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I. INTRODUCTION 
 

Credit card fraud has evolved with the advancement 

of IoT-enabled financial systems. As mobile and 

contactless payments increase, so does the attack 

surface for fraudsters. Traditional rule-based fraud 

detection systems are insufficient in real-time, high-

volume environments. Machine Learning (ML) has 

shown promise, but centralizing sensitive data 

introduces latency and privacy risks. 

 

Problem Statement: 

Centralized ML approaches suffer from data privacy 

risks, scalability issues, and delay in fraud detection. 

 

Proposed Solution: 

We propose a Federated Machine Learning system 

for credit card fraud detection in IoT networks that 

ensures data privacy, supports real-time detection, 

and adapts to local and global fraud patterns. 

 

 

 

II. LITERATURE REVIEW 

 
Prior works have applied supervised and 

unsupervised ML techniques like Random Forests, 

SVMs, Neural Networks, and Deep Learning to 

detect fraud. Recent efforts explore ensemble 

learning, feature engineering, and big data analytics. 

 

However, there's limited exploration of Federated 

Learning in fraud detection for IoT-based systems. 

Studies such as Alatawi (2025) demonstrated the 

power of ML in fraud detection but relied on 

centralized architectures, which compromise user 

privacy and incur high latency. 

 

III. PROPOSED SYSTEM ARCHITECTURE 

 
Overview 

Our architecture consists of: 

IoT Clients (e.g., PoS, ATMs): Train local models using 

their own transaction data. 

Federated Server (Cloud): Aggregates model 

updates, not raw data. 
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ML Engine: Ensemble of anomaly detection + 

decision trees + neural networks. 

 

Federated Learning Workflow 

Each client trains a local model. 

Local updates (gradients) are sent to the server. 

Server aggregates using federated averaging. 

Updated global model is sent back to clients. 

 

IV. METHODOLOGY 

 
Dataset 

We use a publicly available credit card fraud dataset 

(from Kaggle), containing: 

284,807 transactions 

492 fraud cases 

Features: Time, Amount, Location, Used_Chip, 

Used_PIN, Retailer Info 

 

Data Preprocessing 

SMOTE for class imbalance 

StandardScaler for normalization 

Feature selection using RF importance 

 

Machine Learning Models 

Local Models: Logistic Regression, Decision Trees, 

Autoencoders (for anomaly detection) 

Global Model: Federated ensemble using weighted 

aggregation 

 

Evaluation Metrics 

Accuracy 

Precision 

Recall 

F1-Score 

AUC-ROC 

 

V. RESULTS 

 

 
 

 

 

VI. DISCUSSION 

 
Benefits of FML: 

 Privacy: Raw data never leaves the device. 

 Latency: Models can detect fraud locally in real-

time. 

 Scalability: Works across thousands of devices. 

 Adaptability: Learns evolving fraud patterns 

faster via local context. 

 Challenges: 

 Communication overhead 

 Non-iid data distribution 

 Resource limitations on edge devices 

 

VII. CONCLUSION 

 

This paper demonstrates the efficacy of Federated 

Machine Learning in detecting credit card fraud in 

IoT-based environments. It outperforms traditional 

centralized approaches in privacy and adaptability 

while maintaining competitive accuracy. Future 

research could integrate blockchain for secure 

model aggregation and investigate personalized 

federated learning. 
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