An Open Access Journal

Al-Driven Mock Interviews: A New Era in Candidate Preparation

Guide: Dr. Nagaraj M Lutimath Associate Professor CSE.Dsatm nagarajlutimath@gmail.com Mohammed Adnan Ahmed CSE.Dsatm 1DT22CS093 1dt22cs093@dsatm.edu.in Shashank BS CSE.Dsatm 1DT22CS143 1dt22cs143@dsatm.edu.in Munmeeth K CSE.Dsatm 1DT22CS099 1dt22cs099@dsatm.edu.in

Sanjay J Ganiga CSE.Dsatm 1DT22CS135 1dt22cs135@dsatm.edu.in

Abstract- This paper introduces an innovative Al-driven mock interview platform designed to enhance interview preparedness by assessing candidates across three key dimensions: emotions, confidence, and knowledge. Utilizing deep learning convolutional neural networks, the system analyzes facial expressions to gauge emotional responses, while speech recognition and natural language processing evaluate the candidate's confidence levels. Additionally, semantic analysis and keyword mapping assess the candidate's knowledge by comparing responses with relevant online resources. This comprehensive approach aims to reduce pre-interview anxiety, boost confidence, and refine interview skills, providing a more effective preparation tool compared to traditional methods.

Keywords- Al-driven, mock interviews, deep learning, Leveraging deep learning, emotion detection, voice analysis, and language processing, the system thoroughly assesses candidates' emotional responses and communication skills.

I. INTRODUCTION

Drawing from this foundational understanding, our paper, "Al-Driven Mock Interviews: A New Era in Candidate Prepa- ration," Investigates how machine learning technologies can be leveraged. further revolutionize the interview process. By leveraging Al technologies, By using advanced techniques like deep learning and language understanding, the system can analyze data with greater accuracy and efficiency and facial expression analysis, we can create mock interview platforms that provide candidates with personalized feedback and realistic practice scenarios. This not only helps candidates more effectively prepare for interviews but also addresses some of the limitations inherent traditional interview in methods.

II. LITERATURE SURVEY

1. Introduction

The integration of artificial intelligence (AI) into various sectors, including education and recruitment, has led to sig- nificant advancements in how we prepare for and conduct interviews. Aldriven mock interviews have emerged as an effective tool for enhancing interview preparedness and im- proving candidate performance. This literature survey exam- ines existing research on Aldriven mock interviews, focusing on their benefits, challenges, and applications.

real 2. Overview of Al in Recruitment

Al technologies such as natural language processing (NLP) and machine learning (ML) have become integral to modern recruitment processes. These technologies offer scalable and objective solutions for evaluating candidates, mitigating

© 2025 Mohd Adnan Ahmed. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

biases commonly found in traditional interview methods. Al-driven mock interviews provide personalized feedback, enhance can- didate • readiness, and democratize access to high-quality inter- view training resources.

3. Key Studies and Frameworks

- **Campion, Palmer, and Campion (1997)**: This foun- dational paper reviews the structure of selection inter- views and identifies 15 components that enhance the reliability and validity of interviews. The authors high- light the importance of structured interviews in reducing biases and improving hiring decisions. This groundwork emphasizes the need for structured approaches in Al-driven mock interviews to maintain consistency and Dobjectivity. [7]
- **Patil et al. (2024)**: This study proposes an Al-based mock interview platform that assesses candidates', emotions, confidence, and knowledge using deep learning and NLP. The system offers real-time feedback and personalized training sessions, showcasing the potential of Al to enhance interview preparation. [4]
- **Johnson (2024)**: This case study explores the
 use of Al-driven mock interview platforms
 specifically for STEM graduates. The research
 demonstrates how these platforms can provide
 cost-effective and scalable in-terview
 simulations, significantly improving candidates'
 technical and behavioral skills. [3]
- **Interaction Design in Al Mock Interviews (Various Authors, 2024)**: This paper presents a theoretical framework for interaction design in Al mock interview applications. It proposes principles and strategies based on user goals and current trends in Al application design, highlighting the importance of user-centric design in developing effective Al-driven interview tools. [8]

Benefits of Al-Driven Mock Interviews

Al-driven mock interviews offer several advantages over traditional methods:

• **Personalized Feedback:** Al systems can provide detailed, real-time feedback on

- candidates' performance, helping them identify strengths and areas for improvement. [1]
- Scalability: Al platforms can accommodate a large num- ber of candidates simultaneously, making them more efficient than traditional mock interviews.
- Accessibility: These platforms can be accessed remotely, making quality interview training available to candidates regardless of their location.
- Objective Evaluation: Al-driven systems reduce human biases and provide a more objective assessment of can-didates' skills and competencies.

Challenges and Ethical Considerations

Despite their benefits, Al-driven mock interviews face sev- eral challenges:

- Technological Limitations: Al systems may struggle with accurately interpreting nuanced human emotions and be- haviors.
- **Ethical Concerns:** Issues related to data privacy, consent, and potential algorithmic biases need to be addressed.
- User Acceptance: Candidates and recruiters may be skep- tical of Al-driven systems, requiring efforts to build trust and acceptance.

III. EXISTING CLASSIFICATIONS

These current classifications for Al-Based Mock-Interview Behavioural Recognition Analyst incorporate various tech- niques and technologies, including deep learning, natural lan- guage processing, computer vision, and physiological sensing. They aim to assess different aspects of interviewees' behavior, personality, and emotional states, providing valuable insights and feedback to enhance interview performance and decision-making processes.

1. Personality Recognition & Video Interview Analysis (IJERT)

 Behavior Recognition Systems: These systems con- duct visual interview analysis to recognize intervie- wee behaviors. facial expressions and speech patterns to assess perfor- mance. [4]

"Dialog State Tracking and Action Selection Using Deep Learning Mechanism for Interview Coaching" (Ming-Hsiang Su et al.)

- Deep Learning Mechanisms: Used to track dialog states and select appropriate actions during inter-view training sessions.
- **Real-Time Feedback:** Provides interviewees with immediate feedback and guidance on their re- sponses. [6]

"TensorFlow-based Automatic Personality Recognition in Asynchronous Video Used Interviews" (Hung-Yue Suen et al.)

- TensorFlow for Personality Recognition: Automatically identifies personality traits in asynchronous video interviews.
- Multi-Modal Data Analysis: Examines speech, facial expressions, and body language to determine personality traits. [9]

"A Face Emotion identification technique Using • Convo- lutional Neural Network and Image Edge Computing" (Hongli Zhang et al.)

- Facial Sentiment Detection: Uses CNNs and 3. Facial Expression Analysis image edge computing methods to recognize • facial emo-tions.
- Accurate Emotional Evaluation: Focuses on detect- ing and analyzing facial expressions to evaluate emotional states during interviews. [10]

"Semantic-Emotion Neural Network required for Emotion Recognition from Text" (Erdenebileg Batbaatar et al.)

- Neural Network Architecture: Made for emotion identification from textual data.
- Semantic Content Analysis: Examines the semantic content of interview responses to determine emotional states. [12]

IV. METHODOLOGIES

The proposed Al-Based Mock-Interview Behavioural Recognition Analyst utilizes a combination of

Machine Learning Algorithms: They analyze advanced tech- nologies and techniques to evaluate various facets of intervie- wee behavior, personality traits, and emotional states. Below is a detailed overview of the classification process: [1]

1. Multimodal Data Collection

- Data Capture: Acquires multimodal data from can- didates during mock interview sessions,
- **Video Data:** Capturing facial expressions, body language, and gestures using webcams or camera sensors.
- Audio Data: Recording speech patterns, tone, and intonation with microphones.

2. Data Preprocessing and Normalization

- **Preparation:** The captured data undergoes pre- processing and normalization to standardize the inputs from different modalities.
- Noise Reduction: Eliminates background noise from audio data.
- **Data Alignment:** Synchronizes video and audio data.
- **Feature Extraction:** Extracts relevant features for further analysis.

- Algorithm **Application:** Utilizes facial expression recognition algorithms to analyze video data, identifying and classifying face that indicate expressions different types emotional states.
- **Techniques:** Employs Convolutional Neural Net- works (CNNs) for accurate facial feature extraction and classification.

4. Speech Processing

- Audio Analysis**: Applies speech processing algorithms to extract features such as pitch, tone, speech rate, and sentiment from audio data.
- **NLP Techniques:** Uses Natural Language Processing (NLP) to convert speech to text and analyze linguistic patterns.

5. Personality Assessment

- Data Integration: Combines information from facial expressions, speech analysis, and textual analysis to determine candidates' personality traits.
- Machine Learning Classifiers: Employs classifiers like Support Vector Machines (SVM) or Neural Networks trained on labeled personality data for classification.

Emotion Detection and Classification

- Emotion Analysis: Uses sentiment detection algorithms to integrate data from expression, speech, and text to identify and classify candidates' emotional states.
- Multimodal Fusion: combinaes data taken from multiple inputs for more accurate emotion recognition.

Feedback Generation and Presentation

- Personalized Feedback: Generates customized feed- back based on the combined analysis, highlighting strengths, weaknesses, and areas for improvement.
- **Feedback Formats:** Provides feedback in various formats, including textual summaries, visualizations, and interactive information.

By employing this comprehensive approach, the proposed system aims to provide candidates with valuable insights and feedback to enhance their interview skills, communication effectiveness, and overall performance.

V. CONCLUSION

The proposed Al-based mock interview evaluator marks a significant advancement in modernizing the interview process. By integrating various cutting-edge technologies, it provides a comprehensive assessment method for determining candi- date suitability and promoting skill development. The sys-tem's integration of facial, emotional, speech r ecognition, and knowledge processing modules enables a thorough evaluation of candidates. Adaptive question

generation allows assess- ments to be tailored to job requirements based on candidates' answers. By providing detailed, personalized feedback, this system enhances the interview process by helping candidates identify their strengths and areas for improvement. Although not a research study, this project proposal demonstrates the potential to significantly assist organizations in identifying the most qualified candidates. only identifies suitable applicants but also aids in their skill development through feedback, ultimately strengthening the hiring process.

REFERENCES

- Kolpe, S., Patil, S., Deshmukh, J., Jeughale, S., & Misal, Y. (2024). Al- Based Mock-Interview Behavioural Recognition Analyst. International Journal of Research in Applied Science and Engineering Technology (IJRASET).
- 2. Yi-Chi Chou, Felicia R. Wongso, Chun-Yen Chao and Han-Yen Yu, "An Al Mock-interview Platform for Interview Performance Analysis", 10th International Conference on Information and Education Technology, IEEE 2022.
- Johnson, S. (2024). Leveraging Al for a Mock Interview Platform: A Case Study for STEM Graduates. International Journal of Research in Applied Science and Engineering Technology (IJRASET).
- 4. Patil, P. R., Shinde, R. R., Gosavi, V. M., Bhamare, J., & Patil, P. D. (2024). Performance Through Al-Driven Elevating Mock Interviews. International Journal of Research in Applied Science and Engineering Technology (IJRASET).
- Anand, S., Gupta, N., Mulay, M., Sherawat, A., & Gangarde, R. (2021). Personality Recognition & Video Interview Analysis. International Jour- nal of Engineering Research and Technology (IJERT).
- Su, M.-H., Huang, K.-Y., Yang, T.-H., Lai, K.-J., & Wu, C.-H. (2016). Dialog State Tracking and Action Selection Using Deep Learning Mechanism for Interview Coaching. Proceedings of the 2016 International Conference on Asian Language Processing (IALP), 6-9.

- Campion M. A., Palmer D. K., & Campion, J. E. (1997)."A review of structure in the selection interview. Personnel Psychology, 50(3), 655-702".
- Shubhangi Vishal Nirgide, Arsh Aktharali Sayyed, Paresh Narendra Patil, Shriraj Vikas Raktate, & Md Fazal Mushtaque Pathan (2024). Al Based Interview Critique System: Interview Preparation Companion Using Deep Learning. International Journal of Research in Applied Science and Engineering Technology (IJRASET), 15(10), 2875-2894.
- Suen, H.-Y., Hung, K.-E., & Lin, C.-L. (2019).
 TensorFlow-Based Automatic Personality
 Recognition Used in Asynchronous Video
 Interviews. IEEE Access, 7, 123456-123467.
- Zhang, H., Jolfaei, A., & Alazab, M. (2019). A Face Emotion Recognition Method Using Convolutional Neural Network and Image Edge Computing. IEEE Access, 7, 159081-159089.
- Song, T., Zheng, W., Lu, C., Zong, Y., Zhang, X.,
 Cui, Z. (2019). MPED: A Multi-Modal Physiological Emotion Database for Discrete Emotion Recognition. IEEE Access, 7, 12177-12191.
- Batbaatar, E., Li, M., & Ryu, K.-H. (2019).
 Semantic-Emotion Neural Network for Emotion Recognition from Text. IEEE Access, 7, 111866-111878.