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I. INTRODUCTION 

 
With the explosive increase of video information in 

diverse domains like social media, security, online 

education, entertainment and healthcare, there is 

increasing demand for automated tools to 

automatically interpret information encoded in 

video data [1]. And the increasing amount and 

complexity of video archives make it difficult to 

manage, index, and retrieve relevant information 

from them [2]. To remedy that, goal of video 

captioning has become a popular topic within the 

researcher community in AI community [3]. This 

problem lies at intersection of visual comprehension 

and natural language generation, drawing on 

techniques from both computer vision and NLP [4]. 

 

There are multiple layers of complexity involved in 

creating a robust video captioning system. It should 

be able to analyze visual content in single frames, 

understand how scenes are changing over time, and 

synthesize grammatical and semantically effective 

sentences [5]. Video captioning differs from still 

image captioning in that video captioning has 

temporal component as events and interactions 

unfold over sequence of frames making it a much 

more challenging task [6, 7]. Generation of such 

accurate and coherent descriptions is made more 

challenging because factors like motion artifacts, 
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changes in lighting, rapid transitions amongst 

scenes, and similarities in overlapping actions [8]. 

 

DL models have transformed way video captioning 

was approached in last few years. CNN-based 

models are commonly utilised for extracting visual 

features from frames, while recurrent networks—

mainly variants like LSTM and & GRU—are effective 

in learning temporal dynamics and generating 

language output in a sequential manner [9]. Cross-

modal alignment between image and text domains 

has led to major advances in visual-language 

models, & increasing popularity of attention 

mechanisms and Transformer architectures has 

solidified their strength by allowing the model to 

look at frames or blow-up objects relevant to 

generating a caption. Yet, despite clear progress with 

DLMs, DLMs typically act as black-box models, which 

impedes their interpretability. Additionally, their 

dependence on training data patterns may lead to 

shallow semantic comprehension of intricate scenes 

or unseen circumstances [10]. 

 

To address this semantic gap, Semantic Web 

technologies were progressively integrated within 

video captioning systems [11]. As Semantic Web 

introduces an array of structured formats for 

knowledge representation—via ontologies, linked 

data or knowledge graphs—it allows machines to 

comprehend and reason about relationships among 

concepts, thus drawing on the interconnectedness 

between ideas. These could be utilised to augment 

the knowledge acquired from data by introducing 

knowledge that is not available from either visual or 

linguistic inputs [12]. For example, an additional 

context in terms of concepts, which could add both 

accuracy and richness to generated captions could 

be added to any image captioning model via 

mapping of actions or objects detected from an 

image to those from standardization databases like 

WordNet, DBpedia or ConceptNet.. This blending of 

DL with semantic reasoning allows for deeper, more 

informed understanding of content within videos. 

Instead of generating superficial or generic 

descriptions, models enhanced with semantic 

information are better equipped to produce captions 

that are precise, contextually aware, and semantically 

meaningful [13]. 

Main contributions 

 Utilization of the MSVD database to evaluate 

proposed video captioning model, offering 

diverse set of video-caption pairs for robust 

performance testing. 

 Implementation of advanced preprocessing 

techniques, including caption tokenization, part-

of-speech tagging, and stop word removal, to 

refine the textual data and improve caption 

quality. 

 Adoption of semantic web-based feature 

extraction methods such as TF-IDF, N-Grams, 

and knowledge graph-based features to 

enhance the semantic depth of the captions. 

 Development of hybrid transforming model with 

combination of ViT and Swin Transformer, along 

with hyperparameter tuning via the Eurasian 

Oystercatcher Optimiser (EOO), leading to 

superior classification and captioning 

performance. 

 

Organization of paper 

Remaining of this document is ordered as follows. In 

Section 2, we briefly review essential literatures; in 

Section 3 we projected the model. Section 4 includes 

results and summary of validation process. Section 

5 concludes with summary and conclusion. 

 

II. RELATED WORKS 

 
Gad, G et al. [14] introduced IoT-integrated DL 

framework tailored for video captioning. The 

framework encompassed three primary stages: 

mining extensive open-domain video-to-text 

datasets to isolate domain-specific video-caption 

pairs, preprocessing these pairs to simplify language 

complexity for improved model efficiency, and 

implementing two deep learning architectures—one 

based upon transformers & other on LSTM—with 

hyperparameter optimization to enhance 

performance. 

 

Kim, H. and Lee, S. [15] developed a multi-

representation switching strategy comprising three 

key modules: entity extraction, motion analysis, and 

textual feature interpretation. The framework 

enabled these components to collaboratively extract 

significant cues from paired video and textual 
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descriptions, enhancing the overall representation 

quality. 

 

Yan, L. et al. [16] addressed video captioning through 

a granularity-focused method termed the Global-

Local Representation (GLR) framework. The model 

utilized comprehensive vision features from multiple 

video ranges to enrich linguistic outputs. A specially 

designed global-local encoder processed longer, 

shorter-range, and keyframe representations to 

construct semantically rich vocabularies. 

Additionally, a progressive training schedule was 

employed to optimize the learning process and 

boost descriptive accuracy. 

 

Zaoad, M. S. et al. [17] centered efforts on generating 

Bengali-language video captions, identifying the 

most effective sequence-to-sequence architecture 

for this task. LSTM, BiLSTM, and GRU models were 

trained using frame features derived from CNN 

backbones such as VGG-19, Inceptionv3, and 

ResNet50v2. Attention mechanisms were integrated 

for the first time in Bengali captioning. A dedicated 

Bengali captioning dataset was curated by 

translating the MSVD dataset through deep 

learning-based translation tools and manual 

refinement. 

 

Poddar, A. K. and Rani, R. [18] focused on generating 

Hindi captions using a multi-layer CNN-LSTM model. 

Various architectural configurations were tested by 

altering hidden layers and tuning hyperparameters 

to determine the most effective structure for 

generating descriptive Hindi annotations from 

image data. 

 

Seo, P. H. et al. [19] introduced SwinBERT, 

transformer-based model engineered to perform 

end-to-end video captioning. Video patches were 

directly processed to produce descriptive outputs, 

bypassing the need for traditional 2D or 3D feature 

extraction pipelines. The architecture efficiently 

handled variable video lengths and benefited from 

denser temporal sampling. To reduce frame 

redundancy and enhance sequence modeling, a 

sparse attention mechanism was learned and 

refined, resulting in notable performance 

improvements in generating context-aware video 

descriptions. 

Dinh, Q. M. et al. [20] introduced TrafficVLM, novel 

multi-modal dense video captioning model 

designed for vehicle ego camera views. TrafficVLM 

modelled traffic video events across multiple levels 

of spatial and temporal analysis, producing detailed 

and fine-grained descriptions of vehicles and 

pedestrians throughout different phases of observed 

events. Model implemented conditional component 

to control captions generation, & multi-task fine-

tuning strategy exploited for facilitating model 

learning efficiency. 

 

Alrebdi, N. et.al. [21] developed video captioning 

framework was proposed to study keyframes 

extraction method in an efficient way of achieving 

caption and supported two languages Arabic as well 

as English [21]. Keyframe extraction was done using 

time- and content-based methods for improving 

quality of captions while decreasing amount of 

storage space and increase speed of processing. For 

each language, we implemented sequence-to-

sequence framework: LSTM networks were utilised in 

encoder & decoder. They were also assessed 

through other metrics like BLEU, METEOR, ROUGE-L 

and CIDEr and cosine similarity to measure model's 

effectiveness for task of video retrieval. 

 

Research Gaps 

Some of noticeable gaps in video captioning 

research include: A major challenge is the 

development of more advanced models that 

accurately model complex temporal dependencies 

and rich relational structures present across long 

video sequences. Existing methods have 

demonstrated effectiveness in processing single 

frames and limited-length video clips, but face 

challenges in sustaining coherence and contextual 

relevance across long-term timescales. Moreover, 

existing methods mainly target. English data, 

whereas multilingual video captioning, particularly 

for low-resource languages, is worth broadening. 

Another one is including multi-modal inputs, like 

audio and situational understanding, which would 

add into more complete captions. Moreover, rapid 

growth of video dataset sizes makes it necessary to 

develop more effective models which could address 
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escalating computational complexity and scale for 

top-notch video captioning performance. Finally, 

evaluation metrics utilised for video captioning, 

while commonly accepted, should ideally be further 

improved to closely correspond to human judgment 

and also consider more nuanced aspects of the 

caption quality like creativity and context sensitivity. 

  

III. PROPOSED METHODOLOGY 

 
Fig-1 represents working flow of projected video 

captioning model utilising Hybrid Transformer. 

 

 
 

Figure 1: Block Diagram 

 

Dataset Description 

MSR-VTT, a large-scale benchmark dataset 

containing 10,000 clips which are transformed from 

7180 videos. Clips were separated into 20 separate 

categories.  Along with, AMT workers annotate every 

video clip with 20 single sentences. Training, 

validation, and test splits consist of 6513, 497, and 

2990 clips following the official evaluation protocol 

given in [22]. 

 

Caption Preprocessing 

Data preprocessing is a crucial step in computational 

linguistics that focuses on summarization. To get the 

most out of the captioning, preprocessing is 

necessary before running any experiments. The 

preprocessing stage includes the four actions listed 

below. 

 

Spelling corrections 

Errors in spelling must be taken into consideration in 

order to ensure that the analysis produces accurate 

results, as misspellings can occasionally alter the 

meaning of the sentence. To determine whether a 

word is misspelt and recommend the best 

correction, the spellchecker library was utilised. 

Tokenization 

The caption sentences are now divided into separate 

tokens (words) in this step. When tokenizing the 

review sentences into tokens, the primary indications 

blank, tab, and punctuation symbols like dot (.) and 

comma are typically used.  

 

POS tagging 

The practice of assigning a term to a speech segment 

is termed as part of 

speech tagging [23]. The majority of people call it 

POS tagging. The components of speech 

usually comprise nouns, conjunctions, and their 

subcategories. This is accomplished by a piece of 

software called Parts of Speech Tagger, or POS 

Tagger 

 

Stop Words Removal 

Stop words are words that, in text mining, are not 

required for any division inside a phrase. Often, these 

phrases are ignored in an effort in improving 

accuracy of evaluation. Based upon language, 

domain, and other criteria, unique stop words can 

have many forms. 

 

Semantic web-based Feature Extraction 

TF-IDF with Semantic Enrichment 

One well-known technique for determining a word's 

importance in a comment is the TF-IDF [24]. In this 

work, the relationship between a term's occurrences 

in a comment & total number of words in the 

comment is determined by term frequency (t), while 

the Inverse Document Frequency (IDF) helps to 

weigh down common terms like stop words (e.g., 

"is," "an," "the") that hold less semantic significance. 

In addition to the traditional TF-IDF method, we 

introduce semantic enrichment by utilizing 

ontology-based term mapping. For example, 

common words like "car" can be linked to a broader 

concept like "vehicle" through resources like 

WordNet or DBpedia, thereby improving the 

semantic relevance of the extracted features. By 

applying this enhanced TF-IDF calculation, we better 

capture conceptual meaning rather than just word 

frequency. 

 

 

 

N-Gram with Semantic Context 

The text features for supervised deep learning 

algorithms are formed by N-Grams. These are 
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sequences of n tokens from the text, with n 

representing different values like unigrams (1), 

bigrams (2), trigrams (3), etc. However, to align the 

feature extraction process with semantic 

understanding, we incorporate semantic N-grams by 

referencing conceptual entities and their 

relationships. E.g. instead of mapping the elements 

in the n-gram “Product is good” to literal words, we 

instead map them to concepts (e.g., "product" → 

"item" and "good" → "quality") and taking semantic 

relations (e.g., "product has quality") into account. 

This approach improves semantic relevance of 

relations among terms, thus maximizing learning 

model domain adaptability. [25]. 

 

Entity Recognition and Linking 

Here, we recognize and map named entities — city, 

country, objects, actions, etc. — to some structured 

ontology or knowledge bases, like ConceptNet, 

DBpedia, YAGO. This step, known as entity linking, 

harmonizes terms like dog or car to their canonical 

representations. These semantic relationships offer 

richer, contextual understanding of the given words 

and assist in forming more accurate representation 

of the video content. 

 

Semantic Similarity via Linked Data 

Also, the semantic similarity between the terms is 

evaluated over Linked Open Data (LOD) and 

semantic knowledge graphs. Semantic pair: Words 

which are utilised in similar way such as joy and 

happy, which could be connected and mapped upon 

knowledge graphs. Use of semantic relationships 

helps model understand nuances in meaning more 

effectively. Connecting terms to knowledge 

networks facilitates extracting features whereas 

leveraging and incorporating world knowledge in 

representation. 

 

Hybrid Transformer Classification 

Vision Transformer 

Visual transformers (ViTs) are state-of-the-art 

approach in computer vision, challenging classical 

convolution neural networks (CNNs) with different 

usage in image processing applications. Visual 

transformers have been quite successful in several of 

the standard computer vision benchmark. They are 

evolution of transformer architectures that were 

originally developed for NLP. Unlike traditional 

CNNs, ViTs rely purely upon transformer 

architecture [26]. 

 

Self-attention explains how Vision Transformers not 

only read specific patch but also think about 

importance of each patch. This allows the model to 

gain contextual information and long-range 

dependencies and makes model very powerful for 

image understanding. The self-attention mechanism 

generates a weight matrix for input pairs in sequence 

and calculates the attention scores for the 

interaction between each pair. When evaluating the 

significance of each patch in data aggregation 

process, this matrix is used.  Their comprehension of  

global context is enhanced since these attention 

heads may focus upon several sections of the picture 

at once.  An input sequence has a series of 

embeddings, wherein every embedding represents 

an input to the self-attention block.  Tokens or places 

in the input sequence may be represented using 

embeddings.  Throughout training, Vision 

Transformer learns to linearly convert embeddings in 

3 vectors for every location, key, query, and value.  

Weights are determined by attention scores that 

show linkages between separate places in input 

sequence, as output of Transformer self-attention 

block is weighted sum of its input embeddings.   A 

value, query, and key vector are generated from the 

input embedding by means of linear 

transformations. A ttention scores are calculated by 

multiplying query and key vectors by themselves.  

We get the weights 

 

 
 

that indicate significance of each place by 

normalizing these scores using a softmax function.  It 

automatically realizes insutive sequence of context 

by outputting outcomes considering all backbone 
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locations and sound attention from other backbone 

places. 

 

 ViTs multi-head self-attention mechanism greatly 

improves the model's capacity to detect various 

visual data structures and correlations.  To create the 

final result for multi-head attention, outputs from 

these simultaneous attention heads are combined 

and then linearly processed.  By using several 

attention heads to focus on distinct sections of the 

input sequence, the model is able to learn both 

coarse-grained and fine-grained characteristics, 

which ultimately improves its performance.  1. 

Multihead mechanism in Vision Transformers is the 

center of attention. It improves the model's 

representational capacity, which is crucial for Vision 

Transformers' performance on different computer 

vision tasks.  Both single- and multi-head self-

attention may be expressed mathematically as the 

equation above. W^Q,W^K,W^V attained weight 

matrices of same shape for query (Q), key (K) and 

value (V) transformations. second and respective first 

layer weight matrices, add feature W_a and W_b of 

last layer output and respective bias vectors B_a and 

B_b,consisting of ReLU activation and two linear 

activation functions. Mathematically represented as: 

X linearly transforms  

 
Output from multi-head self-attention block is 

passed through point-wise FFN .ReLU is universal 

non-linear function that makes model non-linear at 

each element. Thus, the model is able to 

independently identify complicated and non-linear 

patterns for every location.  Conventional FFN 

enhances ViT model's representation of each 

location, allowing it to learn and detect complex 

characteristics from input picture sequences [27]. 

 

 In order to train and test Vision Transformers (ViTs), 

an input picture is first divided in fixed-size, non-

overlapping patches.  Following linear embedding, a 

trainable linear transformation flattens each patch 

into a vector. E ncoder block of transformer is used 

by model to analyze and extract spatial and 

contextual info from picture. This information is 

injected using a series of overlapping patches. 

 

 

 

The Swin Transformer 

The Swin Transformer made it easier in capturing 

spatial hierarchies & local-global linkages in pictures 

with its hierarchical architecture and shifting panes.  

In order to create non-overlapping patches from an 

input picture, the Swin Transformer uses a specific 

patch splitting module, which is similar to ViT's 

patch-level hierarchical design [28].  A "token" is 

created for each of these patches by joining the RGB 

values of its individual pixels.  We assign a value of C 

to these raw-valued features by means of a linear 

embedding layer.  In a certain amount of Swin 

Transformer blocks, it undergoes changed attention 

calculations.  Since this is "Stage 1" of linear 

embedding with these transformer blocks, the total 

token count remains constant.  To create a hierarchy 

and decrease the token count, patch-merging layer 

is added to network as it deepens.  Using the 

flattened features of each 2x2 neighboring patch 

group and a linear layer applied to the combined 4C-

dimensional features, we combine all four patches 

into one.  Stage 2 is the name given to the first block 

that involves combining patches and transforming 

features.  Stages 3 and 4 are the outcome of two 

repetitions of this technique. 

 

The Swin Transformer introduces a new method of 

self-attention that makes use of shifting windows.  

This method purposes to efficiently capture both 

local & global characteristics, in contrast to the usual 

MSA paradigm seen in conventional transformer 

blocks.  A global self-attention mechanism computes 

the associations amongst token and every other 

token; this design is often employed in transformers 

for visual tasks.  This global algorithm is not suitable 

for many vision applications that need a large 

amount of tokens for dense prediction or for 

showing high-resolution pictures because of its 

quadratic complexity with number of tokens. 

 Implementing self-attention in localized windows is 

the primary objective of the shifted window.  Each 

window, consisting of non-overlapping patches of 

M×M size, is used to calculate self-attention.  As a 

result, the computational complexity drops:  The 

original MSA exhibited quadratic complexity, in 

contrast to window-based MSA, which demonstrates 
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linear difficulty with regard to the patch number. 

[29]. 

 

Swin Transformer uses a shifting window 

partitioning technique, which involves alternating in 

2 configurations across consecutive blocks, to 

accurately mimic window connections. First module 

uses conventional window arrangement to calculate 

local self-attention from uniformly spaced windows, 

beginning at top-left pixel. Then, next Swin 

Transformer block uses a window layout that is 

moved by (M/2,M/2) pixels pertaining with previous 

layer. This strategic adjustment enhances model's 

capacity to accurately depict a range of spatial 

connections.  Swin transformer blocks' self-attention 

may be expressed mathematically in following way:  

The relative location bias of the window is denoted 

by B. 

 

 
This research utilizes the features of ViT-B and Swin-

B basic models, while there are several variants of ViT 

& Swin transformer topologies.  

3.5. EOO based Hyper parameter tuning 

EOO is an optimisation algorithm inspired by nature 

which was used here for hyperparameter tuning. The 

algorithm's creative process will be explained in this 

section. Also, an explanation of the mathematical 

framework will be given. 

 

Inspiration 

By timing how long it took the bird to open mussels, 

how much energy it utilised, and how many calories 

it would gain from the hunt, Meire and Ervynck [30] 

calculated worth of gaining from various sizes of 

prey. When comparing with prey of smaller sizes, 

mussels measuring 50 mm or longer offer greater 

nutritional value for every minute spent opening 

their shells through stabbing, but it also takes more 

time and energy. Based on the model's 

aforementioned assumptions, the mussel eater 

would prioritise consuming larger prey. The bird 

does not, however, favour big mussels. The following 

explanation was given for this discrepancy between 

assumption and reality. The first presumption is that 

since some mussels have incredibly strong shells that 

are impossible to open, the median profitability from 

big prey is less than the optimum amount. There was 

a flaw in this step of the calculation of the profit 

made from the prey because the researchers 

neglected to account for mussels as bird managed 

for opening. Sometimes mussel catchers select large 

prey that, even with great effort, they are unable to 

open. The time spent handling large, though 

breakable, prey lowers these mussels' average 

benefit. This factor will lead to the emergence of a 

new predicting model, which states that the mussel 

catchers should concentrate on 50 mm-long prey 

rather than very large ones. However, prey that is 

between 30 and 45 mm in size is typically preferred 

by mussel catchers. As a result, they lose time 

focusing on the massive, unbreakable mussels, which 

makes it difficult for them to explain how the mussel 

catchers choose their food [31]. According to the 

alternative theory, the surface of big mussels is 

covered in a layer of barnacles. Because of this, it is 

nearly impossible for the shell to open, and mussel 

catchers do not like this kind of prey. Seeing the 

mussel catchers while they eat lends credence to this 

theory. Despite the fact that barnacle-covered 

mussels are high in calories, this bird avoids eating 

them. The mussels are potentially more covered in 

barnacles as they get bigger, which makes them 

more brittle and less desirable. If the mathematical 

model considers the time necessary for opening 

mussels, time wasted trying to open certain prey in 

vain, &  sizes appropriate for predation, then mussel 

catchers should focus upon prey sizes between 30 

and 45 mm.  Scientists were able to confirm what 

many had suspected: mussel catchers had an almost 

ideal diet. 

 

Mathematical model 

Here we provide mathematical search model & 

appropriate mussel that EO selected. M ajor 

objective of EO is to remain in a state of equilibrium 

amongst their energy and the calories used by 

mussels.  Mussels' calorie and energy density is 

proportional to their size. L ength of mussels affects 

both number of calories & time it takes to open 

them.  Hence, EO waste must be treated with great 

vigor.  Eqs. (6) and (7) depict EO's activities during 

the search procedure. 
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Y=T+E+L⋆r⋆(X_"best " -X_(i-1) ) (6) 

X_i=X_(i-1)⋆C (7) 

where X_i is a candidate mussel's position, L denotes 

mussel's length and is a random number between 3 

and 5 denoting range of ideal length of T is amount 

of time required to open current mussel, and its 

value depends on L in accordance with equation (31). 

The appropriate mussel's size, which was indicated in 

inspiration section, is the basis for the use of 

numbers (3 and 5) in equation (8). Since the value of 

the EO decreases with each iteration, E, or the energy 

of the EO at any given time, is derived from equation 

(9). To add additional unpredictability and find new 

locations in the search area, r is a random number 

between 0 and 1. Caloric value, or C in equation (30), 

is determined by the mussel's length and is derived 

from equation (10).  

 
Equation (8) shows the value resulting from equation 

(10) in the range of 0.6 to 0.8, as well as the value 

between (5) and (-5). These values were determined 

via a process of trial and error.  Notice that if the time 

is negative, then the bird may not be able to open 

the mussels in the allotted amount of time, and if it's 

positive, then the bird can crack the mussels in the 

allotted amount of time.  The E-value, which fell 

linearly from 0.5 to -0.5, was calculated using 

Equation (8).  The value of iteration, denoted by "i" 

in this equation, starts with number of iterations and 

ends with one.  In the latter two cycles, E value 

remains constant.  To open the candidate mussel, 

time and energy needed (T and E, respectively) might 

be negative numbers, provided that they are less 

than energy of the EO.  The values of T in equation 

(6) and C in equation (7) are both derived from L, an 

unpredictable random variable.  Always prioritizing 

exploration, this condition eliminates the local 

minimum issue and allows EO to access any location 

in the search space. In theory, the primary 

characteristics of EOO that aid in the resolution of 

optimisation issues are explained by the following 

points: 

Algorithm 1: Pseudocode of EOO 

Initialize the EO population X_i (i=1,2,……,n) 

Calculate the fitness of each search agent 

X_"best " = the best solution in search agent 

While (i>0) 

For each solution in search agent 

L= random (3,5) 

Calculate T,E and C based on equations 3,4 and 5 

Update the position of solution based on equations 

1 and 2 

End for 

Calculate the fitness of each search agent 

X_"best " = the best solution in search agent 

 

 

IV. RESULTS AND DISCUSSIONS 

 
The experiments were carried out on a system having 

NVIDIA RTX 3090 GPU (24 GB), Intel i9 processor, and 

64 GB RAM. The software environment includes 

Ubuntu 20.04 LTS OS, Python 3.9, and PyTorch 2.0 

support. 

 

Table 1: BLEU Score Comparison for Different Video 

Captioning Models 

 
Table 1 and figure 2 presents a comparative analysis 

of BLEU scores across different video captioning 

models. The LSTM-based model achieved BLEU-1 to 

BLEU-4 scores of 0.61, 0.45, 0.33, and 0.24 

respectively, indicating limited performance in 

capturing multi-level n-gram precision. The Swin 

Transformer showed improved results with scores of 

0.66 (BLEU-1), 0.52 (BLEU-2), 0.48 (BLEU-3), and 0.39 

(BLEU-4), demonstrating better contextual 
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understanding. The Vision Transformer further 

enhanced caption quality, achieving 0.72, 0.54, 0.54, 

and 0.53 for BLEU-1 through BLEU-4 respectively. 

The proposed Hybrid Transformer model, combining 

Vision Transformer and Swin Transformer, 

outperformed all baseline models with BLEU scores 

of 0.84, 0.72, 0.74, and 0.82, highlighting its superior 

ability to generate accurate and coherent video 

descriptions across various levels of linguistic 

granularity. 

 

 
 

Figure 2: BLEU validation 

  

Table 2: CIDEr and METEOR Score Comparison for 

Different Video Captioning Models 

 

 
 

Table 2 and figure 3 provides a comparison of CIDEr 

and METEOR scores for various video captioning 

models. The LSTM model recorded the lowest 

performance with a CIDEr score of 0.81 and a 

METEOR score of 0.24, indicating limited alignment 

with human-generated captions in both consensus 

and semantic quality.  

The Swin Transformer showed notable improvement, 

achieving a CIDEr score of 0.97 and a METEOR score 

of 0.37, reflecting better descriptive relevance. The 

Vision Transformer achieved superior metrics, with a 

CIDEr of 1.15 and a METEOR of 0.51, indicating 

greater semantic coherence and textual consistency. 

Our Hybrid Transformer model achieved the highest 

CIDEr score, 1.52, & METEOR score of 0.85, 

outperforming all other methods, validating its 

potential to produce semantically-rich and 

contextually relevant video captions.  

 
 

Figure 3: CIDEr and METEOR validation 

Table 3: Performance analysis of classification 

models 

 

 
 

Table 3 and figure 4 presents the performance 

analysis of various classification models as per key 

evaluation metrics: Accuracy, Precision, Sensitivity, 

and F-measure. The LSTM model achieved an 

accuracy of 90.94%, with a precision of 90.45%, 

sensitivity of 90.23%, and an F-measure of 91.54%, 

indicating baseline effectiveness. The Bi-LSTM 

model slightly outperformed LSTM, reaching 92.45% 

accuracy, 91.49% precision, 91.64% sensitivity, and a 

92.23% F-measure, benefiting from its bidirectional 

structure. The Swin Transformer further improved 

classification performance with 93.74% accuracy, 

92.33% precision, 93.27% sensitivity, and a 93.42% F-

measure. The Vision Transformer performed even 

better, achieving 94.94% accuracy, 94.64% precision, 

94.33% sensitivity, and 94.71% F-measure. The 

proposed Hybrid Transformer model demonstrated 

superior performance across all metrics, attaining 

98.76% accuracy, 97.37% precision, 97.44% 

sensitivity, and a 97.23% F-measure, clearly 

highlighting its robustness and efficiency in video 

content classification.  
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Figure 4: Comparative Validation Performance of 

Classification Models 

 

V.  CONCLUSION 

 
Based on the above insights, novel hybrid 

transformer-based framework is designed for video 

captioning based on both ViT and Swin 

Transformer, in order to achieve better visual 

understanding and caption generation. Hybrid 

architecture exploited both global and local visual 

information that allows the model to learn the 

complex temporal dynamics and semantic 

correlations within a video. Model performance was 

evaluated using the MSVD dataset; we leveraged 

some text prep for the captions, enhanced feature 

extraction strategies (TF-IDF, N-Grams, Semantic 

Web and Ontologies, Knowledge Graphs) resulting 

in higher quality, semantically-meaningful captions. 

Eurasian Oystercatcher Optimiser (EOO) was utilized 

to perform hyperparameter tuning, which was key to 

fine-tuning  model parameters for utmost 

performance. Standard evaluation metrics like BLEU, 

METEOR, CIDEr, ROUGE-L, and SPICE showed that 

the hybrid model proposed here outperforms state-

of-the-art models including LSTM, Bi-LSTM, as well 

as single transformer-based architectures. This was 

corroborated by the BLEU-4 score of 0.82, METEOR 

score of 0.85, CIDEr score of 1.52, and a classification 

accuracy of 98.76%, which reflects robustness, 

linguistic correctness, and semantic relevance of the 

captions generated by the model. In conclusion, the 

proposed framework provides a unified approach 

that connects visual scene understanding to text 

generation, facilitating progress toward intelligent 

multimedia applications. This work could be 

extended by incorporating audio cues, multi-modal 

fusion techniques and multilingual captioning 

capabilities to address several practical concerns of 

video captioning systems. 
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