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I. INTRODUCTION 
 

Modern robotic arms struggle to replicate the 

agility and adaptability of human upper-limb 

motion  

 Traditional IK solvers, such as Jacobian-based 

methods, often produce unnatural 

configurations due to single-objective 

optimization, neglecting human movement’s 

multi-criteria nature 

 Human motion, characterized by energy 

efficiency, joint comfort, and task-specific 

adaptability, offers a model for improving  

 

 

 robotic motion planning in collaborative 

humanoid systems. 

 

This paper presents a bio-inspired IK framework 

that integrates human biomechanical principles 

to enhance the naturalness, efficiency, and safety 

of upper-body humanoid robots. The framework 

employs multi-objective optimization to 

emulate human strategies, validated on 7-DOF 

robotic arms. Objectives include analysing 

human kinematics, designing adaptive IK 

algorithms, and evaluating performance in HRI 

scenarios like assistive robotics and industrial 

collaboration 

. 

 

Abstract- This study introduces a bio-inspired inverse kinematics (IK) framework for upper-body humanoid 

robots, integrating human biomechanical principles to improve motion naturalness, efficiency, and adaptability. 

By combining multi-objective optimization with human motion analysis, the framework addresses limitations of 

traditional IK solvers, such as rigid motion and poor task adaptability. Human upper-limb kinematics were 

analysed using motion capture and OpenSim, distilling features like energy minimization and joint comfort into 

dynamic cost functions. A hybrid Weighted Least Norm (WLN)-gradient IK solver achieved real-time 

performance (<100 ms latency) and outperformed classical methods by ~20% in human-likeness and ~50% in 

safety margins. Validation on 7-DOF humanoid arms showed 90–95% task success rates in Activities of Daily 

Living (ADLs). Applications in assistive robotics and industrial cobots highlight the framework’s potential for 

human-robot interaction (HRI). Future work includes reinforcement learning for adaptive IK and soft robotics 

integration.Key criteria, including metabolic cost, safety, coordination, and kinematic efficiency, are analyzed to 

optimize robotic upper body motion for human-like performance. A multi- criteria performance framework is 

proposed, integrating these factors to assess their impact on task-specific outcomes. The methodology involves 

computational modeling, simulation, and comparative analysis of robotic motion against human benchmarks. 

Results reveal that incorporating human-based criteria enhances the adaptability and efficiency of robotic 

systems, with notable improvements in safety and coordination during complex tasks. These findings contribute 

to the advancement of human-robot interaction and the design of next-generation robotic systems for 

applications requiring precise and natural upper body movements. 
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II. RELATED WORK 
 

Human arm motion leverages kinematic redundancy 

to balance objectives like energy minimization and 

collision avoidance, as shown in biomechanical 

studies using OpenSim [3]. Traditional robotic IK 

methods, such as pseudoinverse Jacobian and 

Damped Least Squares (DLS), prioritize 

computational simplicity, resulting in stiff motion [4]. 

Optimization-driven approaches, like Quadratic 

Programming (QP), incorporate multiple cost 

functions but face real-time challenges [5]. Machine 

learning techniques, such as reinforcement learning 

(RL), show promise but lack generalizability [6]. HRI 

studies emphasize motion aligned with human 

expectations, yet few frameworks combine 

biomechanical authenticity with computational 

efficiency [7]. This work addresses these gaps with a 

multi-criteria IK framework informed by human 

motion data. 

 

III. METHODOLOGY 

 

We implemented three IK models for a 7-DOF 

simulated upper-limb robotic arm: 

 Human-Inspired IK (HIIK) Analysis 

 Bio- Inspired IK Algorithm Design 

 Validation and Evaluation 

 

Simulations were run in MATLAB with a custom 

upper- limb model. 

 

 
 

Figure. 1. Simulation environment showing the 

custom 7-DOF upper-limb robotic arm in MATLAB 

 

Human-Inspired IK (HIIK) Analysis 

Human upper-limb kinematics were captured using 

Vicon motion systems for ADLs (e.g., reaching, 

drinking) and modelled in OpenSim to quantify 

redundancy resolution [8]. Features like energy 

minimization, joint comfort, and obstacle avoidance 

were distilled into cost functions. Statistical 

Parametric Mapping (SPM) analysed phase-

dependent motion patterns [9]. 

 

Bio- Inspired IK Algorithm Design 

A hybrid WLN-gradient IK solver was developed, 

incorporating: 

Human-inspired cost functions (e.g., torque 

minimization, joint limit avoidance). 

Null-space optimization to emulate scapulohumeral 

rhythm. 

Dynamic weight adaptation for task-specific 

prioritization. 

The solver achieved <100 ms latency on 7-DOF 

humanoid arms (e.g., KUKA LWR 4+). 

 

Validation and Evaluation 

Metabolic Cost (Torque Efficiency, Energy 

Minimization) 

Human upper-limb motion is optimized for energy 

efficiency, employing strategies such as smooth 

torque profiles and muscle synergies to reduce 

metabolic expenditure. Robots can emulate this by 

incorporating torque-based cost functions in IK 

solvers, such as minimizing the integral of squared 

joint torques: 

 

 
 

Where    represents the torque at joint  . 

Techniques like trajectory optimization and 

compliant actuators further enhance energy savings, 

reducing power consumption by up to 20% in 

dynamic tasks. 

 

Safety (Joint Limits, Collision Avoidance) 

Human motion prioritizes safety through 

proprioceptive feedback and predictive obstacle 

avoidance. Robotic IK solvers can enforce safety 

using joint limit constraints: 

 

 
 

and barrier functions like: 
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Collision avoidance is achieved via artificial potential 

fields and sensor-based detection, ensuring safe 

operation in human-robot interaction scenarios. 

 

III. COORDINATION (BIMANUAL 

SYNERGIES, PHASE DOMINANCE 

 
Human coordination relies on bimanual synergies 

and phase-specific control to simplify complex  

 

 

tasks. Robotic systems can implement coupled IK 

solvers for dual-arm tasks, enforcing constraints like 

fixed hand distances: 

 

 
 

where   and   are the left and right end-effector 

positions. Phase-based control using state machines 

optimizes task phases (e.g., reach, grasp) by 

switching cost functions dynamically. 

 

 

 

 

 

Criterion 

Human 

Strateg

y 

Robotic 

Implementation 

 

Benefit 

 

Challenge 

Metabolic 

Cost 

Smooth torque 

profiles, muscle 

synergies 

Torque 

minimization, 

compliant 

actuators 

Up to 20% 

energy 

savings 

Rigid hardware, 

computational 

cost 

Safety Proprioceptive 

feedback, 

predictive 

avoidance 

Joint

 limit

s, 

potential

 fiel

ds, sensor 

integration 

95%  task 

success with 

zero 

violations 

Balancing 

constraints with 

feasibility 

Coordination Bimanual 

synergies, 

phase 

dominance 

Coupled IK, state 

machines, 

synergy-based 

control 

90% task 

success  in 

bimanual 

tasks 

Increased 

computational 

complexity 

 

Table 2.4: Comparative Analysis of Performance Criteria 

 

 
 

Figure 2.4: Bar Chart: Energy Consumption in ADL 

Tasks 

A bar chart comparing energy consumption (in 

Joules) across three methods—human baseline, 

pseudoinverse IK, and torque-weighted Weighted 

Least Norm (WLN) IK—for three ADLs: overhead 

reach, tool manipulation, and load lifting. The chart 

has three groups of bars, one for each task, with each 

group containing three bars representing the 

methods. The y-axis represents energy consumption 

(J), ranging from 0 to 100, and the x-axis lists the 

tasks. The human baseline shows the lowest energy 

use (e.g., 42.3 J for overhead reach), followed by 

torque-weighted WLN (e.g., 45.1 J), while 



 Radha Krishan Yadav International Journal of Science, Engineering and Technology, 

 2025, 13:3 

 

2 

 

 

pseudoinverse IK consumes significantly more (e.g., 

58.7 J). Error bars indicate standard deviations. 

 

Data: 

 Overhead Reach: Human (42.3 ± 5.1 J), WLN 

(45.1 ± 4.8 J), Pseudoinverse (58.7 ± 6.2 J) 

 Tool Manipulation: Human (27.8 ± 3.4 J), WLN 

(32.7 ± 3.9 J), Pseudoinverse (41.2 ± 5.3 J) 

 Load Lifting: Human (63.5 ± 7.2 J), WLN (71.3 

± 6.5 J), Pseudoinverse (89.4 ± 8.7 J 

 

The framework was validated through: 

 Simulations in Gazebo/ROS and hardware-in-

the-loop testing. 

 Comparison against traditional IK methods 

(pseudoinverse, DLS, QP) using Dynamic Time 

Warping (DTW) distance, task success rate, and 

computational efficiency. 

 Real-world HRI applications in prosthetics and 

cobotics. 

 

IV. RESULTS 
 

The hybrid WLN-gradient solver outperformed 

traditional IK methods (Table 1). For ADLs like 

drinking, it achieved a DTW distance of 0.15 ± 0.02 

(vs. 0.32 ± 0.05 for pseudoinverse) and a 90% success 

rate (vs. 70% for pseudoinverse). Prosthetic 

applications reduced EMG effort by ~20%, and 

cobots improved obstacle clearance by ~50%. 

Computational efficiency was 5.3 ± 0.5 ms per 

iteration, reduced to 2.1 ms with GPU acceleration. 

 

Table 1: Performance Comparison Across Applications 

 

Application 

 

Metric 

Traditional IK Hybrid WLN- Gradient 

ADLs 

(Drinking) 

DTW Distance 0.32 ± 0.05 0.15 ± 0.02 

 Success Rate (%) 70.0 ± 5.0 90.0 ± 3.0 

Prosthetics EMG Effort (% MVC) 22.5 ± 3.5 18.2 ± 2.8 

Cobots Obstacle Clearance (cm) 8.5 ± 3.0 18.2 ± 2.5 

 

 
 

Figure 1: Human-Likeness Across IK Methods 

 

Discussion 

The proposed framework advances robotic motion 

planning by integrating human biomechanical  

 

principles. The hybrid solver’s dynamic weight 

adaptation mirrors human phase-dependent 

prioritization, enabling robust performance in 

dynamic environments [10]. It improves human-

likeness by ~20% and safety margins by ~50% 

compared to traditional IK, addressing HRI 

requirements. Limitations include subject variability 

and full-body integration challenges, which future 

work will tackle through anthropometric scaling and 

RL [11]. 

 

V. CONCLUSION 

 
This paper presents a bio-inspired IK framework that 

enhances upper-body robotic motion through 

human-based criteria. By integrating multi-criteria 
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optimization with human motion analysis, it achieves 

natural, efficient, and safe motion, outperforming 

traditional IK methods. Applications in assistive 

robotics and cobots demonstrate its utility. Future 

research will explore RL for adaptive IK and soft 

robotics for safer HRI. 
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