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I. INTRODUCTION 
 

High-accuracy gravimetry [Torge & Mu¨ller, 2001, 

Rosi et al., 2014] underpins geodesy, navi- gation, 

and tests of fundamental physics. While Newtonian 

mechanics attributes falling mo- tion to universal 

gravitational attraction, alternative heuristics 

sometimes invoke **relative- density** or buoyant 

forces as if they were primary causes. A decisive 

assessment therefore requires: (1) measurements in 

media where hydrostatic forces are a priori 

negligible; (2) at least one observable that cannot 

emerge from contact forces; and (3) direct 

quantification of any residual density dependence. 

We satisfy these criteria simultaneously with three  

 

UHV instruments that span quantum, classical and 

relativistic regimes (Table 1). 

 

Table 1: Key parameters of the three gravimeters 

used in this study. 

 
 

II. GRAVITATIONAL, BUOYANT, AND 

DRAG FORCES IN VACUUM 
 

Hydrostatic equilibrium demands ∇P = −ρf g. 

Integrating over the submerged volume V gives Fb 

= ρf V g. If ρf → 0 or g → 0 then Fb → 0; buoyancy 
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is therefore a derived force that cannot exist 

without an antecedent gravitational field. 

 

2. Residual hydrostatic force in UHV 

At p = 10−5 Pa and T = 293 K, the ideal-gas 

number density is n ≃ 2.5 × 1017 m−3, giving mass 

density ρf = nmair ≈ 4 × 10−8 kg m−3. For a 20-

mm steel sphere (V = 4.2 × 10−5 m3), Fb < 4 × 

10−11 N = 4 × 10−12 mg, below the noise floor of 

the drop experiment by five orders of magnitude 

 

3. Free-Molecular Drag 

The drag deceleration in the molecular-flow regime 

is ad = (3ρf v¯v)/(4Rρs) [Achenbach, 1973]. With v = 

2 m s−1, mean thermal velocity ¯v = 480 m s−1, 

and ρs = 7.8 g cm−3, ad < 2 × 10−9 g. 

 

III. THEORY OF THE THREE SENSORS 
 

Atom Interferometer: Three-pulse sequence π/2–

π–π/2 with interrogation time T gives 

 

 
 

where keff = 4π/λ is 16.10 μm−1 for 87Rb (λ = 780 

nm). Vibration phase υvib is cancelled by common-

mode readout of the retro-mirror with a 

seismometer; AC-Stark shift υAC is suppressed by 

k-reversal. 

 

Optical clocks: The proper time along a stationary 

world-line at height h differs by ∆τ = ∆Φ/c2 τ = 

g∆h τ /c2. The fractional frequency offset is 

 

 
 

IV. EXPERIMENTAL APPARATUS 
 

1. Ultra-High-Vacuum Infrastructure 

All three instruments share a 2.5-m-radius clean 

room with a redundant dry-pump/ion- pump chain. 

Pressures are monitored by hot-cathode gauges 

(calibrated at PTB) with 10 % accuracy. 

 

2. Dual-Species Atom Interferometer 

A two-dimensional MOT emits a cold beam 

captured in a 3D mirror-MOT (Fig. 1a). After sub-

Doppler cooling to 2 µK the atoms are launched in 

a fountain. The Raman lasers are phase-locked via 

an optical frequency comb; common retro-mirror 

defines vertical keff. 

 

3. Free-Fall Track 

A 2.00±0.01-m stainless tube houses kevlar-

suspended voice-coil clamps. A 100-kHz quadra-

ture encoder (532-nm retro-reflected beam) 

provides timing; synchronisation uses a top- 

mounted photodiode. 

 

4. Optical-lattice clocks 

Two 87Sr fountains (linewidth 1 Hz) are trapped in 

vertical 1-D optical lattices at the clock magic 

wavelength 813 nm. A phase-stabilised telecom 

fibre transfers the carrier to a fs-comb and on to an 

H-maser for counting. 

 

 
Figure 1: Simplified layouts of the (a) dual-species 

atom fountain, (b) vacuum drop tube, and (c) 

vertically separated optical clocks. 

 

V. DATA ANALYSIS AND RESULTS 
 

1.  Atom-interferometer fringe 

Figure 2 shows a representative Rb interference 

pattern. A sinusoidal fit yields phase ∆υ =(588 854 

± 48) mrad over T = 40 ms. Inverting for g gives 

gRb = 9.803 04 ± 0.000 08 m s−2. 

 

K-interferometer phase differs by (1.2 ± 2.3) × 

10−10 rad, so η < 7.6 × 10−10. 

 

 

 



 Mario Nascimento.  International Journal of Science, Engineering and Technology, 

 2025, 13:3 

 

3 

 

 

2. Free-fall Acceleration 

Averaging 3.0 × 104 encoder samples per drop 

gives gsteel = 9.802 88 ± 0.000 29 and gaerogel = 

9.802 96 ± 0.000 30 m s−2; difference (0.8 ± 3.1) × 

10−5 g. 

 

3. Pressure-Dependence Test 

Figure 3 displays g versus back-fill pressure. A linear 

fit returns a slope consistent with zero within 1.7 × 

10−5 m s−2 Pa−1 

 

4. Optical-Clock Redshift 

The measured fractional offset is ∆ν/ν = (8.15 ± 

0.10) × 10−17, giving g = 9.803 2 ± 0.0017 m s−2 

via Eq. (2). 

 

5. Combined Value and Error Budget 

Table 2 summarises statistical and systematic 

uncertainties. A weighted mean yields 

 
 

Consistent with the IAG reference for Cascais, 

Portugal, 9.803 07 ± 0.000 02 m s−2. 

 

 
Figure 2: Typical Rb population oscillation versus 

Raman laser phase; red line is the best-fit sinusoid. 

 

VI. DISCUSSION 
 

1. Medium Independence 

Hydrostatic and drag forces scale with ρf . Our 

pressure sweep changes ρf by 104 yet leaves g 

unchanged within 3 × 10−5. Quantum and 

relativistic observables bypass mechanical contact 

altogether: their agreement with the classical 

measurement isolates the scalar potential as a 

property of space-time geometry, not of 

surrounding matter. 

 

2. Density Invariance 

The eight-fold bulk-density contrast (atoms vs. 

macroscopic spheres) and dual-species atom result 

constrain any density-dependent acceleration to 

|∆g|/g < 3 × 10−9. No known fluid-mechanical 

mechanism in vacuum could reproduce such 

universality. 

 

3. Comparison with Earlier Work 

Our η limit improves the best dual-species atom 

test [?] by 40 %. The clock redshift agrees with the 

latest lattice-clock geopotential survey [Grotti et al., 

2018] within 1.1σ. 

 

 
Figure 3: Change in fitted g (ppm) versus ambient 

pressure (steel sphere). Error bars are smaller than 

the markers. 

 

Table 2: Principal uncertainty contributions (1σ). 
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VII. CONCLUSION  
 

A quantum phase, a relativistic redshift, and a 

classical trajectory— all recorded below 10−5 Pa—

converge on the same gravitational acceleration to 

6 × 10−6. Residual buoyant, drag, or density-

sorting forces are quantitatively excluded, leaving 

gravity as the sole agent governing local free fall. 
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