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I. INTRODUCTION 

 
The global agricultural ecosystem is increasingly 

dependent on advanced technological tools to 

maximize yield, reduce crop loss, and support 

sustainable farming practices. Among these 

innovations, plant disease detection through image 

analysis has emerged as a crucial area where Artificial 

Intelligence (AI) can significantly impact productivity. 

While past efforts have focused on specific crops 

such as apples, the growing complexity of modern 

agriculture demands more generalized, scalable 

solutions that can handle multiple crop types and 

disease conditions.  

In our prior work [1], we introduced Plant Pulse, an 

AIpowered apple disease detection system using the 

EfficientNetB0 architecture and Grad-CAM 

visualizations. The system achieved high accuracy 

but was limited in scope to four disease categories 

within apple cultivation. In this extended work, we 

expand the system to support a comprehensive 

multi-crop disease detection pipeline. This upgrade 

encompasses 39 classes from nine major crops,  

leveraging a larger dataset of over 61,000 images 

and introducing a custom Convolutional Neural 

Network (CNN) model designed in PyTorch.  

The transition from a single-crop to a multi-crop 

approach presents unique challenges: varying leaf 

shapes and textures, diverse backgrounds, and inter-

class similarities. Our system addresses these by 

integrating robust data augmentation, a deep CNN 

architecture, and a carefully designed training 

pipeline. This paper details the new architecture, 

training strategy, dataset expansion, and evaluation 

outcomes that demonstrate the model's 

effectiveness across a wide range of plant diseases. 

 

II. RELATED WORK  

 
In The field of plant disease detection has seen rapid 

progress due to the application of deep learning 

techniques. Convolutional Neural Networks (CNNs) 

have demonstrated high performance in classifying 

plant diseases from leaf images, enabling early and 

accurate intervention strategies for farmers.  

Ahmed et al. (2022) proposed a CNN-based tomato 

disease detection model, showcasing impressive 

classification results. However, their model lacked 

interpretability, which limited practical application in 

real-world agricultural settings. Kumar and Rao 
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(2021) utilized ResNet with transfer learning for 

wheat crop disease detection, emphasizing 

improved accuracy but facing challenges with 

generalization across different environments.  

Zhang et al. (2020) applied the VGG16 architecture 

to apple leaf disease detection, but computational 

constraints made it unsuitable for low-power 

devices. In contrast, Park and Cho (2019) 

incorporated attention mechanisms in their model 

for improved accuracy in detecting subtle disease 

features, though at the cost of increased complexity.  

Our previous work [1] employed the EfficientNetB0 

architecture and Grad-CAM to detect four types of 

apple diseases, achieving over 97% accuracy. While 

successful, its limitation to a single crop (apple) and 

reliance on cloud deployment restricted its broader 

applicability.  

This paper builds upon these foundations by 

introducing a custom CNN model tailored to detect 

diseases across a  

wide variety of crops. Unlike many existing works 

that focus  on accuracy alone, our model emphasizes 

both performance and scalability across real-world 

agricultural scenarios. 

 

III. METHODOLOGY  

 
Dataset Expansion and Crop Diversity:  

The original version of Plant Pulse utilized a 

datasetof approximately 10,000 apple leaf images 

across four categories. The enhanced system 

expands significantly, incorporating:  

• Crops Added: Cherry, Corn, Grape, Orange, 

Peach, Pepper, Potato, Strawberry, and Tomato.  

• Total Image Samples: 61,486.  

• Classes: 39 (including healthy and multiple 

disease states per crop).  

 

Images were collected from open-source datasets, 

with balanced representation across classes to 

reduce bias. The dataset includes various lighting 

conditions, image qualities, and backgrounds to 

simulate realworld scenarios.  

  

Data Preprocessing and Augmentation:  

To ensure model generalization and robustness, the 

following preprocessing and augmentation 

strategies were applied:  

  

• Image Resizing: All images resized to 

224×224 pixels.     

• Center Cropping: To focus on the leaf 

center.    

• Tensor Conversion: Using PyTorch's   

• ToTensor() transformation.  

• Augmentation: Horizontal/vertical flips, 

Random rotations, Scaling and cropping, 

Brightness and color jittering.  

  

These augmentations help address challenges such 

as occlusions, leaf orientation, and variable lighting.  

  

System Development and Implementation  

A custom Convolutional Neural Network (CNN) was 

developed using PyTorch, designed to balance 

computational efficiency with high classification 

accuracy.  

Key architectural features:  

• Convolutional  Layers:  4  blocks  of 

increasing depth (32 → 256 channels), each  

o followed by ReLU and Batch  

Normalization. E.  

o Pooling: MaxPooling layers after 

each convolutional block.  

• Fully Connected Layers: Flattened vector 

(50,176 features), Dense layer with 1024 

neurons (ReLU), Output layer with 39 

neurons (Softmax via CrossEntropyLoss)  
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Model Training:  

Training Environment:  

• Device: CPU/GPU (PyTorch handles CUDA 

fallback).  

• Optimizer: Adam.  

• Loss Function: CrossEntropyLoss.  

• Batch Size: 64.  

• Epochs: 5.  

Dataset Splitting:  

• Training: 36,584 samples (~60%).  

• Validation: 15,679 samples (~25%).  

• Test: 9,223 samples (~15%).  

Training Strategy:  

• Early stopping was not used, but 

performance was monitored after each 

epoch.  

• Learning rate scheduling and model 

checkpoints were considered for future 

iterations. The  model  was  trained 

and  saved  as  

• "plant_disease_model_1_latest.pt"for 

inference.  

 

Inference Pipeline:  

To ensure practical usability, an image-level 

prediction module was integrated, capable of 

classifying individual images in real time:  

• Input: Single image (uploaded or   captured). 

• Preprocessing: Resize to 224×224 → Tensor 

conversion.  

• Prediction: Output softmax vector → Argmax 

→  

  

Class label.  

• Label  Mapping:  CSV  file 

(disease_info.csv) maps prediction index to 

crop/disease name.  

The system has been tested on dozens of 

leaf images from different crops, accurately 

identifying diseases such as:   

 

• Tomato Yellow Leaf Curl Virus.  

• Potato Late Blight.  

• Grape Esca.  

• Corn Common Rust.  

• Strawberry Leaf Scorch.  

 

IV. RESULTS  

 
The enhanced Plant Pulse 2.0 system was thoroughly  

evaluated using a structured train-validation-test 

split, measuring  both classification 

performance  and  generalization across multiple 

plant species and disease  types:  

 

Dataset Summary:  

• Total samples: 61,486 images  

• Train: 36,584 (60%)  

• Validation: 15,679 (25%)  

• Test: 9,223 (15%) Accuracy Metrics:  

• Training Accuracy: 96.7%  

• Validation Accuracy: 98.7%  

• Test Accuracy: 98.9%  

  

These results demonstrate that the custom CNN 

model effectively captures diverse visual features 

across multiple crops while maintaining robust 

generalization.  

Loss Trends:    

Training and validation loss consistently decreased 

across all epochs, with no signs of overfitting 

observed. Dropout layers and data augmentation 

contributed to model regularization, ensuring 

balanced learning.   

Class-Wise Observations:  

The model accurately distinguished between similar 

leaf diseases within a crop (e.g., early blight vs. late 

blight in tomato and potato) as well as between 

healthy and infected leaf states. The high test 

accuracy reflects strong      discrimination capability 

across 39 classes, despite intraclass variations in 

color,texture, and shape.  
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V. COMPARATIVE ANALYSIS 

 
This work represents a significant improvement over 

the previous version of Plant Pulse, both in terms of 

model performance and system capabilities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

While EfficientNetB0 offered high accuracy with a 

lightweight model, the custom CNN is optimized for 

larger datasets and broader classification scope. 

Moreover, using PyTorch allowed finer control over 

training processes, architecture design, and 

inference logic.  

  

VI. LIMITATIONS AND FUTURE SCOPE  

 
Despite its success, Plant Pulse 2.0 has a few 

limitations that future iterations aim to address:  

 

• Lack of Explainability: The current model 

does not integrate Grad-CAM or similar 

explainability tools. Reintroducing 

interpretability modules will enhance user 

trust and facilitate expert validation.  

• Real-Time Inference Constraints: Although 

the model performs well, latency and 

memory usage on resource-limited devices 

such as smartphones or embedded systems 

could be optimized through pruning or 

quantization.  

• Edge Deployment: At present, the system is 

script-based. Future versions may include 

lightweight, edge-compatible deployments 

(e.g., using TensorRT, ONNX, or PyTorch 

Mobile) for real-time, on-field disease 

detection.  

• User Interface: The prior version had a  

Streamlit-based web interface. Rebuilding 

this or designing a mobile-friendly app with 

real-time image capture can significantly 

enhance usability.  

• Severity Estimation: Future models could be 

trained not just to classify diseases but also 

to predict severity levels (mild, moderate, 

severe), enabling more targeted 

interventions.  

  

  

VII. CONCLUSION 

 
This paper presents an advanced version of the Plant 

Pulse system—a deep learning-based plant disease 

detection platform with a significantly expanded 

scope. Unlike its predecessor, which focused solely 

Feature  
Previous Version 

(Sem 7)  

Current  

Version  

(Sem 8)  

Architecture  EfficientNetB0  

Custom 

CNN  

Framework  TensorFlow/Keras  PyTorch  

Scope  Apple (4 classes)  

9 crops 

(39  

classes)  

Accuracy  97.5%  98.9%  

Dataset 

Size  
~10,000 images  

~61,000 

images  
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on apple leaf diseases, the updated system supports 

disease detection across nine different crops with 39 

total classes.  

A custom-built CNN architecture was trained on over 

61,000 images and demonstrated strong 

classification performance, achieving 98.9% test 

accuracy. The new implementation prioritizes 

flexibility, scalability, and broader usability in real-

world farming environments.  

By building upon the foundation laid in our previous 

work [1], this research extends the capabilities of AI 

in agriculture and opens new directions for precision 

farming. Future efforts will focus on integrating 

explainability, real-time deployment, and mobile-

based interfaces to support farmers on the ground.  
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