
 Souvik Sarkar, 2025, 13:3

ISSN (Online): 2348-4098

ISSN (Print): 2395-4752

© 2025 Souvik Sarkar, This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly credited.

International Journal of Science,
Engineering and Technology

An Open Access Journal

Decentralized Rate Limiter
Souvik Sarkar

 Information Technology, Institute of Engineering and Management

Kolkata, West Bengal, India

I. INTRODUCTION

In large-scale distributed environments, regulating

client request rates is vital for protecting services

from overload, ensuring equitable access, and

preserving system responsiveness. Traditional rate

limiting methods—often relying on centralized

servers using algorithms like Token Bucket or Leaky

Bucket, and backed by memory-oriented stores such

as Redis or Memcached—have proven effective in

controlled, small-scale deployments.

However, as systems evolve toward decentralized

and geographically distributed models—including

edge computing setups, globally replicated services,

and peer-to-peer networks—the limitations of

centralized rate limiting become evident. These

conventional models often fail to scale effectively,

introduce latency due to remote coordination, and

act as single points of failure.

The growing adoption of decentralized system

paradigms necessitates a shift toward distributed

rate limiting solutions that can maintain correctness,

fairness, and efficiency without

centralized coordination. Emerging technologies like

Conflict-free Replicated Data Types (CRDTs) offer

strong guarantees for consistency without locking,

while libp2p provides robust peer-to-peer

communication primitives. Together, they provide a

compelling foundation for a reimagined,

decentralized approach to rate control.

Problem Statement

Although widely used, conventional rate limiters

suffer from two fundamental issues:

 Centralization and Scalability Limits: Relying

on a single authoritative store hampers the

ability to scale horizontally and creates a

vulnerability point that can impact system

availability and performance in large, distributed

deployments.

 Low Fault Tolerance and Partition Handling:

Centralized systems often struggle under node

failures, network partitions, or latency spikes,

potentially leading to rate miscalculations—

Abstract- As distributed systems operate at increasingly high throughput, enforcing fair and efficient request

control becomes critical to safeguard service reliability and prevent misuse. This work introduces a decentralized

rate limiting mechanism engineered for scalability and resilience without central oversight. The solution integrates

Conflict-free Replicated Data Types (CRDTs) for consistent state sharing and employs the libp2p gossip protocol

to synchronize nodes through peer-to-peer communication. Each peer manages an LRU-based in-memory cache

for frequent users and offloads less active records to disk, balancing performance with persistence. Performance

evaluations indicate that each node can independently process up to 3,000 requests per second, maintaining a 99th

percentile latency below 2 milliseconds. CRDT-based synchronization across peers shows convergence latencies

around 2 ms with compact gossip payloads averaging 3 KB. These findings validate the feasibility of a decentralized

architecture for rate limiting, offering a robust alternative to traditional centralized techniques in modern cloud-

native systems.

Keywords: distributed systems, libp2p, peer-to-peer,

CRDTs, eventual consistency

 Souvik Sarkar, International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 2 of 8

either under-enforcing or over-enforcing user

limits.

Moreover, naive replication strategies in distributed

setups may introduce race conditions or

inconsistency when concurrent updates occur across

multiple nodes.

Aims and Objectives

This research proposes a fully decentralized, CRDT-

backed rate limiting system designed to be fault-

tolerant, efficient, and scalable. The key objectives

are:

 Design a CRDT-driven token bucket algorithm

that can handle concurrent updates while

ensuring deterministic convergence across

distributed peers.

 Implement decentralized state synchronization

using a libp2p-based gossip protocol that

efficiently disseminates state deltas with minimal

overhead.

 Optimize latency for active users through an in-

memory LRU cache, while using disk persistence

to handle less frequent traffic gracefully.

 Benchmark key performance metrics, including

per-node throughput, request latency at various

percentiles, CRDT synchronization lag, and

gossip message sizes.

 Demonstrate resilience under failure conditions,

such as node crashes and partition events,

verifying the system's ability to recover and

converge without manual intervention.

II. LITERATURE REVIEW

Rate limiting has long been a cornerstone of service

reliability, providing mechanisms to regulate client

interactions and maintain stability under load. Over

time, various strategies and architectures have been

developed—each offering distinct advantages and

trade-offs depending on deployment scale and fault

tolerance requirements.

Centralized Rate Limiting Approaches

Traditional implementations commonly use

centralized components to monitor and enforce rate

limits. In such architectures, a central

service or API gateway acts as the rate control

authority, often backed by fast-access in-memory

data stores like Redis or Memcached. Popular

platforms, such as Envoy and Kong, support plugin-

based configurations of token bucket algorithms

within these central stores.

These methods generally work well in tightly

controlled or small-to-medium-sized environments.

However, as system complexity grows, they

encounter scaling limitations. The central point of

coordination becomes a bottleneck, and round-trip

latency to a central store—especially in geo-

distributed deployments—can severely degrade

performance and responsiveness.

Partitioned-Tolerant and Sharded Solutions

Some modern designs attempt to overcome the

scalability issues of centralized systems through

horizontal sharding. In these setups, rate limit states

for users are distributed across multiple nodes.

Although this method improves throughput and

resource utilization, it remains vulnerable to network

partitioning. When clients move between nodes or

when network links fail, these systems often suffer

from duplication or loss of state updates, leading to

inaccurate rate enforcement.

Efforts to enhance resilience have involved

techniques like leader election or the use of strongly

consistent distributed databases such as Etcd and

Consul. However, these come at the cost of high

coordination overhead and reduced availability—an

inherent consequence of the CAP theorem.

Conflict-Free Replicated Data Types (CRDTs)

CRDTs have emerged as a promising solution for

building coordination-free distributed systems. They

provide mathematically guaranteed convergence of

replicated state, even under concurrent

modifications, without requiring global

synchronization.

Originally developed for collaborative editing

platforms (e.g., Yjs, Automerge) and distributed

counters, CRDTs have since been extended to

support more sophisticated constructs such as

bounded counters—ideal for modeling token

consumption with refill mechanisms. Their ability to

guarantee idempotent, associative, and

 Souvik Sarkar, International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 3 of 8

commutative operations makes them well-suited for

rate limiting in distributed environments.

Gossip Protocols for State Dissemination

Peer-to-peer synchronization methods based on

gossip protocols—such as those used in libp2p, Serf,

and Amazon's Dynamo—offer a scalable and fault-

tolerant means of sharing state information across

nodes. Gossip-based dissemination randomly

exchanges updates between peers in a cluster,

ensuring rapid and redundant propagation with

minimal need for centralized oversight.

When combined with delta-based CRDTs, these

protocols can share only the changes (deltas) instead

of full state snapshots, minimizing network traffic

and improving convergence speed. This synergy

forms the foundation for effective decentralized rate

limiting.

Identified Gaps in Existing Work

Despite the availability of distributed key-value

stores and pub/sub architectures, there is a notable

absence of purpose-built systems that combine

CRDTs with gossip protocols for decentralized rate

control. Existing literature and tooling often either

retain centralized assumptions or trade off

availability for consistency.

This research addresses this gap by introducing a

system that leverages a CRDT-enhanced token

bucket algorithm in conjunction with libp2p-based

delta gossiping. The aim is to provide an

autonomous, eventually consistent enforcement

mechanism that can thrive under real-world

distributed conditions.

III. METHODOLOGY

This section describes the architecture, components,

algorithms, and testing methodology used to design

and evaluate the decentralized rate limiting system.

The focus is on building a highly available and

scalable solution using peer-to-peer synchronization

and CRDT-based rate limiters.

System Overview

The proposed system comprises a distributed set of

nodes that collaboratively enforce rate limits without

relying on a central authority. Each node

independently processes incoming requests using a

local token bucket algorithm and synchronizes state

updates with peers to maintain global consistency.

The system’s core components are:

 Token Bucket Limiter: Manages per-user

request quotas locally at each node.

 LRU Cache: Stores active user states in

memory for rapid access.

 Disk Store: Holds evicted or infrequent user

states for long-term durability.

 Delta Store: Temporarily tracks recent

changes for gossip propagation.

 Gossip Layer: Periodically synchronizes

delta updates with neighboring nodes via

libp2p.

Figure. 1: System Design

This design ensures responsiveness along the hot

path while maintaining convergence and fault

tolerance across nodes.

CRDT-Compatible Token Bucket

Each node enforces user-specific limits through a

bounded token bucket. The structure tracks token

consumption and refill rates, but in a format that

enables CRDT-style merging. This ensures safe and

conflict-free convergence across peers.

The main operations include:

 Consume(): Deducts a token if available.

 Refill(): Restores tokens at a

configured rate based on elapsed time.

 Merge(): Reconciles bucket states from remote

peers using deterministic merge logic.

 Souvik Sarkar, International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 4 of 8

The bucket is represented as:

type TokenBucket struct { Capacity float64

 RefillRate float64

 UsedTokens float64

 UsableTokens float64

 LastRefilled time.Time SyncIssuedAt

time.Time }

All counter fields (UsedTokens, UsableTokens, etc.)

are modeled as grow-only to ensure eventual

consistency. Merges respect token capacity

constraints, and time fields guide accurate token

refilling and synchronization.

Delta Tracking and Caching Strategy

To reduce bandwidth and avoid full state sharing,

only modified buckets are tracked in a temporary

delta map. Two levels of caching are used:

 Hot Path: Frequently accessed user data is kept

in an in-memory LRU cache for sub-millisecond

access.

 Cold Path: Evicted or infrequent users are

persisted to disk and loaded only when required.

Mutexes protect cache access and prevent race

conditions. Snapshotting for metrics or logs uses

copy-on-write strategies to minimize disruption

to request processing.

Peer Communication via libp2p Gossip

Nodes form a mesh network using libp2p’s gossip

protocol. State synchronization proceeds in cycles:

 Local deltas are collected

 using toMessage().

 These deltas are transmitted to randomly

selected peers.

 Received deltas are merged into the local CRDT

state.

The gossip interval is configurable (e.g., every 100ms

or after a certain number of updates), balancing

convergence speed with network efficiency.

Messages are compactly serialized (typically ~1.5 KB)

for low-overhead propagation.

Metrics and Instrumentation

The system includes a lightweight instrumentation

module to capture:

 Request Throughput: Total requests processed

per node.

 Response Time: p50, p95, p99 latency statistics.

 CRDT Sync Latency: Time from delta creation to

merge.

 Message Size: Gossip message payload

distribution.

Metrics are logged periodically (every 10 seconds)

and can be toggled at runtime using an environment

flag. This avoids dependency on external tools like

Prometheus, keeping the system portable and

lightweight.

Experimental Setup

The benchmarking environment was configured as

follows:

 Cluster: 3 peer nodes running as Docker

containers.

 Load Balancer: NGINX with round-robin

request distribution.

 Load Generator: Vegeta to simulate real-world

usage patterns.

 Test Parameters:

 1,000 simulated users.

 Load ramped from 1,000 to 3,000 RPS.

 Metrics collected: response

 codes, per-node latency, CRDT convergence

times.

This setup was designed to mimic production-like

conditions and evaluate the system’s performance

under varied loads and failure scenarios.

IV. RESULTS AND ANALYSIS

This section presents the empirical performance

results obtained through controlled experiments on

the decentralized rate limiting system. The analysis

focuses on request throughput, response latency,

CRDT synchronization efficiency, bandwidth usage,

cache behavior, and fault tolerance.

Request Throughput and Latency

Using a 3-node libp2p-based cluster and Vegeta for

traffic generation, the system was subjected to

increasing request loads ranging from 1,000 to 3,000

RPS per node.

 Souvik Sarkar, International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 5 of 8

 Sustained Throughput: Each node

independently handled ~3,000 requests per

second, leading to an aggregate cluster

throughput of ~9,000 RPS.

 Latency: The 99th percentile response time

(p99) consistently stayed under 2 milliseconds,

which includes token validation, locking, and any

necessary caching operations.

Latency distributions remained stable across nodes,

indicating the architecture’s ability to maintain

performance under pressure without significant

variability.

Metric Value

Peak Throughput 3,000 RPS /

node

Average Response Time 0.6 ms

p95 Response Time 1.1 ms

p99 Response Time 2 ms

429 Response Ratio Matches

configured rate

limits (±2%)

Synchronization Latency of CRDTs

The time taken to propagate and integrate CRDT

deltas across peers was also measured.

Metric Value

Average Sync Latency 0.4 ms

p95 Sync Latency 0.7 ms

p99 Sync Latency 2 ms

Convergence Failures 0 (across 10M

ops)

These values reflect high efficiency in state

convergence, demonstrating that the gossip

mechanism enables near real-time synchronization

while maintaining consistency.

Gossip Message Size and Bandwidth Utilization

To evaluate the communication overhead of the

gossip protocol, the system tracked the size of

outgoing delta messages:

Metric Value

Avg Message Size 1.5 KB

p95 Message Size 2 KB

p99 Message Size 3 KB

Max Message Size 7 KB

Because each message includes only modified user

buckets, the overall bandwidth usage remains low,

even during load spikes. This supports horizontal

scalability and efficient operation in bandwidth-

constrained environments.

Hot vs. Cold Path Performance

The system categorizes requests based on whether

the corresponding user bucket is in memory (hot) or

requires a disk read (cold).

Testing with 10,000 unique users yielded the

following behavior:

 Hot Path: Served ~75–80% of all requests, with

response times averaging ~1.2 ms at p99.

 Cold Path: Comprised ~20–25% of requests, with

higher latencies in the range of 12–18 ms due to

disk access.

Path Type p99

Latency

Ratio

Hot Path 1.2 ms ~80%

Cold Path 12–18 ms ~20%

This illustrates that the caching strategy effectively

accelerates the majority of traffic while providing

fallback support for infrequent users.

 Fault Tolerance and Node Recovery

To test resilience, various failure scenarios were

simulated:

 Souvik Sarkar, International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 6 of 8

 Node Crash: When a peer was stopped, the

remaining nodes continued processing and

synchronizing without impact.

 Node Rejoin: Upon rejoining, the previously

failed node merged missed deltas within 200

milliseconds, ensuring a consistent state without

conflicts.

 The system consistently demonstrated:

 No loss in rate-limiting accuracy during node

absence.

 Smooth reintegration upon recovery.

 Zero convergence failures across 10 million

operations.

These results confirm the system’s robustness

against common distributed failure conditions,

reinforcing its suitability for high-availability

deployments.

V. DISCUSSION AND CONCLUSION

Discussion

The experimental results validate that decentralized

rate limiting, when constructed with CRDTs and

gossip-based synchronization, is not only viable but

highly effective for high-throughput distributed

systems.

By using local token buckets with CRDT semantics,

the system achieves fast, low-latency request

handling without sacrificing consistency. The LRU-

based caching architecture ensures that frequently

accessed user states remain in memory, while less

active data is persisted efficiently. The gossip

protocol, driven by libp2p, enables fault-tolerant and

lightweight state propagation between peers.

The key takeaway is that the system balances local

responsiveness and global convergence without

needing centralized orchestration, making it ideal for

modern edge, mesh, and microservice environments.

Design Trade-offs

One deliberate design decision is the adoption of

eventual consistency instead of enforcing strict

global consistency. While this means that short-term

burst violations are possible before state

convergence, CRDTs ensure such deviations are

eventually reconciled. This trade-off suits

applications where soft limits are acceptable—like

API gateways or per-user throttling—but may not be

suitable for use cases that demand precise, hard

quotas (e.g., billing systems).

Another critical trade-off involves caching strategy.

The combination of in-memory LRU caching and disk

persistence allows the system to scale beyond

memory-bound limits. However, it introduces higher

latency for cold requests. Tuning the eviction policy

or preloading key users might be necessary in

latency-sensitive applications.

Limitations

While the system performs well under simulated

stress and fault conditions, several areas are yet to

be addressed:

 Strict Global Quotas: The current system

cannot guarantee tight quotas across all peers

within strict time intervals.

 Topology Awareness: There's no logic to route

requests based on proximity or load (e.g.,

sending traffic to a “hot” node).

 Tenant-Aware Rate Limiting: Multi-tenant

support with variable limits and priority classes

has not yet been implemented.

 Clock Dependency: Although logical

timestamps are used, high degrees of clock drift

between nodes could impact sync latency

metrics—though not correctness.

VI. CONCLUSION

This research presents a fully decentralized rate

limiting system that is scalable, fault-tolerant, and

efficient. By combining CRDTs with libp2p-powered

gossip, the architecture eliminates central

coordination while ensuring eventual consistency

and high throughput.

The system consistently handles thousands of

requests per second per node with sub-2ms latency,

all while maintaining delta-based synchronization

and compact bandwidth usage. It recovers

seamlessly from node failures, offers hybrid

memory-disk caching, and supports consistent peer

merging without conflicts.

Ultimately, this work demonstrates that robust rate

limiting can be achieved in a decentralized way—

 Souvik Sarkar, International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 7 of 8

paving the path for scalable, self-healing

infrastructure suitable for the next generation of

cloud-native and edge computing platforms.

FUTURE WORK

Adaptive Gossip Scheduling

Presently, the gossip synchronization interval is fixed

or event-triggered based on a threshold of state

changes. Future iterations could benefit from

dynamic gossip scheduling, where the frequency of

synchronization adapts in real-time based on traffic

patterns, observed convergence delays, or cluster

stability. Such adaptability would reduce

unnecessary traffic under low load while accelerating

convergence during bursts or re-joins.

Geo-Aware Peer Coordination

In multi-region deployments, latency between nodes

can affect the timeliness of rate limit enforcement.

Incorporating geographical awareness into the

gossip layer—such as by biasing peer selection

based on latency proximity or data center location—

could reduce synchronization lag and improve

regional consistency. Additionally, sharding the

mesh by location could further scale the system

without sacrificing convergence speed.

Hybrid Enforcement Models

For high-value or security-critical endpoints, strict

rate limits may be required. A possible enhancement

is a quorum-based enforcement mechanism, where

certain high-sensitivity operations require consensus

or strong guarantees from a subset of peers before

proceeding. This would blend eventual consistency

for general traffic with stronger guarantees for

sensitive workflows, offering a flexible consistency

model.

Pluggable Storage Backends

The current system uses a native file-based store for

persisting inactive user states. In the future,

introducing pluggable storage engines like LevelDB,

BadgerDB, RocksDB, or even remote object stores

(e.g., Amazon S3, IPFS) could offer improved

durability, portability, or replication capabilities—

particularly for edge deployments or multi-tenant

architectures.

These enhancements would expand the system's

versatility across a broader set of use cases—ranging

from mobile edge networks to cloud-native multi-

tenant infrastructures—while pushing the envelope

on decentralization, adaptability, and reliability.

ACKNOWLEDGMENT

I would like to express my sincere gratitude to Prof.

Dr. Sanchita Ghosh for her invaluable guidance,

thoughtful critiques, and unwavering

encouragement throughout the course of this

research. Her expertise and mentorship have been

instrumental in shaping both the technical and

conceptual aspects of this work.

I am also deeply thankful to Prof. Dr.

Moutushi Biswas Singh, Head of the

Department of Information Technology, for her

consistent support, visionary leadership, and

dedication to academic excellence, which have

profoundly influenced my learning experience over

the past four years.

Finally, I extend heartfelt thanks to the faculty

members and my peers in the department for their

constructive feedback, stimulating discussions, and

continuous motivation that helped bring this project

to life.

COMPLIANCE WITH ETHICAL STANDARDS

 Conflict of Interest

The author declares that there are no conflicts of

interest related to the content or results presented in

this work.

 Data Availability

All source code and experiment artifacts developed

as part of this study are publicly available at the

following GitHub repository:

https://github.com/souviks22/decentralized-

ratelimiter

 Author Contribution

This paper is the sole work of the author, including

system design, implementation, benchmarking, and

documentation.

 Ethical Approval

This study does not involve any experiments with

human participants or animals.

 Souvik Sarkar, International Journal of Science, Engineering and Technology,

 2025, 13:3

Page 8 of 8

REFERENCES

1. G. Fairbanks, Just Enough Software Architecture:

A Risk-Driven Approach, Marshall & Brainerd,

2010.

2. Envoy Proxy, “Rate Limit Architecture,”

[Online]. Available:

https://www.envoyproxy.io/docs/envoy/latest/i

nt

ro/arch_overview/other_features/global_rate_li

miting

3. B. Burns, B. Grant, D. Oppenheimer, E. Brewer,

and J. Wilkes, “Borg, Omega, and Kubernetes,”

Commun. ACM, vol. 59, no. 5, pp. 50–57, 2016.

4. M. Shapiro, N. Preguiça, C. Baquero, and M.

Zawirski, “Conflict-free replicated data types,”

Stabilization, Safety, and Security of Distributed

Systems, vol. 6976, pp. 386–400, 2011.

5. A. Bieniusa et al., “An optimized conflict-free

replicated set,” arXiv preprint arXiv:1210.3368,

2012.

6. G. DeCandia et al., “Dynamo: Amazon’s Highly

Available Key-value Store,” in Proc. 21st ACM

SOSP, 2007, pp. 205–220.

7. Protocol Labs, “libp2p Specification,” [Online].

Available: https://libp2p.io

8. T. T. Nguyen and D. T. Tran, “Decentralized

Access Control with CRDTs in Edge Computing,”

in Proc. IEEE ICC, 2020.

9. T. Senart, “Vegeta – HTTP load testing tool,”

GitHub, [Online]. Available:

https://github.com/tsenart/vegeta

