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I. INTRODUCTION 
 

In large-scale distributed environments, regulating 

client request rates is vital for protecting services 

from overload, ensuring equitable access, and 

preserving system responsiveness. Traditional rate 

limiting methods—often relying on centralized 

servers using algorithms like Token Bucket or Leaky 

Bucket, and backed by memory-oriented stores such 

as Redis or Memcached—have proven effective in 

controlled, small-scale deployments.  

 

However, as systems evolve toward decentralized 

and geographically distributed models—including 

edge computing setups, globally replicated services, 

and peer-to-peer networks—the limitations of 

centralized rate limiting become evident. These 

conventional models often fail to scale effectively, 

introduce latency due to remote coordination, and 

act as single points of failure.  

The growing adoption of decentralized system 

paradigms necessitates a shift toward distributed 

rate limiting solutions that can maintain correctness, 

fairness, and efficiency without  

 

 

 

centralized coordination. Emerging technologies like 

Conflict-free Replicated Data Types (CRDTs) offer 

strong guarantees for consistency without locking, 

while libp2p provides robust peer-to-peer 

communication primitives. Together, they provide a 

compelling foundation for a reimagined, 

decentralized approach to rate control.  

 

Problem Statement  

Although widely used, conventional rate limiters 

suffer from two fundamental issues:  

 Centralization and Scalability Limits: Relying 

on a single authoritative store hampers the 

ability to scale horizontally and creates a 

vulnerability point that can impact system 

availability and performance in large, distributed 

deployments.  

 Low Fault Tolerance and Partition Handling: 

Centralized systems often struggle under node 

failures, network partitions, or latency spikes, 

potentially leading to rate miscalculations—
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either under-enforcing or over-enforcing user 

limits.  

Moreover, naive replication strategies in distributed 

setups may introduce race conditions or 

inconsistency when concurrent updates occur across 

multiple nodes.  

 

Aims and Objectives  

This research proposes a fully decentralized, CRDT-

backed rate limiting system designed to be fault-

tolerant, efficient, and scalable. The key objectives 

are:  

 Design a CRDT-driven token bucket algorithm 

that can handle concurrent updates while 

ensuring deterministic convergence across 

distributed peers.  

 Implement decentralized state synchronization 

using a libp2p-based gossip protocol that 

efficiently disseminates state deltas with minimal 

overhead.  

 Optimize latency for active users through an in-

memory LRU cache, while using disk persistence 

to handle less frequent traffic gracefully.  

 Benchmark key performance metrics, including 

per-node throughput, request latency at various 

percentiles, CRDT synchronization lag, and 

gossip message sizes.  

 Demonstrate resilience under failure conditions, 

such as node crashes and partition events, 

verifying the system's ability to recover and 

converge without manual intervention.  

 

II. LITERATURE REVIEW 
 

Rate limiting has long been a cornerstone of service 

reliability, providing mechanisms to regulate client 

interactions and maintain stability under load. Over 

time, various strategies and architectures have been 

developed—each offering distinct advantages and 

trade-offs depending on deployment scale and fault 

tolerance requirements.  

 

Centralized Rate Limiting Approaches  

Traditional implementations commonly use 

centralized components to monitor and enforce rate 

limits. In such architectures, a central 

service or API gateway acts as the rate control 

authority, often backed by fast-access in-memory 

data stores like Redis or Memcached. Popular 

platforms, such as Envoy and Kong, support plugin-

based configurations of token bucket algorithms 

within these central stores.  

 

These methods generally work well in tightly 

controlled or small-to-medium-sized environments. 

However, as system complexity grows, they 

encounter scaling limitations. The central point of 

coordination becomes a bottleneck, and round-trip 

latency to a central store—especially in geo-

distributed deployments—can severely degrade 

performance and responsiveness. 

 

Partitioned-Tolerant and Sharded Solutions  

Some modern designs attempt to overcome the 

scalability issues of centralized systems through 

horizontal sharding. In these setups, rate limit states 

for users are distributed across multiple nodes. 

Although this method improves throughput and 

resource utilization, it remains vulnerable to network 

partitioning. When clients move between nodes or 

when network links fail, these systems often suffer 

from duplication or loss of state updates, leading to 

inaccurate rate enforcement.  

Efforts to enhance resilience have involved 

techniques like leader election or the use of strongly 

consistent distributed databases such as Etcd and 

Consul. However, these come at the cost of high 

coordination overhead and reduced availability—an 

inherent consequence of the CAP theorem.  

 

Conflict-Free Replicated Data Types (CRDTs)  

CRDTs have emerged as a promising solution for 

building coordination-free distributed systems. They 

provide mathematically guaranteed convergence of 

replicated state, even under concurrent 

modifications, without requiring global 

synchronization.  

 

Originally developed for collaborative editing 

platforms (e.g., Yjs, Automerge) and distributed 

counters, CRDTs have since been extended to 

support more sophisticated constructs such as 

bounded counters—ideal for modeling token 

consumption with refill mechanisms. Their ability to 

guarantee idempotent, associative, and 
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commutative operations makes them well-suited for 

rate limiting in distributed environments.  

 

Gossip Protocols for State Dissemination  

Peer-to-peer synchronization methods based on 

gossip protocols—such as those used in libp2p, Serf, 

and Amazon's Dynamo—offer a scalable and fault-

tolerant means of sharing state information across 

nodes. Gossip-based dissemination randomly 

exchanges updates between peers in a cluster, 

ensuring rapid and redundant propagation with 

minimal need for centralized oversight.  

When combined with delta-based CRDTs, these 

protocols can share only the changes (deltas) instead 

of full state snapshots, minimizing network traffic 

and improving convergence speed. This synergy 

forms the foundation for effective decentralized rate 

limiting.  

 

Identified Gaps in Existing Work  

Despite the availability of distributed key-value 

stores and pub/sub architectures, there is a notable 

absence of purpose-built systems that combine 

CRDTs with gossip protocols for decentralized rate 

control. Existing literature and tooling often either 

retain centralized assumptions or trade off 

availability for consistency.  

 

This research addresses this gap by introducing a 

system that leverages a CRDT-enhanced token 

bucket algorithm in conjunction with libp2p-based 

delta gossiping. The aim is to provide an 

autonomous, eventually consistent enforcement 

mechanism that can thrive under real-world 

distributed conditions.  

  

III. METHODOLOGY 

This section describes the architecture, components, 

algorithms, and testing methodology used to design 

and evaluate the decentralized rate limiting system. 

The focus is on building a highly available and 

scalable solution using peer-to-peer synchronization 

and CRDT-based rate limiters.  

  

System Overview  

The proposed system comprises a distributed set of 

nodes that collaboratively enforce rate limits without 

relying on a central authority. Each node 

independently processes incoming requests using a 

local token bucket algorithm and synchronizes state 

updates with peers to maintain global consistency.  

The system’s core components are:  

 Token Bucket Limiter: Manages per-user 

request quotas locally at each node.  

 LRU Cache: Stores active user states in 

memory for rapid access.  

 Disk Store: Holds evicted or infrequent user 

states for long-term durability.  

 Delta Store: Temporarily tracks recent 

changes for gossip propagation.  

 Gossip Layer: Periodically synchronizes 

delta updates with neighboring nodes via 

libp2p.  

 

Figure. 1: System Design 

 
 

This design ensures responsiveness along the hot 

path while maintaining convergence and fault 

tolerance across nodes.  

 

CRDT-Compatible Token Bucket  

Each node enforces user-specific limits through a 

bounded token bucket. The structure tracks token 

consumption and refill rates, but in a format that 

enables CRDT-style merging. This ensures safe and 

conflict-free convergence across peers.  

 

The main operations include:  

 Consume(): Deducts a token if available.  

 

 Refill(): Restores  tokens  at  a 

configured rate based on elapsed time.  

 Merge(): Reconciles bucket states from remote 

peers using deterministic merge logic.  
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The bucket is represented as:  

type TokenBucket struct {     Capacity     float64  

 RefillRate   float64  

 UsedTokens   float64  

 UsableTokens float64  

 LastRefilled time.Time     SyncIssuedAt 

time.Time }  

 

All counter fields (UsedTokens, UsableTokens, etc.) 

are modeled as grow-only to ensure eventual 

consistency. Merges respect token capacity 

constraints, and time fields guide accurate token 

refilling and synchronization.  

 

Delta Tracking and Caching Strategy  

To reduce bandwidth and avoid full state sharing, 

only modified buckets are tracked in a temporary 

delta map. Two levels of caching are used:  

 Hot Path: Frequently accessed user data is kept 

in an in-memory LRU cache for sub-millisecond 

access.  

 

 Cold Path: Evicted or infrequent users are 

persisted to disk and loaded only when required.  

Mutexes protect cache access and prevent race 

conditions. Snapshotting for metrics or logs uses 

copy-on-write strategies to minimize disruption 

to request processing.  

 

Peer Communication via libp2p Gossip  

Nodes form a mesh network using libp2p’s gossip 

protocol. State synchronization proceeds in cycles:  

 Local  deltas  are  collected 

 using toMessage().  

 These deltas are transmitted to randomly 

selected peers.  

 Received deltas are merged into the local CRDT 

state.  

The gossip interval is configurable (e.g., every 100ms 

or after a certain number of updates), balancing 

convergence speed with network efficiency. 

Messages are compactly serialized (typically ~1.5 KB) 

for low-overhead propagation.  

 

Metrics and Instrumentation  

The system includes a lightweight instrumentation 

module to capture:  

 Request Throughput: Total requests processed 

per node.  

 Response Time: p50, p95, p99 latency statistics.  

 CRDT Sync Latency: Time from delta creation to 

merge.  

 Message Size: Gossip message payload 

distribution.  

 

Metrics are logged periodically (every 10 seconds) 

and can be toggled at runtime using an environment 

flag. This avoids dependency on external tools like 

Prometheus, keeping the system portable and 

lightweight.  

 

Experimental Setup  

The benchmarking environment was configured as 

follows:  

 Cluster: 3 peer nodes running as Docker 

containers.  

 Load Balancer: NGINX with round-robin 

request distribution.  

 Load Generator: Vegeta to simulate real-world 

usage patterns.  

 Test Parameters:  

 1,000 simulated users.  

 Load ramped from 1,000 to 3,000 RPS.  

 Metrics  collected:  response 

 codes, per-node latency, CRDT convergence 

times.  

 

This setup was designed to mimic production-like 

conditions and evaluate the system’s performance 

under varied loads and failure scenarios.  

   

IV. RESULTS AND ANALYSIS 
 

This section presents the empirical performance 

results obtained through controlled experiments on 

the decentralized rate limiting system. The analysis 

focuses on request throughput, response latency, 

CRDT synchronization efficiency, bandwidth usage, 

cache behavior, and fault tolerance.  

 

Request Throughput and Latency  

Using a 3-node libp2p-based cluster and Vegeta for 

traffic generation, the system was subjected to 

increasing request loads ranging from 1,000 to 3,000 

RPS per node.  
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 Sustained Throughput: Each node 

independently handled ~3,000 requests per 

second, leading to an aggregate cluster 

throughput of ~9,000 RPS.  

 Latency: The 99th percentile response time 

(p99) consistently stayed under 2 milliseconds, 

which includes token validation, locking, and any 

necessary caching operations.  

Latency distributions remained stable across nodes, 

indicating the architecture’s ability to maintain 

performance under pressure without significant 

variability.  

Metric  Value  

Peak Throughput  3,000 RPS / 

node  

Average Response Time  0.6 ms  

p95 Response Time  1.1 ms  

p99 Response Time  2 ms  

429 Response Ratio  Matches 

configured rate 

limits (±2%)  

 

Synchronization Latency of CRDTs  

The time taken to propagate and integrate CRDT 

deltas across peers was also measured.  

Metric  Value  

Average Sync Latency  0.4 ms  

p95 Sync Latency  0.7 ms  

p99 Sync Latency  2 ms  

Convergence Failures  0 (across 10M 

ops)  

 

These values reflect high efficiency in state 

convergence, demonstrating that the gossip 

mechanism enables near real-time synchronization 

while maintaining consistency.  

 

 

Gossip Message Size and Bandwidth Utilization  

To evaluate the communication overhead of the 

gossip protocol, the system tracked the size of 

outgoing delta messages:  

Metric  Value  

Avg Message Size  1.5 KB  

p95 Message Size  2 KB  

p99 Message Size  3 KB  

Max Message Size  7 KB  

 

Because each message includes only modified user 

buckets, the overall bandwidth usage remains low, 

even during load spikes. This supports horizontal 

scalability and efficient operation in bandwidth-

constrained environments.  

 

Hot vs. Cold Path Performance  

The system categorizes requests based on whether 

the corresponding user bucket is in memory (hot) or 

requires a disk read (cold).  

Testing with 10,000 unique users yielded the 

following behavior:  

 Hot Path: Served ~75–80% of all requests, with 

response times averaging ~1.2 ms at p99.  

 Cold Path: Comprised ~20–25% of requests, with 

higher latencies in the range of 12–18 ms due to 

disk access.  

 

Path Type  p99  

Latency  

Ratio  

Hot Path  1.2 ms  ~80%  

Cold Path  12–18 ms  ~20%  

This illustrates that the caching strategy effectively 

accelerates the majority of traffic while providing 

fallback support for infrequent users.  

 

 Fault Tolerance and Node Recovery  

To test resilience, various failure scenarios were 

simulated:  
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 Node Crash: When a peer was stopped, the 

remaining nodes continued processing and 

synchronizing without impact.  

 Node Rejoin: Upon rejoining, the previously 

failed node merged missed deltas within 200 

milliseconds, ensuring a consistent state without 

conflicts.  

 The system consistently demonstrated:  

 No loss in rate-limiting accuracy during node 

absence.  

 Smooth reintegration upon recovery.  

 Zero convergence failures across 10 million 

operations.  

  

These results confirm the system’s robustness 

against common distributed failure conditions, 

reinforcing its suitability for high-availability 

deployments.  

   

V. DISCUSSION AND CONCLUSION 
 

Discussion  

The experimental results validate that decentralized 

rate limiting, when constructed with CRDTs and 

gossip-based synchronization, is not only viable but 

highly effective for high-throughput distributed 

systems.  

 

By using local token buckets with CRDT semantics, 

the system achieves fast, low-latency request 

handling without sacrificing consistency. The LRU-

based caching architecture ensures that frequently 

accessed user states remain in memory, while less 

active data is persisted efficiently. The gossip 

protocol, driven by libp2p, enables fault-tolerant and 

lightweight state propagation between peers.  

The key takeaway is that the system balances local 

responsiveness and global convergence without 

needing centralized orchestration, making it ideal for 

modern edge, mesh, and microservice environments.  

 

Design Trade-offs  

One deliberate design decision is the adoption of 

eventual consistency instead of enforcing strict 

global consistency. While this means that short-term 

burst violations are possible before state 

convergence, CRDTs ensure such deviations are 

eventually reconciled. This trade-off suits 

applications where soft limits are acceptable—like 

API gateways or per-user throttling—but may not be 

suitable for use cases that demand precise, hard 

quotas (e.g., billing systems).  

 

Another critical trade-off involves caching strategy. 

The combination of in-memory LRU caching and disk 

persistence allows the system to scale beyond 

memory-bound limits. However, it introduces higher 

latency for cold requests. Tuning the eviction policy 

or preloading key users might be necessary in 

latency-sensitive applications.  

 

Limitations  

While the system performs well under simulated 

stress and fault conditions, several areas are yet to 

be addressed:  

 Strict Global Quotas: The current system 

cannot guarantee tight quotas across all peers 

within strict time intervals.  

 Topology Awareness: There's no logic to route 

requests based on proximity or load (e.g., 

sending traffic to a “hot” node).  

 Tenant-Aware Rate Limiting: Multi-tenant 

support with variable limits and priority classes 

has not yet been implemented.  

 Clock Dependency: Although logical 

timestamps are used, high degrees of clock drift 

between nodes could impact sync latency 

metrics—though not correctness.  

 

VI. CONCLUSION 

 
This research presents a fully decentralized rate 

limiting system that is scalable, fault-tolerant, and 

efficient. By combining CRDTs with libp2p-powered 

gossip, the architecture eliminates central 

coordination while ensuring eventual consistency 

and high throughput.  

The system consistently handles thousands of 

requests per second per node with sub-2ms latency, 

all while maintaining delta-based synchronization 

and compact bandwidth usage. It recovers 

seamlessly from node failures, offers hybrid 

memory-disk caching, and supports consistent peer 

merging without conflicts.  

Ultimately, this work demonstrates that robust rate 

limiting can be achieved in a decentralized way—
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paving the path for scalable, self-healing 

infrastructure suitable for the next generation of 

cloud-native and edge computing platforms.  

   

FUTURE WORK  

Adaptive Gossip Scheduling  

Presently, the gossip synchronization interval is fixed 

or event-triggered based on a threshold of state 

changes. Future iterations could benefit from 

dynamic gossip scheduling, where the frequency of 

synchronization adapts in real-time based on traffic 

patterns, observed convergence delays, or cluster 

stability. Such adaptability would reduce 

unnecessary traffic under low load while accelerating 

convergence during bursts or re-joins.  

 

Geo-Aware Peer Coordination  

In multi-region deployments, latency between nodes 

can affect the timeliness of rate limit enforcement. 

Incorporating geographical awareness into the 

gossip layer—such as by biasing peer selection 

based on latency proximity or data center location—

could reduce synchronization lag and improve 

regional consistency. Additionally, sharding the 

mesh by location could further scale the system 

without sacrificing convergence speed.  

 

Hybrid Enforcement Models  

For high-value or security-critical endpoints, strict 

rate limits may be required. A possible enhancement 

is a quorum-based enforcement mechanism, where 

certain high-sensitivity operations require consensus 

or strong guarantees from a subset of peers before 

proceeding. This would blend eventual consistency 

for general traffic with stronger guarantees for 

sensitive workflows, offering a flexible consistency 

model.  

 

Pluggable Storage Backends  

The current system uses a native file-based store for 

persisting inactive user states. In the future, 

introducing pluggable storage engines like LevelDB, 

BadgerDB, RocksDB, or even remote object stores 

(e.g., Amazon S3, IPFS) could offer improved 

durability, portability, or replication capabilities—

particularly for edge deployments or multi-tenant 

architectures.  

 

These enhancements would expand the system's 

versatility across a broader set of use cases—ranging 

from mobile edge networks to cloud-native multi-

tenant infrastructures—while pushing the envelope 

on decentralization, adaptability, and reliability.  
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