Anu Thind, 2025, 13:3 ISSN (Online): 2348-4098 ISSN (Print): 2395-4752

An Open Access Journal

The possible impact of quantum computing on cryptography

Anu Thind

Computer Science & Engineering Department Chandigarh Engineering College, Landran

Abstract- The purpose of this paper's abstract is to explain how quantum computing works from a current cryptographic perspective and to provide the reader with a basic understanding of post-quantum algorithms. The post-quantum cryptography section specifically discusses various mathematics-based quantum key stream techniques, lattice structure cryptography, multivariate structure cryptography, hash-based symbols, and code-based coding. Quantum computing is a new technology in today's society. The development of quantum computing applications is the focus of many communities and research institutions around the world. Another field that is gradually developing steadily is artificial intelligence. The main goal of this study is to determine the impact of the development of quantum computing research on artificial intelligence applications. Therefore, computational methods are used in the methodology of this study. In order to arrive at the findings of this study on the growing impact of quantum computing research on specific applications of artificial intelligence, this study also discusses the impact of quantum computing on the field of artificial intelligence and how quantum computing affects the discipline.

Keywords- Quantum Computing, Cryptography, Shor's Algorithm, Grover's Algorithm, Post-Quantum Cryptography, Lattice-Based Cryptography, Code Based Cryptography, Multivariate Polynomial Cryptography, Hash-Based Cryptography, Super singular Elliptic Curve Isogeny Cryptography, Quantum-Resistant Cryptography.

I. INTRODUCTION

The rapid development of quantum computing has sparked both excitement and concern in the field of cryptography. Traditional cryptographic systems, which have long been the cornerstone of secure communications and data protection, are now facing unprecedented threats from quantum algorithms such as Shor's algorithm and Grover's algorithm. These quantum algorithms can effectively solve the problems that underpin their security, potentially making widely used cryptographic primitives such as integer factorization and discrete logarithm-based schemes obsolete. To address this imminent threat, the field of post-quantum cryptography has emerged to develop cryptographic algorithms that are resistant to attacks by quantum computers. This introduction will lay the foundation for exploring the challenges and opportunities presented by the intersection of

quantum computing and cryptography. We begin with an overview of quantum computing and its impact on classical cryptographic systems. We then outline the objectives of this research paper, which include:

- Examining the vulnerabilities of traditional cryptographic algorithms to quantum attacks, focusing on the impact of Shor's and Grover's algorithms.
- Surveying emerging post-quantum cryptographic approaches, including latticebased cryptography, code-based cryptography, multivariate polynomial cryptography, hashbased cryptography, and super singular elliptic curve isogeny cryptography.
- Investigating the challenges inherent in transitioning to quantum-safe cryptographic solutions, including interoperability with existing

© 2025 Anu Thind. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

- systems, performance considerations, and ongoing standardization efforts.
- Exploring practical considerations and implementation challenges associated with quantum-resistant cryptographic protocols, such as integration into existing infrastructure and hardware/software requirements.
- Discussing future directions and open problems in post-quantum cryptography, considering both research challenges and potential advancements beyond current understandings.
- By addressing these objectives, this research paper aims to provide a comprehensive overview of the landscape of quantum cryptography, providing practitioners, researchers, and policymakers with the knowledge needed to navigate this rapidly evolving field.

II. QUANTUM COMPUTING

Quantum computing is a stopgap measure that exploits quantum-driven theories. Physical materials exhibit both particle and wave properties at extremely small scales, and quantum computing requires the use of specialized computer equipment. Quantum diplomacy works in a way that cannot be explained by traditional physical science, and a scalable quantum computer could potentially perform some operations ten times faster than existing "standard" computers. A full quantum computer could break known coding programs, allowing physicists to perform physical simulations; however, quantum computing at non-traditional moments is mainly in the research stage and is not feasible. The qubit, equivalent to the bit in a traditional digital computer, is the basic unit of material in quantum computing. A qubit can be based on the superposition principle of its two "base" states, which can be roughly understood as being in two states at the same time, unlike a classical bit. The result of measuring a qubit is still a probabilistic standard bit. If a quantum computer operates a gubit in a specific way, the interference effect of the wave can amplify the desired measurement result. Designing quantum algorithms requires developing practices that enable quantum computers to perform calculations efficiently.

and To build a properly functioning quantum computer, an object must be kept in a superposition state long and enough to perform various operations on it. However, when the superposition state interacts with cols, the material of the system being measured, it loses its transition state (i.e., decoheres) and becomes an ordinary classical bit. The quantum state needs to be easy to read while being protected from decoherence by the device. Many researchers are ntial working on this problem in various ways, such as using more reliable quantum processes or arch developing more effective error correction sive techniques.

Current Cryptographic Algorithms and Their Vulnerabilities:

Cryptographic algorithms such as RSA (Rivest-Shamir-Adleman) (Elliptic and ECC Curve Cryptography) are the foundation of modern network security, providing secure communications and data protection on various digital platforms. However, the rise of quantum computing poses a significant threat to the security of these algorithms because they rely on mathematical problems that are vulnerable to quantum attacks. In this section, we will take a deep dive into the vulnerability of RSA and ECC to quantum attacks, especially Shor's algorithm, and explore the potential of lattice-based cryptography as a post-quantum cryptographic solution.

RSA and ECC algorithms are vulnerable to Shor's algorithm

- RSA is a widely used asymmetric encryption algorithm based on the computational difficulty of integer factorization. It relies on the difficulty of factoring large composite integers into prime factors.
- Shor's algorithm is a quantum algorithm developed by Peter Shor in 1994 that can efficiently factorize large integers into prime numbers on a quantum computer. The algorithm breaks the computational difficulty of integer factorization, threatening the security of RSA.
- Similarly, ECC is based on the discrete logarithm problem on elliptic curves, which is also vulnerable to effective cracking by quantum algorithms such as Shor's algorithm. Quantum

schemes by calculating discrete logarithms more efficiently than traditional computers.

Lattice-based cryptography as a post-quantum solution

- Lattice-based cryptography is a class of cryptographic schemes that rely on the difficulty of lattice problems, such as the Shortest Vector Problem (SVP) and the Closest Vector Problem (CVP), which are believed to be resistant to quantum attacks.
- Unlike RSA and ECC, lattice-based cryptography does not rely on the assumed difficulty of large integer factorization or discrete logarithm computation, which makes it inherently resistant to attacks by quantum algorithms like Shor's algorithm.
- Lattice-based cryptographic schemes have good security and have been widely studied as potential post-quantum cryptographic solutions, demonstrating their ability to resist quantum attacks while maintaining practical efficiency and scalability.

By understanding the vulnerability of classical cryptographic algorithms such as RSA and ECC to quantum attacks, and the potential of post-quantum cryptographic solutions such as lattice-based cryptography, we can assess the impact of quantum computing on network security and explore strategies for the future transition to quantumsecure cryptographic schemes. This analysis highlights the importance of continued R&D work in the field of post-quantum cryptography to ensure the resilience of cryptographic systems in the era of quantum computing.

III. CRYPTOGRAPHY

The core of cryptography is to construct and evaluate protocols that protect the public or unknown from isolated communications. Modern cryptography is a combination of mathematics, information technology, information security, electronic engineering, digital signal processing, physical science, and other fields. The core of cryptography also includes basic concepts in the field of information security, such as data

computers can crack ECC-based encryption confidentiality, information integrity, authentication, and non-repudiation. E-commerce, chip payment cards, digital currencies, computer passwords, and military communications are all examples of everyday applications of cryptography.

> Current cryptography relies heavily on mathematics and computer science. Cryptographic systems are built on the promise of computational firmness, which makes them difficult for any adversary to break in practical use. Although it is theoretically possible to break a carefully designed structure, doing so in reality is prohibitive. These strategies must be constantly re-evaluated and, if necessary, modified based on the expansion of assumptions and faster computational knowledge. If designed properly, these strategies are called computationally secure. The best theoretically breakable and computationally secure methods are more difficult to organize in the preparation stage than information-theoretically secure frameworks (which cannot be broken even with infinite computing power), which (such as a one-time pad) cannot be broken even with infinite computing power.

> This paper briefly describes the role of proportional, irregular, and hash functions in contemporary cryptography. We shall also explore the challenges of discrete logarithms and the difficulty of factoring large numbers. We will explore the foundations of strong asymmetric cryptography.

Symmetric Cryptography

Symmetric cryptography is when the sender and receiver use the same key and encryption algorithm to encrypt and decrypt data. For example, Bob can decrypt a plaintext message that Alice encrypted using the same encryption algorithm and the same joint key that Alice used. Because key exchange is so critical, there must be a reliable way to do it over the Internet that only Alice knows besides Bob.

Asymmetric Cryptography

Public key cryptography (PKC), also known as asymmetric cryptography, is a method of encryption that is distributed in the form of key pairs. The private key and the public key must be provided to each party separately. For example, if Bob wants to

encrypt a message, Alice can send Bob her public key, and then encrypt the communication using Alice's public key. The encrypted communication is then sent by Bob to Alice, who can decrypt it using her private key. Therefore, the communication is encrypted using the public key and can only be decrypted by the holder of the private key.

IV. IMPACT OF QUANTUM COMPUTING ON CRYPTOGRAPHY

The advent of quantum computing heralds a profound transformation of the cryptographic landscape and will have far-reaching implications for global security. As quantum computers advance, they have the potential to render many existing cryptographic systems ineffective, challenging the fundamental principles upon which secure communications and data protection have relied for decades. In this section, we explore the potential impact of quantum computing on cryptography, examining the paradigm shift in security it brings, the challenges of adopting quantum-resistant cryptographic solutions, and the broader global security implications.

Security Paradigm Shift

- Quantum computing introduces a paradigm shift in cryptographic security by exploiting the unique computational capabilities afforded by quantum mechanics.
- Quantum algorithms, notably Shor's algorithm, threaten the security of classical cryptographic algorithms by efficiently solving mathematical problems that underpin their security, such as integer factorization and discrete logarithms.
- This paradigm shift undermines the traditional assumptions of cryptographic security, necessitating a fundamental re-evaluation of cryptographic systems and the development of quantum-resistant cryptographic solutions.

Adoption Challenges

 Transitioning to quantum-resistant cryptographic solutions poses significant challenges for organizations, governments, and cryptographic practitioners.

- Legacy systems and infrastructure built upon classical cryptographic algorithms may require costly upgrades or replacements to ensure compatibility with quantum-resistant algorithms.
- Moreover, the migration to quantum-resistant cryptography demands extensive research, standardization, and testing to ensure the reliability, efficiency, and interoperability of cryptographic solutions in diverse technological environments.

Global Security Implications

- The potential impact of quantum computing on cryptography has broad implications for global security, spanning national defence, financial systems, critical infrastructure, and personal privacy.
- Governments and defence agencies rely on cryptographic protocols to secure classified information, communications, and critical infrastructure, making them prime targets for adversaries seeking to exploit vulnerabilities introduced by quantum computing.
- In the financial sector, cryptographic algorithms safeguard transactions, digital assets, and sensitive financial information, necessitating proactive measures to mitigate the risks posed by quantum computing to financial stability and integrity.
- Furthermore, the proliferation of quantumresistant cryptographic solutions is essential to preserving individual privacy rights and safeguarding sensitive personal data in an increasingly interconnected and digitized world.

Vulnerability of Classical Cryptographic Algorithms

- Quantum algorithms, notably Shor's algorithm, pose a significant threat to classical cryptographic algorithms such as RSA, ECC, and other asymmetric encryption schemes.
- Shor's algorithm exploits the quantum parallelism and the ability to perform efficient modular exponentiation to factor large integers and solve discrete logarithm problems, which are the foundation of many cryptographic primitives.

This vulnerability undermines the security assurances provided by classical cryptographic potentially compromising algorithms. confidentiality and integrity of sensitive information in digital communications.

Urgency for Quantum-Resistant Cryptography

- The looming threat of quantum computing underscores the urgency for developing and adopting quantum-resistant cryptographic solutions, also known post-quantum as cryptography.
- Post-quantum cryptographic schemes explore alternative mathematical problems that remain quantum computers.
- Lattice-based cryptography, code-based multivariate cryptography, polynomial cryptography, hash-based cryptography, and other approaches have emerged as promising candidates for post-quantum cryptographic solutions, offering resistance to quantum attacks while maintaining practical efficiency and security.

By exploring the security paradigm shift ushered in by quantum computing, the challenges of adopting quantum-resistant cryptography, and the broader global security implications, we gain insights into the urgency of addressing the evolving threat landscape and fortifying cryptographic systems against the disruptive potential of quantum computing.

This analysis underscores the importance of collaborative efforts among governments, industry stakeholders, and cryptographic experts to navigate the complexities of the quantum cryptography landscape and uphold the principles of security, privacy, and trust in the digital age.

V. CONCLUSION

In conclusion, the field of quantum-resistant cryptography is at the forefront of addressing the security challenges brought by the quantum computing era. Through collaborative research and development among academia, industry, government, and international partners, significant progress has been made in cutting-edge research on quantum-resistant cryptographic algorithms, protocols, and solutions.

Academic collaboration promotes interdisciplinary research, innovation and knowledge sharing, and promotes the exploration of new encryption methods that resist quantum attacks. Industrial collaboration promotes the transformation of academic research into practical solutions and technologies, and accelerates the development and commercialization of quantum-resistant encryption solutions.

computationally hard even in the presence of Government initiatives prioritize investment in quantum-resistant cryptographic technologies to safeguard national security, economic competitiveness, protection of critical and infrastructure, while standardization efforts have reached consensus quantum-resistant on cryptographic standards, ensuring interoperability and compatibility across different technology ecosystems.

> International cooperation promotes knowledge sharing, capacity building and coordination of research in the field of quantum-resistant cryptography among countries and regions around the world, and promotes cooperation and coordination in quantum technology policies, standards and regulation. By leveraging the collective expertise, resources and networks of academia, industry, government and international partners, research and development of quantumresistant cryptography is expected to address key security challenges and ensure the security and trustworthiness of digital communications and data protection in the quantum world.

> As quantum computing continues to advance, collaborative efforts in quantum-resistant remain critical hardening cryptography to cryptographic systems against the destructive potential of quantum attacks, protecting sensitive information, and maintaining the principles of security, privacy, and trust in the digital age.

REFERENCES

- 1. M. Dusek, N. L * utkenhaus, and M. Hendrych, "Quantum cryptography," " Progress in Optics, vol. 49, pp. 381 –454, 2006.
- 2. C. Paar and J. Pelzl, "Introduction to Public-Key Cryptography," in Understanding Cryptography. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 149–171.
- 3. Z. Kirsch, "Quantum Computing: The Risk to Existing Encryption Methods," Ph.D. dissertation, Tufts University, Massachusetts, 2015,
- 4. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, 10th ed. New York, NY, USA: Cambridge University Press, 2011.
- R. Jozsa, "Entanglement and Quantum Computation," in Geometric Issues in the Foundations of Science, S. Huggett, L. Mason, K. Tod, S. Tsou, and N. Woodhouse, Eds. Oxford University Press, July 1997.
- 6. W. Tichy, "Is quantum computing for real?: An interview with catherine mcgeoch of d-wave systems," Ubiquity, vol. 2017, no. July, pp. 2:1–2:20, Jul. 2017. [Online]. Available:
- 7. M. Soeken, T. Haner, and M. Roetteler, "Programming quantum computers using design automation," arXiv preprint arXiv:1803.01022, 2018.
- 8. S. Bone and M. Castro, "A Brief History of Quantum Computing," Surveys and Presentations in Information Systems Engineering (SURPRISE), vol. 4, no. 3, pp. 20–45, 1997,
- J. Muhonen and T. Dehollain, "Storing Quantum Information For 30 Seconds In a Nanoelectronic Device," Nature Nanotechnology, vol. 9, pp. 986– 991, 2014.
- 10. D-Wave, "Quantum Computing: How D-Wave Systems Work,"

 [10] J. Buchmann, F. Dahmen, and A. Hulsing.
 - [10] J. Buchmann, E. Dahmen, and A. Hulsing, "XMSS-a Practical Forward " Secure Signature Scheme Based on Minimal Security Assumptions," Post-Quantum Cryptography, pp. 117–129, 2011.
- 11. R. Overbeck and N. Sendrier, "Code-based Cryptography," in PostQuantum Cryptography.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2009, pp. 95–145