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I. INTRODUCTION 
 

Historical Motivation 

The resolution of polynomial equations by radicals 

reached its apex in the sixteenth and seventeenth 

centuries through the work of Cardano and Ferrari.  

 

Cardano’s publication of the cubic formula in 1545, 

followed by Ferrari’s method for solving the quartic, 

demonstrated that equations up to fourth degree 

admitted closed-form solutions expressed in 

radicals (Dummit and Foote 765). Mathematicians 

initially believed that analogous formulas might 
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exist for higher degrees as well. This belief fueled 

extensive efforts throughout the eighteenth 

century, culminating in Lagrange’s study of root 

permutations—an early hint at underlying 

symmetries but still lacking the structural apparatus 

for a general proof (Stewart 34). Ultimately, Niels 

Henrik Abel shattered these hopes in 1824 by 

proving that no expression in a finite combination 

of arithmetic operations and radicals can solve the 

general quintic equation (Abel ―Mémoire‖ 12). 

 

Rise of Galois’s Insight 

In the wake of Abel’s impossibility theorem, Évariste 

Galois provided the definitive structural explanation 

for the failure of radical formulas at degree five and 

above. Galois linked the solvability of a polynomial 

to the group of automorphisms of its splitting field, 

formulating explicit criteria that determine when a 

polynomial is solvable by radicals (Galois 118).  

 

By shifting focus from brute-force formula 

derivation to the study of algebraic structures—

namely fields and groups—Galois founded a theory 

that transcends individual equations and reveals 

deep symmetries in algebraic systems. 

 

Objectives and Scope 

This paper introduces the fundamental definitions 

of field extensions, splitting fields, and Galois 

groups, establishing the correspondence between 

intermediate fields and subgroups of the Galois 

group. It then employs this framework to classify 

solvable cases, illustrating with classical examples of 

cubic and quartic equations and demonstrating why 

the symmetric group S5S_5S5 precludes a radical 

solution.  

 

Illustrative case studies and computational 

examples will demonstrate the practical utility of 

these methods in modern algebraic research. 

Finally, the paper explores modern algorithmic 

approaches—drawing on techniques for computing 

Galois groups and constructing number fields—to 

showcase current applications and chart future 

research directions (Lang 102–05; Stewart 34). 

 

 

III. HISTORICAL CONTEXT AND 

FOUNDATIONAL THEORY 
 

Algebraic Equations to Field Extensions 

The quest to solve polynomial equations by radicals 

naturally leads to the language of fields. A field F is 

a set equipped with two operations, addition and 

multiplication, in which every nonzero element has 

a multiplicative inverse and the distributive, 

associative, and commutative laws hold (Lang 102–

05). Given a field F and an element α\alpha 

algebraic over F—meaning there exists a nonzero 

polynomial f(x)∈F[x] such that f(α)=0—one 

constructs the simple extension  

 

                                 E  =  F(α)  

 

as the smallest field containing both Fand α. The 

minimal polynomial mα,F(x)∈F[x] is the unique 

monic irreducible polynomial of least degree 

satisfying mα,F(α)=0; its degree equals the 

extension degree 

 

                           [E:F]  =  degmα,F(x) ( mod   F) .    

          

More generally, for a tower of fields 

                          F  ⊂  E  ⊂  K,  

 

the Tower Law asserts 

                        [K:F]  =  [K:E]  ⋅  [E:F],  

 

providing a multiplicative relation among degrees 

(Hungerford 215). Concretely, if E=F(α) with [E:F]=n 

and K=E(β) [K:E]=m[K:E]=m, then 

 

                               [K:F]  =  m n.  

 

This law underlies the count of intermediate 

extensions and quantifies how adjoining successive 

algebraic elements compounds dimension. 

 

Abel’s Impossibility Theorem 

While radicals suffice for degrees up to four, Niels 

Henrik Abel delivered the first definitive proof that 

they fail in general for quintics and beyond. Abel’s 

Theorem states: There exists no expression in a 

finite combination of field operations and radicals 

that yields the roots of an arbitrary polynomial of 
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degree five or higher (Abel ―Mémoire‖ 15–18). 

Abel’s proof sketch proceeds by contradiction: 

assume a general formula in radicals exists, which 

amounts to a nested sequence of simple extensions 

 

                             F  ⊂  F1  ⊂  ⋯  ⊂  Fr  

 

where each Fi+1=Fi(√(ki&Θi)) One then examines 

the group of automorphisms of the splitting field 

that fix FF, showing that the permutation 

symmetries enforce commutativity conditions 

impossible for the full symmetric group S5. Since S5 

is non-abelian and simple (having no nontrivial 

normal subgroups), it cannot arise from a chain of 

cyclic (hence abelian) extensions, contradicting the 

assumed radical tower. 

 

Abel’s result thus transforms the ―failure of 

formulas‖ into a statement about group structure: 

the symmetric group on five letters is intrinsically 

too complex to decompose into successive cyclic 

factors. 

 

Galois’s Breakthrough 

Évariste Galois reframed Abel’s insight in the 

language of automorphism groups. Given a 

polynomial p(x)∈F[x] with splitting field E, the Galois 

group is defined as a finite group under 

composition (Stewart 34). 

 

Gal(E/F)  =  {σ :E→E  ∣  σ , 

 

The Fundamental Theorem of Galois Theory 

establishes a bijection between intermediate fields 

F⊆K⊆EF\subseteq K\subseteq E and subgroups 

H≤Gal(E/F): 

                               K  ⟷  H=Gal(E/K),   

 

with[E:K]=∣H∣ and [K:F]= [Gal(E/F):H] (Stewart 47). 

Under this correspondence, normal extensions—

those for which every irreducible f(x)∈F[x] that has 

one root in E splits completely in E—match normal 

subgroups; separable extensions—where minimal 

polynomials have distinct roots—ensure that 

Gal(E/F) attains its full order [E:F] (Lang 341). 

 

A field extension E/F is Galois precisely when it is 

both normal and separable, making Gal(E/F) the full 

automorphism group. Galois then showed that a 

polynomial is solvable by radicals if and only if its 

Galois group is a solvable group, i.e., it admits a 

chain of subgroups each normal in the next with 

abelian quotients. This structural criterion provides 

a definitive classification of solvable cases and 

explains the impossibility of a general quintic 

solution. 

 

IV. The Galois Correspondence and 

Solvability Criteria 
  

 
 

Fundamental Theorem of Galois Theory (FTGT) 

The Fundamental Theorem of Galois Theory 

establishes a one-to-one, inclusion-reversing 

correspondence between the lattice of intermediate 

fields of a finite Galois extension E/F and the lattice 

of subgroups of its Galois group Gal(E/F). 

Concretely, if E is the splitting field of a separable 

polynomial over F, and 

 

                              Gal(E/F)=G,  

 

then for each subgroup H≤G there is a unique 

intermediate field K with 

 

                                  F  ⊆  K  ⊆  E 

such that 

                      H=Gal(E/K)and[K:F]=[G:H].  

 

Conversely, each intermediate field K corresponds 

to the subgroup of automorphisms fixing K. Thus 

 

                            { K:F⊆K⊆E}  ⟷  { H:H≤G}, 

 

with the inclusion relations reversed: a larger 

subgroup H corresponds to a smaller field K 

(Rotman 216). 

 

This correspondence translates questions about 

field extensions into group-theoretic language and 
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vice versa. For instance, normal extensions 

correspond exactly to normal subgroups: K/F is 

normal if H is normal in G. Because [E:F]=∣G∣, one 

can compute extension degrees by subgroup 

indices, making FTGT a powerful tool for 

understanding the structure of algebraic equations. 

 

Solvable Groups and Radical Extensions 

A finite group GGG is solvable if there exists a chain 

of subgroups 

                      {1}=G0◃G1◃⋯◃Gn=G  

 

where each successive quotient Gi+1/Gi is abelian 

(Artin 52). Equivalently, G has a subnormal series 

with cyclic (hence abelian) factors. 

 

Galois’s Criterion for Radical Solvability Asserts 

A polynomial p(x)∈F[x] is solvable by radicals if and 

only if its Galois group Gal(E/F) is a solvable group. 

Here, ―solvable by radicals‖ means that the roots of 

p(x) lie in a tower of radical extensions of F: 

 

                     F⊂F(α1)⊂F(α1,α2)⊂⋯⊂E,  

 

where each extension is obtained by adjoining an 

mmmth root of an element. Each adjoining step 

corresponds to a cyclic extension, making the 

overall extension solvable precisely when its Galois 

group admits a cyclic composition series. 

 

Examples of Low-Degree Cases 

Cubic Equations. For a generic cubic x3+ax+b, its 

splitting field over Q(a,b) has Galois group 

isomorphic to the symmetric group S3 of order 6. 

Since S3 has a normal subgroup A3≅C3 with cyclic 

quotients S3/A3≅C2, it is solvable. Cardano’s 

classical formula arises from explicitly constructing 

this two-step radical extension (Dummit and Foote 

788). 

 

Quartic Equations. A general quartic x4+px2+qx 

has Galois group isomorphic to a subgroup of S4. 

The resolvent cubic reduces the problem to a 

sequence of radical adjunctions, showing that S4 is 

solvable via the chain 

 

                              {1}◃V4◃A4◃S4  

with abelian factors V4A4/V4≅C3, and S4/A4≅C2 

(Dummit and Foote 789–90). 

 

Quintic and Beyond. In contrast, the general 

quintic’s Galois group is S5, which lacks a normal 

series with abelian quotients (the only nontrivial 

normal subgroup is A5, which is simple non-

abelian). Thus S5 is not solvable, and no radical 

formula exists for generic fifth-degree polynomials. 

 

V. APPLICATIONS TO HIGHER-DEGREE 

POLYNOMIALS 

 

General Quintic 

The quintic equation marks the first degree at 

which radicals fail in the general case. Its Galois 

group is the full symmetric group S5, of order 120, 

whose simplicity obstructs any chain of abelian 

quotients. Concretely, S5 has a unique nontrivial 

normal subgroup, A5, which is simple and non-

abelian; hence no subnormal series 

 

                          {1}=G0◃G1◃⋯◃Gn=S5  

 

can yield successive abelian factors (Artin 58). 

Because solvable groups require each quotient 

Gi+1/Gi  to be abelian, S5 fails this criterion and 

renders the general quintic unsolvable by radicals. 

 

Despite this negative result, one may transform an 

arbitrary quintic into the Bring–Jerrard normal form 

 

                               x5+px+q=0,  

 

via Tschirnhaus substitutions that eliminate the 

quartic, cubic, and quadratic terms. The splitting 

field of this simplified quintic still has Galois group 

isomorphic to a subgroup of S5; in the generic case 

it remains the full group. Advanced analysis of 

resolvent equations shows that adjoining a single 

radical, corresponding to a resolvent of degree six, 

still fails to break down A5 into abelian components 

(Cox 89). Thus even in canonical form, the quintic’s 

inherent symmetry obstructs radical solutions. 
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Special Families of Higher-Degree Equations 

Not all higher-degree polynomials defy radicals—

special structured families admit abelian or 

otherwise solvable groups. 

 

Cyclotomic Polynomials. The nth cyclotomic 

polynomial Φn(x) has roots the primitive nth roots 

of unity, and its splitting field is Q(ζn). Its Galois 

group is isomorphic to (Z/nZ)×, an abelian group 

under multiplication mod n. Since abelian groups 

are trivially solvable, Φn(x) is solvable by radicals—

indeed, ζn\thezeta_nζn can be expressed via nested 

radicals whenever (Z/nZ)× is cyclic (Lang 217). 

 

Trinomials and Permutation Polynomials. 

Polynomials of the form 

 

                              xn+ax+b  

 

or more generally sparse polynomials can exhibit 

Galois groups smaller than Sn. Jean-Pierre Tignol 

demonstrates that certain families—such as 

Kummer extensions when n divides q−1 over finite 

fields—yield cyclic or dihedral groups (Tignol 74). In 

characteristic zero, one can engineer parameters a,b 

to force the Galois group to be a proper subgroup 

of Sn (e.g., dihedral Dn), making specific trinomials 

solvable by radicals. 

 

Modern Computational Techniques 

Advances in computational algebra have 

transformed the practical determination of Galois 

groups for concrete polynomials. 

 

Algorithms for Computing Galois Groups. Henri 

Cohen’s foundational algorithms implement the 

Stauduhar method and resolvent-based routines to 

compute Gal(f) for a given f(x)∈Q[x]. By constructing 

successive resolvent polynomials and testing roots 

in number-field extensions, these algorithms 

efficiently narrow down the group type, often 

leveraging lattice-reduction techniques and 

modular methods to manage large degrees 

(Cohen). 

 

Examples from Multivariate Systems. Alexander 

Esterov extends Galois theory to systems of 

polynomial equations using Newton polytope 

geometry. By interpreting monodromy actions on 

solution sets and computing sparse resultants, one 

can determine permutation groups acting on 

multivariate solutions. This approach has been 

implemented in software like PHCpack and yields 

explicit Galois group information for systems arising 

in kinematics and algebraic statistics (Esterov). 

 

Case Studies: Constructing and Counting 

Number Fields  

Constructing Fields with Prescribed Galois Group 

One of the most striking achievements in inverse 

Galois theory is the explicit construction of number 

fields whose Galois group over Q is isomorphic to a 

given finite group. Hilbert’s Irreducibility Theorem 

provides the foundational technique: by specializing 

parameters in a polynomial with coefficients in Q(t), 

one obtains infinitely many specializations t=t0 ∈ Q  

for which the specialized polynomial remains 

irreducible and its Galois group over 

Q\mathbb{Q}Q coincides with that of the generic 

polynomial (Neumann 142). For example, one 

begins with a ―generic‖ polynomial 

 

                             f (x,t)  ∈  Q(t)[x]  

 

whose Galois group is known to be G. Applying 

Hilbert’s theorem shows there exists a Zariski-dense 

subset of Q for which f(x,t0) realizes G as Gal 

(f(x,t0)/Q).  

 

Beyond this existential guarantee, Henri Cohen and 

collaborators have developed explicit constructions 

for small non-abelian groups such as D4,A4,and S4 

by writing down parametric polynomials whose 

splitting fields achieve the desired group (Cohen). 

These constructions often exploit special resolvent 

polynomials or Kummer theory (when the group 

embeds in a wreath product), yielding concrete 

formulas for minimal polynomials that can be 

implemented and tested in computer algebra 

systems. 

 

Counting Number Fields 

Whereas inverse Galois theory addresses existence, 

the counting problem asks: How many number 

fieldsK/Q of degree n and bounded discriminant 

∣Disc(K)∣≤X are there? Henri Cohen surveys 
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asymptotic results and formulates Malle’s 

Conjecture, which predicts that for a fixed transitive 

subgroup G≤Sn, the count Nn,G(X) grows like 

 

Nn,G(X)  ∼  C(G)Xa(G)(logX)b(G)-1, 

 

where a(G) and b(G)b(G)b(G) are group-theoretic 

exponents depending on the minimal index of a 

nontrivial subgroup and the number of subgroups 

achieving that index (Cohen). For instance, for 

G=SnG = S_nG=Sn, one expects 

a(Sn)=1a(S_n)=1a(Sn)=1 and small 

b(Sn)b(S_n)b(Sn). While full proofs remain open, 

substantial progress has been made for abelian and 

small non-abelian groups using geometry-of-

numbers techniques and refinement of 

parametrization methods. 

 

Computational Challenges 

Translating these theoretical frameworks into 

effective computations poses significant complexity 

challenges. The primary bottleneck lies in 

manipulating high-degree polynomials and large 

permutation groups: constructing resolvent 

polynomials of degree (nk)\binom{n}{k}(kn) rapidly 

becomes infeasible as nnn grows. Harbater, Obus, 

Pries, and Stevenson analyze the complexity of 

group-theoretic routines—such as testing normality 

of subgroups, computing central series, and 

enumerating subgroups of large order—and 

demonstrate that, in the worst case, these tasks can 

exhibit factorial-time growth in nnn (Harbater et 

al.). 

 

Moreover, implementing inverse Galois 

constructions and counting algorithms in computer 

algebra systems (e.g., Magma, PARI/GP, SageMath) 

requires careful optimization. Libraries for 

polynomial factorization over number fields, 

discriminant computation, and group-theoretic 

operations must interoperate efficiently. For 

instance, Cohen’s implementations leverage 

PARI/GP’s C libraries for low-level arithmetic, while 

Magma provides built-in functions for Galois group 

computation. Despite these advances, practitioners 

often face memory constraints and the need to 

combine symbolic and numeric methods, 

highlighting ongoing opportunities for algorithmic 

improvement and parallelization. 

 

Through these case studies, we see that while field-

theoretic existence theorems guarantee a vast 

universe of number fields with prescribed 

symmetry, the quantitative and computational 

aspects remain at the frontier of modern algebraic 

research, blending deep group theory, analytic 

estimates, and computer-aided experimentation. 

 

VI. DISCUSSION 

 

Comparing Classical vs. Modern Views 

Classical algebra focused on explicit radical 

formulas—Cardano’s solution for the depressed 

cubic, 

 

x =∛(-q/2+√((q/2)^2+〖(p/3  )〗^3 ))     +∛(-q/2-

√((q/2)^2+〖(p/3)〗^3 )) 

 

and Ferrari’s quartic method (Dummit and Foote 

788–90). These ―formula-hunting‖ approaches aim 

to express roots directly via radicals. In contrast, 

modern structural classification uses the 

automorphism group 

 

                              G=Gal(E/F)  

 

and the Fundamental Theorem of Galois Theory to 

determine solvability: rather than constructing a 

formula, one checks whether the derived series 

 

                      G(0)=G,G(i+1) = [G(i),G(i)]  

 

terminates in the trivial group; if so, GGG is solvable 

and the polynomial admits a radical tower. This shift 

from concrete expressions to abstract group 

structure reveals why formulas exist in some cases 

andcy fail in others. 

 

Limitations and Open Problems 

As polynomial degree nnn increases, computational 

complexity explodes factorially—resolvent 

constructions involve polynomials of degree 

(nk)\binom{n}{k}(kn), leading to worst-case cost 

 

                           T(n)=O(n!).  
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Beyond radicals, many equations require special 

functions (e.g., elliptic or hypergeometric functions) 

whose differential Galois groups, DGal(E/F), 

characterize integrability by quadratures rather than 

radicals. Differential Galois theory remains less 

algorithmically developed than its algebraic 

counterpart, and the full classification of differential 

equations solvable in closed form is an open 

frontier. 

 

Future Directions 

In positive characteristic, fields can exhibit wild 

ramification and inseparability, requiring refined 

notions of the Galois group (Pries and Stevenson). 

Extending structural criteria to these settings 

involves new invariants—such as the higher 

ramification filtration— and promises richer 

connections to arithmetic geometry. Meanwhile, 

machine-learning offers a novel avenue: by training 

models on databases of known Galois groups and 

field-theoretic invariants, one could predict 

solvability or suggest group-theoretic reductions. 

For example, clustering algorithms might identify 

patterns in discriminant factorization that correlate 

with group structure, guiding both theoretical 

exploration and computational heuristics. 

 

Together, these perspectives illustrate how classical 

insight and modern abstractions converge—and 

diverge—in the ongoing quest to understand when 

and how algebraic equations yield to closed-form 

solutions. 

 

VII. CONCLUSION 

 
Field extensions and Galois theory together provide 

a definitive framework for understanding why some 

polynomials admit radical solutions and why the 

general quintic and higher-degree cases do not. By 

recasting root-finding as the study of a 

polynomial’s splitting field and its automorphism 

group, one gains the precise criterion that 

solvability by radicals is equivalent to having a 

solvable Galois group (Rotman 216; Artin 52). This 

structural viewpoint not only explains Abel’s 

impossibility theorem for the general quintic but 

also unifies the classical formulas for cubics and 

quartics with modern group-theoretic methods. 

Beyond pure algebra, these insights resonate across 

number theory, where explicit construction and 

counting of number fields rely on Galois-theoretic 

parametrizations (Neumann 142; Cohen); in 

cryptography, where the hardness of discrete-log 

and public-key protocols often hinges on field and 

group properties; and in algebraic geometry, where 

monodromy and étale fundamental groups 

generalize Galois groups to geometric contexts. 

 

Looking forward, advances in algorithmic algebra—

such as improved enumerative methods for 

resolvent computations and integration of 

machine-learning heuristics—promise to extend 

practical Galois-group determination to ever larger 

degrees. Meanwhile, theoretical breakthroughs in 

positive characteristic, differential Galois theory, and 

interactions with arithmetic geometry offer rich 

terrain for future exploration. Together, these 

developments ensure that Galois’s legacy will 

continue shaping both the theory and practice of 

solving algebraic equations. 
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