
Prof.Rinku Badgujar, 2025, 13:3

ISSN (Online): 2348-4098

ISSN (Print): 2395-4752

© 2025 Prof.Rinku Badgujar. This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly credited.

International Journal of Science,
Engineering and Technology

An Open Access Journal

Pixelproof : Uncovering The Truth In Images
Prof. Rinku Badgujar ,Nagesh Kannure , Shriyog Borse

Department Of Computer Science And Engineering MIT School Of Computing Pune, India

I. INTRODUCTION

The rapid advancement of deepfake technology has

blurred the line between authentic and manipulated

media, posing serious risks to privacy, security, and

the integrity of information. PixelProof is an AI-

powered system designed to counter these

challenges by detecting deepfake and forged

content in images and videos. Utilizing state-of-

the-art machine learning and computer vision

techniques, it identifies subtle inconsistencies and

artifacts, such as pixel anomalies and temporal

mismatches, that reveal tampering. By empowering

users with reliable tools for content verification,

PixelProof aims to restore trust and ensure the

authenticity of digital media in an increasingly

manipulated digital landscape.

Abstract- Deepfake videos are getting much better and appearing more often. This makes it hard to know

what's real online and can cause problems for trust. To help with this, our project looked at how to change

and improve a type of AI (called a Convolutional Neural Network, or CNN) to spot deepfakes in individual

pictures (frames) from a video. We started with an AI model called EfficientNetB0 that was already trained on

many different images. Then, we trained it more using special sets of real and fake video frames that we

prepared. During this extra training, we used methods like 'data augmentation' (creating more varied training

images from the ones we have) and adjusted the 'learning rate' (how fast the AI learns) to make it work better.

These steps also helped fix issues like 'overfitting,' which happens when the AI learns the training data too

specifically and doesn't do well on new, unseen data. Our work showed that the AI model could learn to work

with these video frames. At first, we faced some challenges like overfitting. However, using the improved data

augmentation and changing the learning rate during training helped make the model more stable and perform

better on our test set of video frames. The model achieved a score (AUC) of about 0.72, showing it had a fair

ability to tell the difference between real and fake frames. This project shows that it's tricky to make deepfake

detectors trained on still pictures work well for videos, and it takes several steps of trying things out and

making improvements. We learned some useful ways to make these models better, and this work can be a

starting point for creating even better deepfake video detectors in the future.

Keywords- Deepfake videosAI trust issues, Convolutional Neural Network (CNN), EfficientNetB0 Transfer

learning Video frame, classification Data augmentation, Learning rate adjustment,Overfitting, Model stability,

Generalization.

 Prof.Rinku Badgujar. International Journal of Science, Engineering and Technology,

 2025, 13:3

2

 II. RELATED WORKS

FaceForensics :

It is a comprehensive dataset designed to facilitate

the training and evaluation of deepfake detection

models. It comprises over 1,000 high-resolution

videos manipulated using four state-of-the-art face

forgery methods: FaceSwap, Face2Face, DeepFakes,

and NeuralTextures. The dataset includes three levels

of compression (high, medium, and low) to simulate

real-world scenarios where videos may be degraded

by platforms like social media.

XceptionNet :
It is a deep convolutional neural network initially

developed for image classification but later adapted

for deepfake detection tasks. It uses depthwise

separable convolutions, a technique that

significantly reduces the number of parameters and

computational cost compared to traditional

convolutional layers.

GAN Fingerprints Analysis :

Generative Adversarial Networks (GANs) are the

backbone of many deepfake generation techniques.

These networks consist of two components: a

generator that creates fake content and a

discriminator that evaluates the authenticity of the

content. Over time, GANs introduce unique

"fingerprints" or patterns into the generated media

due to the specific ways in which the networks learn

to create realistic content. These fingerprints can

manifest in various forms, such as pixel-level

artifacts, unnatural textures, or discrepancies in

lighting and shadows.

III. THE PROPOSED SYSTEM

i. System Architecture

PixelProof is designed to detect deepfake content in

images or videos using AI and machine learning

techniques. Here's an outline of its system

architecture:

Data Input Layer

This layer is responsible for receiving the input to be

analyzed. It accepts either individual images (e.g.,

JPG, PNG) or video files (e.g., MP4) provided by the

user. (For the model's training phase, data was

sourced from public image datasets like rvf10k and

custom-collected real/fake videos from which

frames were extracted).

Preprocessing Layer

This layer prepares the input data for the detection

model.

• For Videos: The system first extracts

individual frames from the input video.

• For Images/Frames: Each image or

extracted frame is resized to a standard

size. Images/frames are then converted into

numerical arrays. Pixel values are

maintained in the [0, 255] range, consistent

with the model's training data.

Deepfake Detection Core

• Model: The core of the detection system

employs a fine-tuned EfficientNetB0

convolutional neural network. This model

was initially pre-trained on a

broad image dataset and subsequently

fine-tuned specifically on a custom dataset

comprising real and synthetically generated

deepfake video frames.

• Detection Process: The preprocessed image

or frame is fed to this fine-tuned model.

The model then classifies the input as "real"

or "fake," outputting a prediction score

(probability) that indicates its confidence.

Post-processing & Aggregation Layer (Primarily

for Video Inputs)

• For Single Images: The classification ("real"

or "fake") from the Detection Core is

treated as the final result for the input

image.

• For Videos: The system collects the "real" or

"fake" classifications for each processed

frame. An aggregation strategy (e.g.,

determining if a majority of frames are

classified as "fake," or if the count of "fake"

frames exceeds a certain threshold) is then

 Prof.Rinku Badgujar. International Journal of Science, Engineering and Technology,

 2025, 13:3

3

applied to derive an overall classification

for the entire video.

User Interface (UI) & Interaction Layer

• Interface: A web-based application

developed using Streamlit provides an

accessible and user-friendly frontend.

• Interaction: Users can upload an image or

video file through this interface.

• Results Display: The final "real" or "fake"

classification for the submitted content is

presented to the user in a clear and

understandable manner.

Flow Chart

ii. Data Collection and Dataset Creation

PixelProof's model development involved two key

datasets: one for initial image-based training and a

second, custom-created set of video frames for fine-

tuning and evaluation.

Initial Image Training Dataset: The EfficientNetB0

model was first trained using rvf10k, a public Kaggle

dataset. This dataset comprises 10,000 balanced still

images of real and deepfake faces, structured into

train and valid sets, providing a foundational model

for detecting deepfake characteristics in static

images.

Video Frame Dataset: For video-specific

adaptation, a custom dataset was created by

extracting frames from real and fake videos using

OpenCV, with every 60th frame selected. These

frames were organized into:

• Training set: 37,429 real and 37,429 fake

frames.

• Validation set: 7,195 real and 7,195 fake frames.

All frames were 224x224 pixel PNG files, labeled

based on source video authenticity. This dataset

was essential for fine-tuning the model for

video deepfake nuances and for performance

evaluation.

iii. Model Training and Optimization

PixelProof's core EfficientNetB0 model was

developed through a two-stage process using the

TensorFlow and Keras frameworks: initial training

on still images, followed by fine-tuning on video

frames.

Initial Image-Based Model Training:

The EfficientNetB0 model, pre-trained on ImageNet,

was first adapted for still image deepfake detection

using the rvf10k dataset. The process involved:

• Adding a custom classification head

(GlobalAveragePooling2D, Dropout 0.2, and a

final Dense sigmoid layer).

• An initial training phase with the EfficientNetB0

base layers frozen, using an Adam optimizer

(e.g., learning rate 0.001) and

BinaryCrossentropy loss.

 Prof.Rinku Badgujar. International Journal of Science, Engineering and Technology,

 2025, 13:3

4

• A subsequent fine-tuning stage where deeper

layers of EfficientNetB0 (from layer 200 onwards)

were unfrozen and trained with a much lower

learning rate to refine weights.

Video Frame Fine-Tuning:

The image-trained model was then further fine-

tuned for video frame analysis using the custom

dataset (approx. 75k training, 14k validation frames,

224x224 pixels). Key aspects included:

• Loading the fine tuned image model

• Applying data augmentation techniques

specifically for video frames (RandomFlip,

RandomRotation, RandomZoom,

RandomContrast,

• RandomBrightness) to the training set to

improve generalization and combat overfitting.

• Employing an Adam optimizer with a low initial

learning rate and a ReduceLRonPlateau callback

(monitoring val_loss, factor 0.2, patience 2) for

dynamic learning rate adjustment.

• Using Early Stopping) and ModelCheckpoint to

save the best performing model based on

validation loss. These strategies were crucial for

adapting the model to video data and mitigating

overfitting observed in training history.

iv. User Interface and Interaction Design

PixelProof utilizes a web-based Graphical User

Interface (GUI) built with Streamlit to provide an

accessible way for users to interact with the deepfake

detection model. Streamlit was selected for its rapid

development capabilities with Python.

The user interaction workflow is designed for

simplicity:

Input Submission: The user accesses the Streamlit

application and is presented with a file uploader.

They can select and upload either a single image

(e.g., JPG, PNG) or a video file (e.g., MP4).

Processing Trigger: Upon file submission and

typically by clicking an "Analyze" button, the

backend Python logic integrated within the Streamlit

application is initiated.

 Backend Operations:

• The system loads the fine-tuned fine tuned

video model.

• For an image input: The image is

preprocessed (resized to 224x224 pixels, pixel

values [0, 255]).

• For a video input: Frames are extracted using

OpenCV. Each relevant frame then undergoes

the same preprocessing (resize to 224x224,

pixel values [0, 255]).

• The model performs inference on the

preprocessed image(s)/frame(s).

• For video input: Predictions from individual

frames are aggregated (e.g., via majority vote

or thresholding) to form a single classification

for the entire video.

 Result Display: The final detection result ("REAL"

or "FAKE") for the submitted image or video is then

clearly presented to the user within the Streamlit

interface.

This design ensures that users can easily submit

content for analysis and receive a straightforward

deepfake detection outcome.

IV. CONCLUSION

This project, PixelProof, aimed to adapt and evaluate

a deep learning model, specifically EfficientNetB0,

for detecting deepfakes in both images and videos.

The methodology involved initial training on an

image dataset, followed by specialized fine-tuning

on custom video frames, incorporating data

augmentation and learning rate optimization.

PixelProof demonstrated the capability to learn

distinguishing features between real and

manipulated content. The fine-tuning process, while

revealing challenges such as overfitting, provided

valuable insights into strategies for adapting image-

centric models to video data. A user interface was

also conceptualized to illustrate the system's

practical application.

Limitations noted offer clear directions for future

work, including the exploration of temporal

information in videos, advanced regularization

techniques, and further expansion of training data

diversity. This research contributes to the practical

 Prof.Rinku Badgujar. International Journal of Science, Engineering and Technology,

 2025, 13:3

5

understanding of building deepfake detectors and

underscores the iterative efforts required to enhance

their effectiveness against evolving manipulated

media.

V. CHALLENGES AND LIMITATIONS

Throughout the development and evaluation of the

PixelProof system, several challenges were

encountered, highlighting practical considerations in

deepfake detection research:

Environment Configuration: Establishing a stable

and compatible GPU-accelerated deep learning

environment using WSL2, NVIDIA drivers, CUDA, and

cuDNN presented initial setup complexities due to

strict version dependencies required by TensorFlow.

Video Data Diversity and Volume: Acquiring and

curating a sufficiently large and diverse dataset of

video deepfakes, representing various manipulation

techniques, proved challenging for the video frame

fine-tuning stage. The model's generalization

capability is often linked to the breadth of examples

seen during training.

Overfitting During Fine-Tuning: The

EfficientNetB0 model, when fine-tuned on the

custom video frame dataset, exhibited a tendency to

overfit the training data. While strategies like data

augmentation and learning rate scheduling were

implemented and provided some mitigation,

effectively managing overfitting to achieve higher

validation scores remained a persistent challenge.

Computational Resources: The fine-tuning process,

particularly with data augmentation and numerous

video frames, was computationally intensive and

required significant time, even with GPU

acceleration, underscoring the resource demands of

deep learning projects.

Achieving High Detection Accuracy: The final

validation accuracy (approximately 63-69%)

indicates that while the model learned to distinguish

deepfake frames, significant scope for improvement

exists. Adapting an image-centric CNN to the

nuances of video, using a frame-by-frame approach,

without explicit temporal modeling, presented

inherent limitations.

Generalization to Unseen Deepfakes: While not

exhaustively tested within the scope of this project,

the general challenge of deepfake detectors

struggling with novel manipulation techniques not

encountered during training is an implicit limitation

to consider.

RESULTS

The system was tested with various types of images

and network conditions. The results showed that the

system could successfully encrypt and decrypt

images without any loss of quality. Furthermore, the

system proved to be secure against common attacks

such as eavesdropping and man-in-the-middle

attacks.

