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Abstract- This study introduces a bio-inspired inverse kinematics (IK) framework for upper-body humanoid
robots, integrating human biomechanical principles to improve motion naturalness, efficiency, and adaptability.
By combining multi-objective optimization with human motion analysis, the framework addresses limitations of
traditional IK solvers, such as rigid motion and poor task adaptability. Human upper-limb kinematics were
analysed using motion capture and OpenSim, distilling features like energy minimization and joint comfort into
dynamic cost functions. A hybrid Weighted Least Norm (WLN)-gradient IK solver achieved real-time
performance (<100 ms latency) and outperformed classical methods by ~20% in human-likeness and ~50% in
safety margins. Validation on 7-DOF humanoid arms showed 90-95% task success rates in Activities of Daily
Living (ADLs). Applications in assistive robotics and industrial cobots highlight the framework’s potential for
human-robot interaction (HRI). Future work includes reinforcement learning for adaptive IK and soft robotics
integration.Key criteria, including metabolic cost, safety, coordination, and kinematic efficiency, are analyzed to
optimize robotic upper body motion for human-like performance. A multi- criteria performance framework is
proposed, integrating these factors to assess their impact on task-specific outcomes. The methodology involves
computational modeling, simulation, and comparative analysis of robotic motion against human benchmarks.
Results reveal that incorporating human-based criteria enhances the adaptability and efficiency of robotic
systems, with notable improvements in safety and coordination during complex tasks. These findings contribute
to the advancement of human-robot interaction and the design of next-generation robotic systems for
applications requiring precise and natural upper body movements.
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e robotic motion planning in collaborative
humanoid systems.

. INTRODUCTION Y

This paper presents a bio-inspired IK framework

that integrates human biomechanical principles

to enhance the naturalness, efficiency, and safety

Modern robotic arms struggle to replicate the
agility and adaptability of human upper-limb

motl.o'n . of upper-body humanoid robots. The framework
e Traditional IK solvers, such as Jacobian-based C e .
employs  multi-objective  optimization to
methods, often produce unnatural

emulate human strategies, validated on 7-DOF
robotic arms. Objectives include analysing
human kinematics, designing adaptive IK
algorithms, and evaluating performance in HRI
scenarios like assistive robotics and industrial
collaboration

configurations due to  single-objective
optimization, neglecting human movement's
multi-criteria nature

e Human motion, characterized by energy
efficiency, joint comfort, and task-specific
adaptability, offers a model for improving
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Il. RELATED WORK

Human arm motion leverages kinematic redundancy
to balance objectives like energy minimization and
collision avoidance, as shown in biomechanical
studies using OpenSim [3]. Traditional robotic IK
methods, such as pseudoinverse Jacobian and
Damped Least Squares (DLS), prioritize
computational simplicity, resulting in stiff motion [4].
Optimization-driven approaches, like Quadratic
Programming (QP), incorporate multiple cost
functions but face real-time challenges [5]. Machine
learning techniques, such as reinforcement learning
(RL), show promise but lack generalizability [6]. HRI
studies emphasize motion aligned with human
expectations, yet few frameworks combine
biomechanical authenticity with computational
efficiency [7]. This work addresses these gaps with a
multi-criteria IK framework informed by human
motion data.

l1l. METHODOLOGY

We implemented three IK models for a 7-DOF
simulated upper-limb robotic arm:

e Human-Inspired IK (HIIK) Analysis

e Bio- Inspired IK Algorithm Design

e Validation and Evaluation

Simulations were run in MATLAB with a custom
upper- limb model.

Figure. 1. Simulation environment showing the
custom 7-DOF upper-limb robotic arm in MATLAB

Human-Inspired IK (HIIK) Analysis

Human upper-limb kinematics were captured using
Vicon motion systems for ADLs (e.g., reaching,
drinking) and modelled in OpenSim to quantify

redundancy resolution [8]. Features like energy
minimization, joint comfort, and obstacle avoidance
were distilled into cost functions. Statistical
Parametric Mapping (SPM) analysed phase-
dependent motion patterns [9].

Bio- Inspired IK Algorithm Design

A hybrid WLN-gradient IK solver was developed,
incorporating:

Human-inspired cost functions
minimization, joint limit avoidance).
Null-space optimization to emulate scapulohumeral
rhythm.

Dynamic weight
prioritization.

The solver achieved <100 ms latency on 7-DOF
humanoid arms (e.g., KUKA LWR 4+).

(e.g., torque

adaptation for task-specific

Validation and Evaluation

Metabolic Cost (Torque Efficiency,
Minimization)

Human upper-limb motion is optimized for energy
efficiency, employing strategies such as smooth
torque profiles and muscle synergies to reduce
metabolic expenditure. Robots can emulate this by
incorporating torque-based cost functions in IK
solvers, such as minimizing the integral of squared
joint torques:

Energy

"T LI
min I Z:: (t) dr
‘0 =

Where Ti(t) represents the torque at joint
Techniques like trajectory optimization and
compliant actuators further enhance energy savings,
reducing power consumption by up to 20% in
dynamic tasks.

Safety (Joint Limits, Collision Avoidance)

Human  motion prioritizes safety  through
proprioceptive feedback and predictive obstacle
avoidance. Robotic IK solvers can enforce safety
using joint limit constraints:

(III'".IT = I:-II = f]l'ﬂﬂ‘.

and barrier functions like:
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Collision avoidance is achieved via artificial potential
fields and sensor-based detection, ensuring safe
operation in human-robot interaction scenarios.

I1l. COORDINATION (BIMANUAL
SYNERGIES, PHASE DOMINANCE

Human coordination relies on bimanual synergies
and phase-specific control to simplify complex

tasks. Robotic systems can implement coupled IK
solvers for dual-arm tasks, enforcing constraints like
fixed hand distances:

I —pel=4d

where P and P= are the left and right end-effector
positions. Phase-based control using state machines
optimizes task phases (e.g., reach, grasp) by
switching cost functions dynamically.

Human Robotic
Criterion Strateg Implementation Benefit Challenge
y
Metabolic Smooth torque | Torque Up to 20% Rigid hardware,
Cost profiles, muscle | minimization, energy computational
synergies compliant savings cost
actuators
Safety Proprioceptive | Joint 95%  task | Balancing
feedback, limit| success with | constraints with
predictive S, zero feasibility
avoidance potential violations
fiel
ds, sensor
integration
Coordination Bimanual Coupled IK, state | 90% task | Increased
synergies, machines, success in | computational
phase synergy-based bimanual complexity
dominance control tasks

Table 2.4: Comparative Analysis of Performance Criteria

Energy Consumption in A
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Figure 2.4: Bar Chart: Energy Consumption in ADL
Tasks

A bar chart comparing energy consumption (in
Joules) across three methods—human baseline,
pseudoinverse IK, and torque-weighted Weighted
Least Norm (WLN) IK—for three ADLs: overhead
reach, tool manipulation, and load lifting. The chart
has three groups of bars, one for each task, with each
group containing three bars representing the
methods. The y-axis represents energy consumption
(J), ranging from 0 to 100, and the x-axis lists the
tasks. The human baseline shows the lowest energy
use (e.g. 42.3 J for overhead reach), followed by
torque-weighted WLN (e.g, 45.1 J), while
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pseudoinverse IK consumes significantly more (e.g.,
58.7 )). Error bars indicate standard deviations.

Data:

e Overhead Reach: Human (42.3 + 5.1 J), WLN
(45.1 + 4.8 )), Pseudoinverse (58.7 + 6.2 J)

¢ Tool Manipulation: Human (27.8 + 3.4 J), WLN
(32.7 = 3.9 )), Pseudoinverse (41.2 + 5.3 ))

¢ Load Lifting: Human (63.5 = 7.2 J), WLN (71.3
+ 6.5 J), Pseudoinverse (89.4 + 8.7 J

The framework was validated through:

e Simulations in Gazebo/ROS and hardware-in-
the-loop testing.

e Comparison against traditional IK methods
(pseudoinverse, DLS, QP) using Dynamic Time
Warping (DTW) distance, task success rate, and
computational efficiency.

e Real-world HRI applications in prosthetics and
cobotics.

IV. RESULTS

The hybrid WLN-gradient solver outperformed
traditional IK methods (Table 1). For ADLs like
drinking, it achieved a DTW distance of 0.15 + 0.02
(vs.0.32 £ 0.05 for pseudoinverse) and a 90% success
rate (vs. 70% for pseudoinverse). Prosthetic
applications reduced EMG effort by ~20%, and
cobots improved obstacle clearance by ~50%.
Computational efficiency was 53 + 0.5 ms per
iteration, reduced to 2.1 ms with GPU acceleration.

Table 1: Performance Comparison Across Applications

Traditional IK Hybrid WLN- Gradient
Application Metric
ADLs DTW Distance 0.32 £ 0.05 0.15 £ 0.02
(Drinking)
Success Rate (%) 70050 90.0 + 3.0
Prosthetics EMG Effort (% MVC) 225+35 182+ 2.8
Cobots Obstacle Clearance (cm) 85+ 30 18.2 +25

Human-Likeness Across IK Methods
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Figure 1: Human-Likeness Across IK Methods

Discussion
The proposed framework advances robotic motion
planning by integrating human biomechanical

principles. The hybrid solver's dynamic weight
adaptation mirrors human phase-dependent
prioritization, enabling robust performance in
dynamic environments [10]. It improves human-
likeness by ~20% and safety margins by ~50%
compared to traditional IK, addressing HRI
requirements. Limitations include subject variability
and full-body integration challenges, which future
work will tackle through anthropometric scaling and
RL[11].

V. CONCLUSION

This paper presents a bio-inspired IK framework that
enhances upper-body robotic motion through
human-based criteria. By integrating multi-criteria
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optimization with human motion analysis, it achieves
natural, efficient, and safe motion, outperforming
traditional IK methods. Applications in assistive
robotics and cobots demonstrate its utility. Future
research will explore RL for adaptive IK and soft
robotics for safer HRI.
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