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I. INTRODUCTION 

 
The rapid advancement of deepfake technology has 

blurred the line between authentic and manipulated 

media, posing serious risks to privacy, security, and 

the integrity of information. PixelProof is an AI-

powered system designed to counter these 

challenges by detecting deepfake and forged 

content in images and videos. Utilizing state-of- 

 

the-art machine learning and computer vision 

techniques, it identifies subtle inconsistencies and 

artifacts, such as pixel anomalies and temporal 

mismatches, that reveal tampering. By empowering 

users with reliable tools for content verification, 

PixelProof aims to restore trust and ensure the 

authenticity of digital media in an increasingly 

manipulated digital landscape.  

 

 

Abstract- Deepfake videos are getting much better and appearing more often. This makes it hard to know 

what's real online and can cause problems for trust. To help with this, our project looked at how to change 

and improve a type of AI (called a Convolutional Neural Network, or CNN) to spot deepfakes in individual 

pictures (frames) from a video. We started with an AI model called EfficientNetB0 that was already trained on 

many different images. Then, we trained it more using special sets of real and fake video frames that we 

prepared. During this extra training, we used methods like 'data augmentation' (creating more varied training 

images from the ones we have) and adjusted the 'learning rate' (how fast the AI learns) to make it work better. 

These steps also helped fix issues like 'overfitting,' which happens when the AI learns the training data too 

specifically and doesn't do well on new, unseen data. Our work showed that the AI model could learn to work 

with these video frames. At first, we faced some challenges like overfitting. However, using the improved data 

augmentation and changing the learning rate during training helped make the model more stable and perform 

better on our test set of video frames. The model achieved a score (AUC) of about 0.72, showing it had a fair 

ability to tell the difference between real and fake frames. This project shows that it's tricky to make deepfake 

detectors trained on still pictures work well for videos, and it takes several steps of trying things out and 

making improvements. We learned some useful ways to make these models better, and this work can be a 

starting point for creating even better deepfake video detectors in the future. 

 

Keywords- Deepfake videosAI trust issues, Convolutional Neural Network (CNN), EfficientNetB0 Transfer 

learning Video frame, classification Data augmentation, Learning rate adjustment,Overfitting, Model stability, 

Generalization. 
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         II.   RELATED WORKS 

 
FaceForensics : 

It is a comprehensive dataset designed to facilitate 

the training and evaluation of deepfake detection 

models. It comprises over 1,000 high-resolution 

videos manipulated using four state-of-the-art face 

forgery methods: FaceSwap, Face2Face, DeepFakes, 

and NeuralTextures. The dataset includes three levels 

of compression (high, medium, and low) to simulate 

real-world scenarios where videos may be degraded 

by platforms like social media.  

  
XceptionNet :  
It is a deep convolutional neural network initially 

developed for image classification but later adapted 

for deepfake detection tasks. It uses depthwise 

separable convolutions, a technique that 

significantly reduces the number of parameters and 

computational cost compared to traditional 

convolutional layers.  

  
GAN Fingerprints Analysis : 

Generative Adversarial Networks (GANs) are the 

backbone of many deepfake generation techniques. 

These networks consist of two components: a 

generator that creates fake content and a 

discriminator that evaluates the authenticity of the 

content. Over time, GANs introduce unique 

"fingerprints" or patterns into the generated media 

due to the specific ways in which the networks learn 

to create realistic content. These fingerprints can 

manifest in various forms, such as pixel-level 

artifacts, unnatural textures, or discrepancies in 

lighting and shadows. 
 

 

III.  THE PROPOSED SYSTEM 

 
i. System Architecture  

PixelProof is designed to detect deepfake content in 

images or videos using AI and machine learning 

techniques. Here's an outline of its system 

architecture:  

 

 

 

Data Input Layer  

This layer is responsible for receiving the input to be 

analyzed. It accepts either individual images (e.g., 

JPG, PNG) or video files (e.g., MP4) provided by the 

user. (For the model's training phase, data was 

sourced from public image datasets like rvf10k and 

custom-collected real/fake videos from which 

frames were extracted).  

 

Preprocessing Layer  

This layer prepares the input data for the detection 

model.  

• For Videos: The system first extracts 

individual frames from the input video.  

• For Images/Frames: Each image or 

extracted   frame is resized to a standard 

size. Images/frames are then converted into 

numerical arrays. Pixel values are 

maintained in the [0, 255] range, consistent 

with the model's training data.   

 

Deepfake Detection Core  

• Model: The core of the detection system 

employs a fine-tuned EfficientNetB0 

convolutional neural network. This model 

was initially pre-trained on a 

broad image dataset and subsequently 

fine-tuned specifically on a custom dataset 

comprising real and synthetically generated 

deepfake video frames. 

• Detection Process: The preprocessed image 

or frame is fed to this fine-tuned model. 

The model then classifies the input as "real" 

or "fake," outputting a prediction score 

(probability) that indicates its confidence. 

 

Post-processing & Aggregation Layer (Primarily    

for Video Inputs)  

• For Single Images: The classification ("real" 

or "fake") from the Detection Core is 

treated as the final result for the input 

image.  

• For Videos: The system collects the "real" or 

"fake" classifications for each processed 

frame. An aggregation strategy (e.g., 

determining if a majority of frames are 

classified as "fake," or if the count of "fake" 

frames exceeds a certain threshold) is then 
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applied to derive an overall classification 

for the entire video.  

 

User Interface (UI) & Interaction Layer  

• Interface: A web-based application 

developed using Streamlit provides an 

accessible and user-friendly frontend.  

• Interaction: Users can upload an image or 

video file through this interface.  

• Results Display: The final "real" or "fake" 

classification for the submitted content is 

presented to the user in a clear and 

understandable manner. 

 

Flow Chart 

 

 

ii. Data Collection and Dataset Creation  

PixelProof's model development involved two key 

datasets: one for initial image-based training and a 

second, custom-created set of video frames for fine-

tuning and evaluation.  

 

Initial Image Training Dataset: The EfficientNetB0 

model was first trained using rvf10k, a public Kaggle 

dataset. This dataset comprises 10,000 balanced still 

images of real and deepfake faces, structured into 

train and valid sets, providing a foundational model 

for detecting deepfake characteristics in static 

images.  

 

Video Frame Dataset: For video-specific 

adaptation, a custom dataset was created by 

extracting frames from real and fake videos using 

OpenCV, with every 60th frame selected. These 

frames were organized into:  

 

• Training set: 37,429 real and 37,429 fake 

frames. 

• Validation set: 7,195 real and 7,195 fake frames. 

All frames were 224x224 pixel PNG files, labeled 

based on source video authenticity. This dataset 

was essential for fine-tuning the model for 

video deepfake nuances and for performance 

evaluation.  

 

iii.  Model Training and Optimization  

PixelProof's core EfficientNetB0 model was 

developed through a two-stage process using the 

TensorFlow and Keras frameworks: initial training 

on still images, followed by fine-tuning on video 

frames.  

 

Initial  Image-Based Model Training:  

The EfficientNetB0 model, pre-trained on ImageNet, 

was first adapted for still image deepfake detection 

using the rvf10k dataset. The process involved:  

• Adding a custom classification head 

(GlobalAveragePooling2D, Dropout 0.2, and a 

final Dense sigmoid layer).  

• An initial training phase with the EfficientNetB0 

base layers frozen, using an Adam optimizer 

(e.g., learning rate 0.001) and 

BinaryCrossentropy loss.  
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• A subsequent fine-tuning stage where deeper 

layers of EfficientNetB0 (from layer 200 onwards) 

were unfrozen and trained with a much lower 

learning rate to refine weights.  

 

Video Frame Fine-Tuning: 

The image-trained model was then further fine-

tuned for video frame analysis using the custom 

dataset (approx. 75k training, 14k validation frames, 

224x224 pixels). Key aspects included:  

• Loading the fine tuned image model 

• Applying data augmentation techniques        

specifically for video frames (RandomFlip, 

RandomRotation, RandomZoom, 

RandomContrast, 

• RandomBrightness) to the training set to 

improve generalization and combat overfitting. 

• Employing an Adam optimizer with a low initial 

learning rate and a ReduceLRonPlateau callback 

(monitoring val_loss, factor 0.2, patience 2) for 

dynamic learning rate adjustment. 

• Using Early Stopping) and ModelCheckpoint to 

save the best performing model based on 

validation loss. These strategies were crucial for 

adapting the model to video data and mitigating 

overfitting observed in training history. 

 

iv. User Interface and Interaction Design  

PixelProof utilizes a web-based Graphical User 

Interface (GUI) built with Streamlit to provide an 

accessible way for users to interact with the deepfake 

detection model. Streamlit was selected for its rapid 

development capabilities with Python.  

The user interaction workflow is designed for 

simplicity:  

 

Input Submission: The user accesses the Streamlit 

application and is presented with a file uploader. 

They can select and upload either a single image 

(e.g., JPG, PNG) or a video file (e.g., MP4).  

 

Processing Trigger: Upon file submission and 

typically by clicking an "Analyze" button, the 

backend Python logic integrated within the Streamlit 

application is initiated.  

 

 

 Backend Operations:  

• The system loads the fine-tuned fine tuned 

video model.  

• For an image input: The image is 

preprocessed (resized to 224x224 pixels, pixel 

values [0, 255]).  

• For a video input: Frames are extracted using 

OpenCV. Each relevant frame then undergoes 

the same preprocessing (resize to 224x224, 

pixel values [0, 255]).  

• The model performs inference on the                                            

preprocessed image(s)/frame(s).  

• For video input: Predictions from individual 

frames are aggregated (e.g., via majority vote 

or thresholding) to form a single classification 

for the entire video.  

 

 Result Display: The final detection result ("REAL" 

or "FAKE") for the submitted image or video is then 

clearly presented to the user within the Streamlit 

interface.  

 

This design ensures that users can easily submit 

content for analysis and receive a straightforward 

deepfake detection outcome.  

  

IV. CONCLUSION 

 
This project, PixelProof, aimed to adapt and evaluate 

a deep learning model, specifically EfficientNetB0, 

for detecting deepfakes in both images and videos. 

The methodology involved initial training on an 

image dataset, followed by specialized fine-tuning 

on custom video frames, incorporating data 

augmentation and learning rate optimization.  

 

PixelProof demonstrated the capability to learn 

distinguishing features between real and 

manipulated content. The fine-tuning process, while 

revealing challenges such as overfitting, provided 

valuable insights into strategies for adapting image-

centric models to video data. A user interface was 

also conceptualized to illustrate the system's 

practical application.  

Limitations noted offer clear directions for future 

work, including the exploration of temporal 

information in videos, advanced regularization 

techniques, and further expansion of training data 

diversity. This research contributes to the practical 



 Prof.Rinku Badgujar.  International Journal of Science, Engineering and Technology, 

 2025, 13:3 

 

5 

 

 

understanding of building deepfake detectors and 

underscores the iterative efforts required to enhance 

their effectiveness against evolving manipulated 

media.  

 

V. CHALLENGES AND LIMITATIONS 
 

Throughout the development and evaluation of the 

PixelProof system, several challenges were 

encountered, highlighting practical considerations in 

deepfake detection research:  

 

Environment Configuration: Establishing a stable 

and compatible GPU-accelerated deep learning 

environment using WSL2, NVIDIA drivers, CUDA, and 

cuDNN presented initial setup complexities due to 

strict version dependencies required by TensorFlow.  

 

Video Data Diversity and Volume: Acquiring and 

curating a sufficiently large and diverse dataset of 

video deepfakes, representing various manipulation 

techniques, proved challenging for the video frame 

fine-tuning stage. The model's generalization 

capability is often linked to the breadth of examples 

seen during training.  

 

Overfitting During Fine-Tuning: The 

EfficientNetB0 model, when fine-tuned on the 

custom video frame dataset, exhibited a tendency to 

overfit the training data. While strategies like data 

augmentation and learning rate scheduling were 

implemented and provided some mitigation, 

effectively managing overfitting to achieve higher 

validation scores remained a persistent challenge. 

  

Computational Resources: The fine-tuning process, 

particularly with data augmentation and numerous 

video frames, was computationally intensive and 

required significant time, even with GPU 

acceleration, underscoring the resource demands of 

deep learning projects.  

 

Achieving High Detection Accuracy: The final 

validation accuracy (approximately 63-69%) 

indicates that while the model learned to distinguish 

deepfake frames, significant scope for improvement 

exists. Adapting an image-centric CNN to the 

nuances of video, using a frame-by-frame approach, 

without explicit temporal modeling, presented 

inherent limitations.  

 

Generalization to Unseen Deepfakes: While not 

exhaustively tested within the scope of this project, 

the general challenge of deepfake detectors 

struggling with novel manipulation techniques not 

encountered during training is an implicit limitation 

to consider.  

RESULTS 

 
The system was tested with various types of images 

and network conditions. The results showed that the 

system could successfully encrypt and decrypt 

images without any loss of quality. Furthermore, the 

system proved to be secure against common attacks 

such as eavesdropping and man-in-the-middle 

attacks. 

 

 

 

 

 

 

 

 

 

 

 

 

 


