOUS TYPES OF DEPTH SENSORS 

Depth 
Sensor Accuracy Resolution Range 

Microsoft 
KinectV1 

[7] 
High 640 x 480 

pixels 
0.5 to 

4metres 

Microsoft 
Kinect 
V2 [7] 

High 512 x 424 

pixels 
0.5 to 4.5 

metres 

Azure 

kinect [7] High 1024 x 1024 

pixels 
0.5 to 10 

metres 

 

In the table above, we summarized the 

implementation of Kinect depth sensors in personal 

assistant robots which is stated to be accurate, 

efficient and robust to cluttered backgrounds [48]. 

To implement Kinect depth sensors in autonomous 

personal assistant robots, developers would typically 

incorporate the sensors into the robot’s hardware 

architecture and develop software algorithms to 

process the depth data, such as Hidden Markov 

Models (HMMs) or Convolutional Neural Networks 

(CNNs), to perceive and understand the environment 

accu- 

Depth sensor Field ofView  Technology 

Microsoft Kinect V1 57◦ H & 43 ◦ V 

structured 

light(prime 

sense)RGB 

camera 

Microsoft Kinect V2 70◦ H & 60 ◦ V 
Time-

ofFlight(ToF)RGB 

camera 

Azure Kinect 75◦ H & 65◦ V 
Time-

ofFlight(ToF)RGB 

camera 

Figure. 2. SKELETAL JOINTS CAPTURED BY KINECT 

DEPTH SENSORS 

 
 

rately and interact intelligently with the users. 

Additionally, machine learning techniques may be 

employed to enhance the accuracy and robustness 

of these algorithms over time through training with 

real-world data. 

 

V. DATA LOADING STRATEGIES 

 
Data feeding techniques embrace the methods of 

providing essential data to autonomous robots, 

enabling them to perceive, navigate, and interact 

with their environment effectively. Personal Assistant 

robots should have limited cognizance of human 

actions and their appropriate verbal and non-verbal 

behaviours. Interactive Robot Learning deals with 

paradigms allowing a human to enlighten the 

learning process of the robot by providing the 

signals [27]. 

 

TABLE IV DATA FEEDING TECHNIQUES 

S.No Learning 
Technique Description Data 

Requirement Scalability Accuracy Rate Memory Usage Implementation Complexity 

1 
Supervised 

Learning 

[15] 

Learns from labelled 

training data, mapping 

inputs to outputs based on 

example input-output 

pairs. 

Large Limited High High Moderate High 
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2 
Unsupervised 

Learning 

[61] 

Learns from unlabeled 

data to find hidden 

patterns or structures 

within the data 
Varies Scalable Varies Moderate Moderate Moderate 

3 Reinforcement 

Learning [27] 

Learns through trial and 

error by interacting with 

an environment to 

maximize cumulative 

rewards 

Varies Challenging Varies Moderate to high Moderate to high High 

4 Transfer 
Learning [1] 

Utilizes knowledge gained 

from one task to improve 

performance on a related 

task 
Transferable Scalable Varies Moderate Moderate Moderate 

5 Deep Learning 

[43] 

Learns intricate patterns 

from raw data through 

neural networks with 

multiple layers 
Large Scalable High High Moderate to High High 

6 Imitation 
Learning [6] 

Learns by mimicking 

expert behaviour, often 

from demonstrations or 

expert guidance. 
Demonstration Scalable Varies Moderate Moderate Moderate 

 

Innovative robot behavior is achieved by 

 assessing the current status of the human 

collaborator and the environment through real-

time observations, 

 human action estimation given the task 

framework and the sightings, 

 producing robot actions that align with the 

predictions. 

To competently engage humans in refined learning 

methodologies, robots should be granted the ability 

to analyze, model and predict human actions [15]. 

In the table below, the various data-feeding 

techniques utilized in autonomous robots will be 

discussed by highlighting their significance in 

augmenting robot autonomy, accuracy and 

performance. 

The diverse set of humans daily actions can be 

understood and categorized by the robotic systems 

through ML procedures that control the robot’s 

behaviours. 

 

REINFORCEMENT LEARNING FRAMEWORK 

Reinforcement learning does not need tremendous, 

labelled data for learning and learns to engage with 

the environment and the opaque environment. This 

approach does not need tremendous, labelled data 

for learning. RL agent learns to avoid all the static 

obstacles and plan the path efficiently using 

prevalent RL algorithms, Q-learning (QL) and Deep 

QLearning (DQL) for path planning [27]. 

 

RL agents can be made dynamic systematically with 

persistent learning ability by the Transfer Learning 

algorithm. In a league of its own, a reinforcement 

learning agent can be trained with a minimal  

 

dataset. This algorithm uses an agent to learn a task 

by interacting with the environment through its 

actions. Reinforcement learning is based on hit-and-

miss that requires a large amount of engaging data 

[15]. 

 

 
Figure. 3. DATA LOADING FRAMEWORK 

 

EVALUATING THE OPTIMAL APPROACH 

In [15], deep reinforcement learning is used to detect 

the current state of the associate and the 

environment based on current insights and the 

current state of the companion, predicting human 

actions based on the model and the perception, and 

fabricating the appropriate robot actions. This paper 

contributes to enhancing the time efficiency of tasks 

accomplishment in collaboration between the 

human-robot partners. The benefits of this approach 

are enhancing robot action decision-making 

through effective management of the instabilities in 

human action identification, enabling the robot to 

distinguish whether it is ideal or not to take an 

immediate action, and eradicating the need of 
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monotonous manual tagging of human activities by 

directly learning from unprocessed data. 

 

Reinforcement learning learns by interacting with 

their environment and takes in the feedback in the 

guise of returns and reparations whereas the other 

approaches don’t have direct interaction with their 

environment and learn from the labelled and the 

unlabeled data. RL can harness the knowledge 

gained in a particular task to improve performance 

in other related tasks. RL can deal with agents who 

don’t have a sufficient understanding of the 

environmental state. This technique upgrades 

sustained advantages even if the returns are delayed. 

Based on the topological map of different market 

ambiences, the reinforcement learning approach 

learns all the routes for the personal assistant robots 

with an accuracy of over 98% 

[27]. 

 

VI. SENSOR TECHNOLOGIES 

 
This section explores the sensors and techniques 

used in the personal assistant autonomous robot. 

This paper illustrates the various sensors that an 

autonomous robot uses and the techniques behind 

them and also tells about how these technologies 

work and their importance in making personal 

assistant robots by providing insights into their 

applications, functionalities, and advancements. 

A sensor is a device that detects and makes a change 

in the environment which converts them into signals 

or data that are processed by a computer or device 

to gather information about the surroundings. 

Sensors are used everywhere in our daily lives, 

personal assistant robots play a crucial role in 

helping the robots understand the world around 

them. The various sensors used in personal assistant 

robots include LIDAR, RADAR, Camera, Ultrasonic, 

Infrared, IMU sensors etc... [25]. 

 

One of the major challenges in autonomous robots 

is obstacle detection and avoidance. This challenge 

can be overcome through many sensors as 

mentioned above through algorithms. This paper 

[44] provides the future directions in sensor 

Technology for personal assistant autonomous 

robots. 

 

Navigating the Future: Breakthroughs in Sensor 

Technology 

Navigation in the autonomous robot is the most 

challenging task that enables the robot to move 

from one place to another place in its surroundings 

without any human control. To achieve this, robots 

use suitable sensors which act as their eyes and ears 

in the environment. The Sensors include LiDAR, 

RADAR, IMU, Ultrasonic, GPS etc... [18]. The objective 

of navigation is to guide the rover from a starting 

point to its destination while steering clear of any 

obstacles along the way. 

 

 LiDAR (Light Detection And Ranging): The LiDAR 

sensor is a crucial tool for creating detailed 3D 

maps for navigation. Operating within a 

frequency range of 200THz to 600THz, it offers 

high accuracy and precision. However, its cost is 

relatively high, and it requires moderate power. 

Using Time of Flight (TOF) technology, it 

accurately measures distances to obstacles, 

employing the formula distance. 

Distance= (speed of sound * TOF) / 2 [57]. 

The RPLIDAR 360°, for instance, can detect obstacles 

within a 12-meter range with less than 1% error and 

1°accuracy in both distance and angle 

measurements [44]. It’s essential to note that 

sunlight and dust can affect its functionality due to 

sensitivity. The sensor covers a 360°clockwise 

direction and is commonly found in devices like 

Velodyne and Ouster [25]. With a weight ranging 

from 400g to 1kg and dimensions of 19.6mm in 

height and 98.5mm in diameter, it consumes 

between 8 to 30 watts of power [47]. 
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Figure 4. Sensors 

 RADAR (Radio Detection And Ranging): Radar, 

which measures distances using radio waves and 

can operate over both short and long ranges. A 

Long-range radar has a low resolution but it can 

measure speed and detect vehicles and 

obstacles to 200 m away. Example: microwave 

radar at 77 GHz. Short/medium range radar can 

detect velocity and distance with limited 

resolution and long wavelength. 

It is more expensive than some other sensors but 

offers high accuracy and operates within a frequency 

range of 30GHz to 300GHz. Radar is less affected by 

adverse weather conditions such as fog, rain, dust, 

and poor lighting, making it effective even in low 

light or darkness. For example, the TI AWR1843 radar 

sensor has dimensions of 10.4mm by 10.4mm and 

consumes between 1 to 3 watts of power, with a 

maximum consumption of less than 5 watts [25], 

[47]. 

 

 Inertial Measurement Unit (IMU): An Inertial 

Measurement Unit (IMU) is a sensor that tracks 

motion and orientation. It can measure how 

something is oriented, how fast it’s moving, and 

the magnetic field in its environment. IMUs are 

commonly used in navigation systems and for 

controlling movement in various devices. While 

they aren’t always highly accurate, their 

affordability makes them widely used in many 

applications where precise measurements are 

less critical [50]. 

 Ultrasonic Sensor: Ultrasonic sensors which is 

used for navigation operate at high frequencies, 

typically between 40kHz and 70kHz, providing 

high accuracy in measuring distances. They are 

cost-effective and consume low power, making 

them popular for various applications. 

Emitting sound waves above 20kHz, they are 

employed to detect obstacles and prevent collisions. 

While less precise compared to some other sensors, 

ultrasonic sensors are commonly used by brands like 

Bosch and Maxbotix. They are compact, weighing up 

to 14g (occasionally up to 50g), with dimensions 

around 44mm in length, 26mm in width, and 

 

 

TABLE V TYPES OF SENSORS: PROS AND CONS 

S.No Sensor Description Pros Cons frequency 

Range 
Weight 

(g) 
Dimensions 

(mm) 
Power 

consumption 

(W) 
Example 

1 LiDAR 

[25] 
Uses time-of-flight 

to measure distance 

and create 3D maps 
High accuracy 
and precision 

Expensive, 

moderate power 

consumption, 
affected by 

sunlight and 

dust 

200-

600 
THz 

400 - 
1000 19.6(h)*98.5 8 - 30 Velodyne, 

Ouster 

2 Camera 

[44] 

Captures visual 

information about 

obstacles (colour, 

shape, texture) 

Low cost, medium 

power 
consumption 

Low light and 

bright sunlight 

performance 

300-

430 
THz 

SoC Varies 0.8 - 1 Omron, 
Omnivision 

3 
Depth 
Sensing 

Sensor 

[57] 

Captures depth 

using ToF, 

structured light, or 

Stereo vision 

sensor 

Accurate depth 
estimation 

more power and 

storage capacity 

needed 
- SoC Varies - 

Microsoft 
Kinect, Intel, 
Orbbec 
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4 
Ultrasonic 

Sensor 

[47] 
Uses time-of-flight to 

measure distance 
Low cost, low 
power consump- 
tion 

Less precise 40 - 70 
THz 

Upto 
50 

44(l)x26(w) 

x23(d) <1 Bosch, 
Maxbotix 

5 
RADAR 

Sensor 

[50] 
Measures distances 

using radio waves 

Works well 

in low

 light, 

less affected by 

weather 

more expensive 30 - 300 
THz SoC 10.4x10.4 1 - 3 TI 

(AWR1843) 

6 
Infrared 

(IR) 

sensor 

[26] 

Detects infrared 

radiation obstacles 
short range 

detection, low cost 

Limited accuracy 
affected by sun- 
light - Upto 

14 
44(l)x26(w) 

x23(d) Low 
Infrared 
Thermome- 
ter 

7 IMU [17] 
Measures 
orientation, 
acceleration, and 

magnetic field 
Low cost Limited 

accuracy - SoC Varies Low Gyroscope, 
Acceleration 

 

Smart Vision Sensor for Autonomous Robot: 

Vision Sensor is the advanced computer vision 

technology in personal assistant robots to enhance 

their ability to see, understand, and interact with 

their surroundings. 

 

Voice Recognition Sensor: 

 Microphone Sensor : 

 Camera Sensor: Camera sensors, essential for 

capturing detailed visual information about 

obstacles, operate in the 300 GHz to 430 THz 

range (logarithmic values 11.48 to 14.63) and 

convert light into electrical signals using an array 

of photodetectors. They include monochrome, 

colour, RGB and Stereo vision sensor types: 

monochrome sensors capture light intensity 

with high sensitivity and low cost but no colour 

information; colour sensors provide detailed 

colour accuracy but are more expensive and 

power-intensive. 

These sensors face challenges in low light and bright 

sunlight conditions, with typical power consumption 

ranging from 0.8W to 1W and dimensions of 14mm 

x 18mm x 8.93mm (or 7.3mm x 7.8mm). Examples 

include the Omron thermal sensor and Omnivision 

OV10625, demonstrating their critical role in 

recognition, tracking, and navigation applications 

[25], [47]. 

 Infrared Sensor (IR) : Infrared sensors are used 

to detect obstacles by sensing infrared radiation. 

They are suitable for short-range detection and 

are known for being low-cost. However, their 

accuracy is limited and can be significantly 

affected by infrared radiation from sunlight, 

which can interfere with their readings and 

reduce their effectiveness. 

 Depth Sensor : Depth sensing sensors use 

technologies like time-of-flight (ToF), structured 

light, or stereo vision to capture precise depth 

information, often accurate to the millimetre. 

These sensors are crucial for applications like 

mapping, object recognition, obstacle detection, 

and gesture recognition. 

 

 

An example is the Microsoft Kinect, which uses 

structured light technology for depth sensing and 

skeletal tracking, enabling gesture-based 

interactions such as control and command 

activation. ToF cameras, produced by manufacturers 

like Intel, Orbbec, and Occipital, are also widely used 

for their accurate depth estimation capabilities [8], 

[17], [26], [55]. 

 

Microphone sensors play a pivotal role in voice 

recognition systems, converting sound waves into 

electrical signals for processing. They are integral 

components in various applications such as virtual 

assistants, speech-to-text software, and smart home 

devices. These sensors are optimized for clear and 

accurate audio capture, often featuring noise 

cancellation and directionality to enhance 

performance. 

 

Knowles microphone solutions tailored for voice 

recognition. With advanced signal processing 

algorithms and machine learning, these sensors 

deliver high accuracy in voice recognition tasks, even 

in noisy environments. Their compact size and low 
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power consumption make them ideal for integration 

into consumer electronics and IoT devices, driving 

the adoption of voice-controlled technologies [60]. 

 

VII. VOICE-CONTROLLED ROBOTIC 

SYSTEMS 

 
This method allows for more intuitive and natural 

control over the robot’s movements, making it easier 

for users to manipulate the robot to perform specific 

tasks. In addition to verbal interaction, other 

methods such as gesture control, brain-computer 

interfaces, and haptic feedback have also been 

developed to enhance the control of robots. These 

advancements in robotics control have opened up 

new possibilities for applications in various 

industries, such as manufacturing, healthcare, and 

entertainment. 

As technology continues to evolve, we can expect 

even more innovative and effective methods of 

controlling robots to be introduced in the future. The 

voice-activated robot featured in this paper marks a 

notable technological progression, as it not only 

obeys voice instructions but also engages with the 

user through a variety of outlined methods in this 

section. 

This paper [12] illustrates the document mentions 

successful tests but does not provide detailed results 

in the excerpt provided. The system is designed to 

control multiple autonomous robots using voice 

commands. A voice command system for three 

autonomous robots was implemented. Commands 

were selected from French words.  

 

Components and Technical 

Details

 

Figure. 6. VOICE RECOGNITION SYSTEM 
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An Intelligent Personal Assistant (IPA) capable of 

performing various tasks, such as moving objects 

and providing information from the internet 

proposed by the paper [23]. This document reviews 

prior research on face, object, and speech 

recognition technologies used in robotics. It 

mentions various approaches and methods, 

including the AdaBoost algorithm for face detection 

and the use of Mel Frequency Cepstrum Coefficient 

(MFCC) and Dynamic Time Warping (DTW) for voice 

recognition. The hardware section describes the 

components used in the robot including: Raspberry 

Pi and Pi CameraMotor Driver (L298N). The 

architecture involves using Raspberry Pi to process 

images and voice commands, controlling the 

motors, and providing output. It integrates various 

technologies like speech recognition, text detection, 

and motor control to create an interactive and 

functional robotic assistant. 

VIII. A RISE OF VISION-BASED ROBOTICS 

The field of robotics is undergoing a dramatic 

transformation fueled by advancements in computer 

vision. This technology, which equips robots with the 

ability to ”see” and interpret their surroundings, is 

unlocking a new era of automation and efficiency 

across various sectors. One of the most exciting 

applications lies in autonomous manufacturing. 

 

A novel vision-based robotic recognition method 

has been developed, merging image processing with 

scene text recognition. This approach goes beyond 

simply identifying objects; it can decipher text 

displayed on machinery, such as a CNC machine’s 

status message. This breakthrough has the potential 

to revolutionize factory floors by enabling robots to 

not only locate equipment but also understand its 

real-time operational state. The implications are 

significant: improved accuracy, enhanced efficiency, 

and the potential for truly autonomous operations 

[22]. 

 

Beyond manufacturing, vision-based technology is 

transforming agriculture. The Autonomous AGRIBOT 

exemplifies this shift. Equipped with low-cost 

sensors and powerful processors, this innovation 

navigates fields with precision, autonomously 

sowing seeds. By leveraging advanced techniques 

like edge detection and coordinate conversion, the 

AGRIBOT ensures seamless seed placement, marking 

a significant leap forward in agricultural efficiency 

[49]. 

 

Similar advancements are taking place in the realm 

of quadruped robots. Computer vision-based 

navigation is empowering these agile machines, as 

seen with the HyQReal robot. This innovation 

facilitates precise waypoint generation, enabling 

robots to perform automated tasks with remarkable 

accuracy. The future holds promise for even greater 

refinement, with efforts underway to improve 

grapevine detection and integrate navigation with 

manipulation arms for tasks like autonomous winter 

pruning [35]. 

 

The impact of vision-based technology extends 

beyond specific applications. It represents a 

fundamental shift in how robots perceive and 

interact with the world. Take face recognition, a key 

application of computer vision. This technology finds 

use in everything from surveillance systems to user 

interaction, as exemplified by systems like Hobbit 

and SyPEHUL. These systems showcase the versatility 

of vision-based solutions in driving the development 

of intelligent robotic technologies [60]. 

 

Finally, the importance of vision and perception 

cannot be overstated for effective industrial robot 

utilization. Studies have confirmed the exceptional 

navigation capabilities of vision-equipped 

Automated Guided Vehicles (AGVs) within industrial 

settings. Omnidirectional mobility is crucial for 

navigating tight spaces, while robust vision systems 

are essential for adapting to dynamic environments 

and overcoming challenges like low-textured 

surfaces [42]. 

In conclusion, the integration of vision technology 

marks a turning point in robotics. From 

revolutionizing manufacturing and agriculture to 

enabling advanced navigation and interaction 

capabilities, this technology is paving the way for a 

future where robots seamlessly integrate into our 

world, performing tasks with ever-increasing 

autonomy and intelligence. 

 

IX. AUTONOMOUS DEVICE 

INTERACTION 
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IoT applications heavily rely on sensing-enabled 

devices for data collection, communication, and 

decision-making, facilitated by wireless networks 

ensuring robust operations and wide coverage with 

high energy efficiency. Cellular networks have 

adapted to the demands of autonomous devices 

through multi-connectivity frameworks, enabling 

customized aggregation [24]. 

 

Emerging techniques like Device-to-Device (D2D) 

communication address rising mobile traffic, 

leveraging deep learning for optimization. D2D 

networks promise enhanced spectral efficiency and 

increased mobile network capacity within limited 

radio frequencies. Cooperative localization enhances 

robot performance by sharing observations and 

improving spatial awareness collectively. Radio 

waves remain the primary medium for seamless data 

transmission among IoT devices and vehicles. These 

advancements in wireless technology promise 

solutions for connectivity and data traffic challenges 

in IoT and mobile communication [53]. 

 

SATELLITE BASED CONNECTIVITY SYSTEM 

Satellite communication empowers off-site control, 

allowing operators to manage robots from afar, vital 

for space exploration, deep-sea expeditions, and 

disaster response. Secondly, real-time data 

transmission from the robot’s sensors and cameras 

facilitates immediate analysis and informed 

decision-making by operators. Satellite 

communication offers global coverage, ensuring 

robots can operate anywhere without relying on 

ground infrastructure, and its endurance proves 

invaluable in disaster-prone regions. Advanced 

robots utilize satellite data like GPS for autonomous 

navigation, which is crucial in navigating unreliable 

or challenging environments. Moreover, 

interoperability facilitated by satellite 

communication fosters collaboration between 

different robots, enhancing overall efficiency and 

effectiveness. This communication backbone 

extends the robot’s reach to remote and inaccessible 

areas, ensuring continuous communication even in 

adverse conditions. Overall, satellite communication 

significantly amplifies robots effectiveness in various 

applications, enabling them to tackle missions that 

would otherwise be impractical or impossible [4]. 

 

 
Figure. 7. INTER ROBOT COMMUNICATION 

 

OPTIMIZATION ANALYSIS 

Satellite communication offers robots incomparable 

advantages, ensuring connectivity even in remote 

areas and hazardous environments. Reliability is 

reinforced by redundant infrastructure and error 

correction techniques. Scalability allows numerous 

robots to be integrated simultaneously. Realtime 

communication empowers swift decision-making 

and dynamic monitoring. Autonomous navigation 

benefits from 

 

TABLE VI INTER-ROBOT COMMUNICATION TECHNIQUES 

S.No Technique Description Accuracy Range Environment Complexity Tools required 

1 
Acoustic 
Communication 
[3] 

Relies on sound waves to 

transmit data between 

robots, suitable for 

underwater or noisy 

environments 

Moderate 

to High 
Short to 

Medium 

Ideal for underwater 

communication and noisy 

environments where other 

methods may fail 
Moderate 

Hydrophones, 

transducers, 

acoustic modems 

2 
Infrared 
Communication 
[56] 

Utilizes infrared light to 

transmit data between 

robots, often in shortrange 

applications 
Moderate Short 

Suitable for short-range 

applications and indoor 

environments with clear 

line-of-sight 

communication 

Low to Moderate 
Infrared 

transceivers, line-

of-sight alignment 

3 
Optical 
Communication 
[19] 

Uses light signals, such as 

lasers or LEDs, for high-

speed data transmission 

between robots 
High Short to 

Medium 

Suitable for short-range 

applications where lineof-

sight communication is 
feasible 

Moderate to high 

Optical 

transceivers, lasers, 

photodiodes 
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4 
RFID 
Communication 
[30] 

Utilizes radio frequency 

identification tags and 

readers to exchange data 
between robots 

Moderate Short to 

Medium 

Ideal for short-range 

identification and tracking 

applications within 
controlled environments 

Low to Moderate RFID tags, readers, 

protocols 

5 
Satellite 
Communication 
[11] 

Utilizes satellite networks 
to enable communication 

between robots across 
large distances 

High Long to 
Global 

Suitable for long-distance 

communication where 

terrestrial infrastructure is 

unavailable or impractical 
High 

Satellite terminals, 

ground stations, 

antennas 

6 
Ultrasonic 
Communication 
[13] 

Utilizes ultrasonic waves 

for communication, often 

used in localization and 

navigation systems for 

robots 

Low to 
Moder- 
ate 

Short to 

Medium 

Ideal for indoor 

environments where other 

methods may suffer from 

interference or signal 

degradation 

Low to Moderate 
Ultrasonic 

transducers, signal 

processing tools 

7 
Wired 
Communication 
[37] 

Employs cables or wires to 
establish connections 
between robots, ensuring 
reliable and secure data 
transmission 

High Short to 

Medium 

Ideal for controlled 

environments where 

mobility is not a primary 

concern 
Moderate 

Cables, connectors, 

networking 

hardware 

8 
Wireless 
Communication 
[33] 

Utilizes radio frequencies, 

Bluetooth, or Wi-Fi to 

transmit data between 
robots 

Moderate 

to High 
Short to 

Medium 

Suitable for indoor and 

open environments. Not 

ideal for highly congested 

or noisy environments 
Moderate 

RF

 modu

les, antennas, 

network protocol 

 

precise GPS-based positioning, enabling accurate 

movement. Security features, including encryption, 

safeguard sensitive data transmission. Long-range 

communication facilitates connectivity with distant 

bases for extensive missions. The Satellite system’s 

endurance to impediment ensures reliable 

communication in challenging environments. These 

advantages establish satellite communication as 

indispensable for robots across diverse domains, 

enhancing their effectiveness and robustness [59]. 

 

X. CONCLUSION 

 
In conclusion, this survey paper has explored the 

overview of personal assistant robots by analysing 

various articles that were published within the last 

ten years has been reviewed. It compares and 

contrasts various tools and techniques by analysing 

various data sources and data acquisition systems 

for the implementation of personal assistant robots 

by demonstrating the accuracy, efficiency and 

effectiveness of the technique. Autonomous 

personal assistant robots represent a promising 

frontier in technology, poised to revolutionize daily 

life by flawlessly combining into households and 

workplaces. The advancement in this technology 

presents a promising future where technology 

seamlessly integrates into daily life to enhance 

productivity, convenience, and accessibility. From 

managing our schedules and tasks to providing 

companionship and entertainment, autonomous 

personal assistant robots have the potential to 

become necessary allies in navigating the 

complexities of modern life. As we continue to refine 

their capabilities and address challenges, we clear 

the path for a future where autonomous personal 

assistant robots become trusted  

 

companions, enhancing our lives in ways we’ve only 

begun to imagine 
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