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Abstract- Early successes in solving polynomial equations up to degree four by radicals most famously
Cardano’s solution to the cubic and Ferrari’s to the quartic demonstrate the power of adjoin-and-solve
techniques in classical algebra (Dummit and Foote 765). However, the general quintic and higher-degree
cases elude such formulas: Abel’s impossibility theorem proves that no expression in a finite combination of
radicals can capture the roots of an arbitrary fifth-degree polynomial (Abel “Mémoire” 12). This elusion
finds its true explanation in the language of field extensions and group theory. By considering a
polynomial’s splitting field and the automorphisms that permute its roots, one constructs the Galois group a
measure of the equation’s intrinsic symmetries (Stewart 34). The Fundamental Theorem of Galois Theory
then establishes a one-to-one correspondence between intermediate fields and subgroups of this Galois
group, yielding a precise criterion: a polynomial is solvable by radicals if and only if its Galois group is a
solvable group (Rotman 216; Artin 52).This paper first reviews the foundations of field extensions and
Abel’s theorem, then develops Galois’s structural framework. It next applies the Galois correspondence to
characterize solvable cases, illustrating cubic and quartic examples before showing why the symmetric
group S5S_5S5 defies solvability. Subsequent sections examine special higher-degree families such as
cyclotomic and trinomial cases and modern algorithms for computing Galois groups and constructing
number fields (Cohen; Neumann 142). Through case studies, we compare classical formulaic methods with
contemporary computational approaches, highlight open problems, and discuss implications for number
theory, cryptography, and algebraic geometry. In conclusion, we underscore the enduring relevance of
Galois theory and outline future directions that integrate algorithmic techniques with group-theoretic

insights.
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I. INTRODUCTION Cardano’s publication of the cubic formula in 1545,
followed by Ferrari’s method for solving the quartic,
demonstrated that equations up to fourth degree
admitted closed-form solutions expressed in
radicals (Dummit and Foote 765). Mathematicians
initially believed that analogous formulas might

Historical Motivation

The resolution of polynomial equations by radicals

reached its apex in the sixteenth and seventeenth

centuries through the work of Cardano and Ferrari.
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exist for higher degrees as well. This belief fueled
extensive efforts throughout the eighteenth
century, culminating in Lagrange’s study of root
permutations—an early hint at underlying
symmetries but still lacking the structural apparatus
for a general proof (Stewart 34). Ultimately, Niels
Henrik Abel shattered these hopes in 1824 by
proving that no expression in a finite combination
of arithmetic operations and radicals can solve the
general quintic equation (Abel “Mémoire” 12).

Rise of Galois’s Insight

In the wake of Abel’s impossibility theorem, Evariste
Galois provided the definitive structural explanation
for the failure of radical formulas at degree five and
above. Galois linked the solvability of a polynomial
to the group of automorphisms of its splitting field,
formulating explicit criteria that determine when a
polynomial is solvable by radicals (Galois 118).

By shifting focus from brute-force formula
derivation to the study of algebraic structures—
namely fields and groups—Galois founded a theory
that transcends individual equations and reveals
deep symmetries in algebraic systems.

Objectives and Scope

This paper introduces the fundamental definitions
of field extensions, splitting fields, and Galois
groups, establishing the correspondence between
intermediate fields and subgroups of the Galois
group. It then employs this framework to classify
solvable cases, illustrating with classical examples of
cubic and quartic equations and demonstrating why
the symmetric group S5S_5S5 precludes a radical
solution.

lllustrative case studies and computational
examples will demonstrate the practical utility of
these methods in modern algebraic research.
Finally, the paper explores modern algorithmic
approaches—drawing on techniques for computing
Galois groups and constructing number fields—to
showcase current applications and chart future
research directions (Lang 102-05; Stewart 34).

I1l. HISTORICAL CONTEXT AND
FOUNDATIONAL THEORY

Algebraic Equations to Field Extensions

The quest to solve polynomial equations by radicals
naturally leads to the language of fields. A field F is
a set equipped with two operations, addition and
multiplication, in which every nonzero element has
a multiplicative inverse and the distributive,
associative, and commutative laws hold (Lang 102-
05). Given a field F and an element o\alpha
algebraic over F—meaning there exists a nonzero
polynomial  f(x)eF[x] such that f(a)=0—one
constructs the simple extension

E = F(a)

as the smallest field containing both Fand a. The
minimal polynomial ma,F(x)EF[x] is the unique
monic irreducible polynomial of least degree
satisfying mo,F()=0; its degree equals the
extension degree

[E:F] = degmo,F(x) (mod F).

More generally, for a tower of fields
FcEcKk

the Tower Law asserts
[K:F] = [K:E] - [E:F],

providing a multiplicative relation among degrees
(Hungerford 215). Concretely, if E=F(a) with [E:F]=n
and K=E(B) [K:E]=m[K:E]=m, then

[K:F] = mn.

This law underlies the count of intermediate
extensions and quantifies how adjoining successive
algebraic elements compounds dimension.

Abel’s Impossibility Theorem

While radicals suffice for degrees up to four, Niels
Henrik Abel delivered the first definitive proof that
they fail in general for quintics and beyond. Abel’s
Theorem states: There exists no expression in a
finite combination of field operations and radicals
that yields the roots of an arbitrary polynomial of
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degree five or higher (Abel “Mémoire” 15-18).
Abel's proof sketch proceeds by contradiction:
assume a general formula in radicals exists, which
amounts to a nested sequence of simple extensions
FcFlc- ckr

where each Fi+1=Fi(v(ki&®i)) One then examines
the group of automorphisms of the splitting field
that fix FF, showing that the permutation
symmetries enforce commutativity conditions
impossible for the full symmetric group S5. Since S5
is non-abelian and simple (having no nontrivial
normal subgroups), it cannot arise from a chain of
cyclic (hence abelian) extensions, contradicting the
assumed radical tower.

Abel's result thus transforms the “failure of
formulas” into a statement about group structure:
the symmetric group on five letters is intrinsically
too complex to decompose into successive cyclic
factors.

Galois’s Breakthrough

Evariste Galois reframed Abel's insight in the
language of automorphism groups. Given a
polynomial p(x)€F[x] with splitting field E, the Galois

group is defined as a finite group under
composition (Stewart 34).

Gal(E/F) = {o:E—~E | T,
The Fundamental Theorem of Galois Theory

establishes a bijection between intermediate fields
FSKcER\subseteq K\subseteq E and subgroups
H<Gal(E/F):

K e H=Gal(E/K),

with[E:K]=IH| and [K:F]= [Gal(E/F):H] (Stewart 47).
Under this correspondence, normal extensions—
those for which every irreducible f(x)eF[x] that has
one root in E splits completely in E—match normal
subgroups; separable extensions—where minimal
polynomials have distinct roots—ensure that
Gal(E/F) attains its full order [E:F] (Lang 341).

A field extension E/F is Galois precisely when it is
both normal and separable, making Gal(E/F) the full

automorphism group. Galois then showed that a
polynomial is solvable by radicals if and only if its
Galois group is a solvable group, i.e, it admits a
chain of subgroups each normal in the next with
abelian quotients. This structural criterion provides
a definitive classification of solvable cases and
explains the impossibility of a general quintic
solution.

IV. The Galois Correspondence and
Solvability Criteria

Fundamental Theorem of Galois Theory (FTGT)
The Fundamental Theorem of Galois Theory
establishes a one-to-one, inclusion-reversing
correspondence between the lattice of intermediate
fields of a finite Galois extension E/F and the lattice
of subgroups of its Galois group Gal(E/F).
Concretely, if E is the splitting field of a separable
polynomial over F, and

Gal(E/F)=G,

then for each subgroup H<G there is a unique
intermediate field K with

FcKcE
such that
H=Gal(E/K)and[K:F]=[G:H].

Conversely, each intermediate field K corresponds
to the subgroup of automorphisms fixing K. Thus

{K:FEKCSE} - {H:H<G},

with the inclusion relations reversed: a larger
subgroup H corresponds to a smaller field K
(Rotman 216).

This correspondence translates questions about
field extensions into group-theoretic language and
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vice versa. For instance, normal extensions
correspond exactly to normal subgroups: K/F is
normal if H is normal in G. Because [E:F]=|G|, one
can compute extension degrees by subgroup
indices, making FTGT a powerful tool for
understanding the structure of algebraic equations.

Solvable Groups and Radical Extensions
A finite group GGG is solvable if there exists a chain
of subgroups

{1}=G0<G1 < <Gn=G
where each successive quotient Gi+1/Gi is abelian
(Artin 52). Equivalently, G has a subnormal series
with cyclic (hence abelian) factors.

Galois’s Criterion for Radical Solvability Asserts
A polynomial p(x)€F[x] is solvable by radicals if and
only if its Galois group Gal(E/F) is a solvable group.
Here, “solvable by radicals” means that the roots of
p(x) lie in a tower of radical extensions of F:

FcF(al)cF(al,a02)c:--CE,

where each extension is obtained by adjoining an
mmmth root of an element. Each adjoining step
corresponds to a cyclic extension, making the
overall extension solvable precisely when its Galois
group admits a cyclic composition series.

Examples of Low-Degree Cases

Cubic Equations. For a generic cubic x3+ax+b, its
splitting field over Q(a,b) has Galois group
isomorphic to the symmetric group S3 of order 6.
Since S3 has a normal subgroup A3=C3 with cyclic
quotients S3/A3=C2, it is solvable. Cardano’s
classical formula arises from explicitly constructing
this two-step radical extension (Dummit and Foote
788).

Quartic Equations. A general quartic x4+px2+qx
has Galois group isomorphic to a subgroup of S4.
The resolvent cubic reduces the problem to a
sequence of radical adjunctions, showing that S4 is
solvable via the chain

{1} <V4 <A4 <S4

with abelian factors V4A4/V4=C3, and S4/A4=(C2
(Dummit and Foote 789-90).

Quintic and Beyond. In contrast, the general
quintic’'s Galois group is S5, which lacks a normal
series with abelian quotients (the only nontrivial
normal subgroup is A5, which is simple non-
abelian). Thus S5 is not solvable, and no radical
formula exists for generic fifth-degree polynomials.

V. APPLICATIONS TO HIGHER-DEGREE
POLYNOMIALS

General Quintic

The quintic equation marks the first degree at
which radicals fail in the general case. Its Galois
group is the full symmetric group S5, of order 120,
whose simplicity obstructs any chain of abelian
quotients. Concretely, S5 has a unique nontrivial
normal subgroup, A5, which is simple and non-
abelian; hence no subnormal series

{1}=G0 <G1 <--- «Gn=S5

can yield successive abelian factors (Artin 58).
Because solvable groups require each quotient
Gi+1/Gi to be abelian, S5 fails this criterion and
renders the general quintic unsolvable by radicals.

Despite this negative result, one may transform an
arbitrary quintic into the Bring—Jerrard normal form

x5+px+q=0,

via Tschirnhaus substitutions that eliminate the
quartic, cubic, and quadratic terms. The splitting
field of this simplified quintic still has Galois group
isomorphic to a subgroup of S5; in the generic case
it remains the full group. Advanced analysis of
resolvent equations shows that adjoining a single
radical, corresponding to a resolvent of degree six,
still fails to break down A5 into abelian components
(Cox 89). Thus even in canonical form, the quintic’'s
inherent symmetry obstructs radical solutions.
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Special Families of Higher-Degree Equations
Not all higher-degree polynomials defy radicals—

special structured families admit abelian or
otherwise solvable groups.
Cyclotomic Polynomials. The nth cyclotomic

polynomial ®n(x) has roots the primitive nth roots
of unity, and its splitting field is Q(Cn). Its Galois
group is isomorphic to (Z/nZ)x, an abelian group
under multiplication mod n. Since abelian groups
are trivially solvable, ®n(x) is solvable by radicals—
indeed, {n\thezeta_n{n can be expressed via nested
radicals whenever (Z/nZ)x is cyclic (Lang 217).

Trinomials and Permutation
Polynomials of the form

Polynomials.

xn+ax+b

or more generally sparse polynomials can exhibit
Galois groups smaller than Sn. Jean-Pierre Tignol
demonstrates that certain families—such as
Kummer extensions when n divides g—1 over finite
fields—yield cyclic or dihedral groups (Tignol 74). In
characteristic zero, one can engineer parameters a,b
to force the Galois group to be a proper subgroup
of Sn (e.g.,, dihedral Dn), making specific trinomials
solvable by radicals.

Modern Computational Techniques

Advances in computational algebra  have
transformed the practical determination of Galois
groups for concrete polynomials.

Algorithms for Computing Galois Groups. Henri
Cohen’s foundational algorithms implement the
Stauduhar method and resolvent-based routines to
compute Gal(f) for a given f(x)eQ[x]. By constructing
successive resolvent polynomials and testing roots
in number-field extensions, these algorithms
efficiently narrow down the group type, often
leveraging lattice-reduction  techniques and
modular methods to manage large degrees
(Cohen).

Examples from Multivariate Systems. Alexander
Esterov extends Galois theory to systems of
polynomial equations using Newton polytope

geometry. By interpreting monodromy actions on
solution sets and computing sparse resultants, one
can determine permutation groups acting on
multivariate solutions. This approach has been
implemented in software like PHCpack and yields
explicit Galois group information for systems arising
in kinematics and algebraic statistics (Esterov).

Case Studies:
Number Fields
Constructing Fields with Prescribed Galois Group
One of the most striking achievements in inverse
Galois theory is the explicit construction of number
fields whose Galois group over Q is isomorphic to a
given finite group. Hilbert's Irreducibility Theorem
provides the foundational technique: by specializing
parameters in a polynomial with coefficients in Q(t),
one obtains infinitely many specializations t=t0 € Q
for which the specialized polynomial remains
irreducible  and its  Galois group  over
Q\mathbb{Q}Q coincides with that of the generic
polynomial (Neumann 142). For example, one
begins with a “generic” polynomial

Constructing and Counting

f(xt) € Q)]

whose Galois group is known to be G. Applying
Hilbert's theorem shows there exists a Zariski-dense
subset of Q for which f(x,t0) realizes G as Gal
(f(x,10)/Q).

Beyond this existential guarantee, Henri Cohen and
collaborators have developed explicit constructions
for small non-abelian groups such as D4,A4,and S4
by writing down parametric polynomials whose
splitting fields achieve the desired group (Cohen).
These constructions often exploit special resolvent
polynomials or Kummer theory (when the group
embeds in a wreath product), yielding concrete
formulas for minimal polynomials that can be
implemented and tested in computer algebra
systems.

Counting Number Fields

Whereas inverse Galois theory addresses existence,
the counting problem asks: How many number
fieldsKk/Q of degree n and bounded discriminant
IDisc(K)I<X are there? Henri Cohen surveys
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asymptotic results and formulates Malle's
Conjecture, which predicts that for a fixed transitive
subgroup G<Sn, the count Nn,G(X) grows like

Nn,G(X) ~ C(G)Xa(G)(logX)b(G)-1,

where a(G) and b(G)b(G)b(G) are group-theoretic
exponents depending on the minimal index of a
nontrivial subgroup and the number of subgroups
achieving that index (Cohen). For instance, for
G=SnG = S_nG=Sn, one expects
a(Sn)=1a(S_n)=1a(Sn)=1 and small
b(Sn)b(S_n)b(Sn). While full proofs remain open,
substantial progress has been made for abelian and
small non-abelian groups using geometry-of-
numbers  techniques and  refinement  of
parametrization methods.

Computational Challenges

Translating these theoretical frameworks into
effective computations poses significant complexity
challenges. The primary bottleneck lies in
manipulating high-degree polynomials and large
permutation  groups:  constructing  resolvent
polynomials of degree (nk)\binom{n}{k}(kn) rapidly
becomes infeasible as nnn grows. Harbater, Obus,
Pries, and Stevenson analyze the complexity of
group-theoretic routines—such as testing normality
of subgroups, computing central series, and
enumerating subgroups of large order—and
demonstrate that, in the worst case, these tasks can
exhibit factorial-time growth in nnn (Harbater et
al).

Moreover, implementing inverse Galois
constructions and counting algorithms in computer
algebra systems (e.g., Magma, PARI/GP, SageMath)
careful Libraries  for

requires optimization.

polynomial factorization over number fields,
discriminant computation, and group-theoretic
operations must interoperate efficiently. For
instance, Cohen’'s implementations leverage

PARI/GP’s C libraries for low-level arithmetic, while
Magma provides built-in functions for Galois group
computation. Despite these advances, practitioners
often face memory constraints and the need to
combine symbolic and numeric methods,

highlighting ongoing opportunities for algorithmic
improvement and parallelization.

Through these case studies, we see that while field-
theoretic existence theorems guarantee a vast
universe of number fields with prescribed
symmetry, the quantitative and computational
aspects remain at the frontier of modern algebraic
research, blending deep group theory, analytic
estimates, and computer-aided experimentation.

VI. DISCUSSION

Comparing Classical vs. Modern Views

Classical algebra focused on explicit radical
formulas—Cardano’s solution for the depressed
cubic,

x =V(-q/2+V((a/2)72+ [(p/3 )] *3)) +V(-q/2-
V((a/2)72+ [(p/3)) ~3))

and Ferrari's quartic method (Dummit and Foote
788-90). These “formula-hunting” approaches aim
to express roots directly via radicals. In contrast,
modern  structural  classification  uses  the
automorphism group

G=Gal(E/F)
and the Fundamental Theorem of Galois Theory to
determine solvability: rather than constructing a
formula, one checks whether the derived series

G(0)=G,G(i+1) = [G(i),G(i)]

terminates in the trivial group; if so, GGG is solvable
and the polynomial admits a radical tower. This shift

from concrete expressions to abstract group
structure reveals why formulas exist in some cases
andcy fail in others.

Limitations and Open Problems

As polynomial degree nnn increases, computational
complexity explodes factorially—resolvent
constructions involve polynomials of degree
(nk)\binom{n}{k}(kn), leading to worst-case cost

T(n)=0(n!).
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Beyond radicals, many equations require special
functions (e.g., elliptic or hypergeometric functions)
whose differential Galois groups, DGal(E/F),
characterize integrability by quadratures rather than
radicals. Differential Galois theory remains less
algorithmically developed than its algebraic
counterpart, and the full classification of differential
equations solvable in closed form is an open
frontier.

Future Directions

In positive characteristic, fields can exhibit wild
ramification and inseparability, requiring refined
notions of the Galois group (Pries and Stevenson).

Extending structural criteria to these settings
involves new invariants—such as the higher
ramification filtration— and promises richer

connections to arithmetic geometry. Meanwhile,
machine-learning offers a novel avenue: by training
models on databases of known Galois groups and
field-theoretic invariants, one could predict
solvability or suggest group-theoretic reductions.
For example, clustering algorithms might identify
patterns in discriminant factorization that correlate
with group structure, guiding both theoretical
exploration and computational heuristics.

Together, these perspectives illustrate how classical
insight and modern abstractions converge—and
diverge—in the ongoing quest to understand when
and how algebraic equations yield to closed-form
solutions.

VII. CONCLUSION

Field extensions and Galois theory together provide
a definitive framework for understanding why some
polynomials admit radical solutions and why the
general quintic and higher-degree cases do not. By
recasting root-finding as the study of a
polynomial’s splitting field and its automorphism
group, one gains the precise criterion that
solvability by radicals is equivalent to having a
solvable Galois group (Rotman 216; Artin 52). This
structural viewpoint not only explains Abel’s
impossibility theorem for the general quintic but
also unifies the classical formulas for cubics and
quartics with modern group-theoretic methods.

Beyond pure algebra, these insights resonate across
number theory, where explicit construction and
counting of number fields rely on Galois-theoretic
parametrizations (Neumann 142; Cohen); in
cryptography, where the hardness of discrete-log
and public-key protocols often hinges on field and
group properties; and in algebraic geometry, where
monodromy and étale fundamental groups
generalize Galois groups to geometric contexts.

Looking forward, advances in algorithmic algebra—
such as improved enumerative methods for
resolvent computations and integration of
machine-learning heuristics—promise to extend
practical Galois-group determination to ever larger
degrees. Meanwhile, theoretical breakthroughs in
positive characteristic, differential Galois theory, and
interactions with arithmetic geometry offer rich
terrain for future exploration. Together, these
developments ensure that Galois's legacy will
continue shaping both the theory and practice of
solving algebraic equations.
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