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I. INTRODUCTION 
 

Boosting efficiency (i.e., by boosting output and 

decreasing scrap, waste, and energy usage), 

prolonging system lifetime, and improving safety 

and security have been the fundamental drivers of 

industrial data processing for decades. 

Sustainability has emerged as yet another key issue 

in contemporary business. 

 

The IIoT (Industrial Internet of Things) research and 

innovation field started to flourish as individuals 

realized how important it was to collect data in a 

dispersed manner and handle large amounts of 

data in many industrial fields. While the Industry 4.0 

program supported its business push, its  

 

applications were expanded from the highly 

overlapping Cyber-Physical Systems (CPS) sector. 

Domain specialists use a layered approach, but 

there is no generic, de-facto architecture for IIoT 

systems. Three, four, or five levels can be 

recognized since the reasons for dividing them 

could range from communication kinds owing to 

infrastructure needs to the viewpoint of ecosystem 

stakeholders. A tiered architectural picture is shown 

in Figure 1, demonstrating the distinct 

technological divisions between the tiers. It also 

indicates the different security approaches at the 

different layers [1]. 

 

Even while machine learning is utilized in many IIoT 

application areas, it is only widely applied to a 
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limited number of target areas (see Figure 2). 

Processing industrial data serves a variety of 

purposes, depending on the application area. To 

just a few, these consist of classification, clustering, 

anomaly detection, prediction, optimization, and 

decision support. We require physical resources for 

data processing, which are now mostly available 

due to the growth in GPU manufacture, and data, 

which are often available for industrial participants 

if IIoT-based data gathering is in place, in order to 

get the intended results. We may now employ ML 

(Machine Learning) techniques to get better 

outcomes than ever before in the aforementioned 

domains because data and resources are now 

readily available. 

 

 
Figure 1. The architectural layers of IIoT systems [1]. 

 

 
Figure 2 shows the stages of production that are 

normally included in the manufacturing process. 

Even while machine learning can be used in every 

aspect of production, only a tiny percentage of 

them make extensive use of the techniques (bold 

typeset). 

Naturally, textbooks are the first place to look for 

information on these techniques. Numerous 

excellent books are available on machine learning 

in general [2–4] and on contemporary tools for their 

use [5–8]. Survey studies on the application of 

machine learning in the sector are also available. An 

overview of the next phase of machine learning in 

smart manufacturing is given by the authors of [9]. 

A survey on the specific subject of using machine 

learning (ML) to address flaws in the context of 

industry 4.0 can be found in [10]. The authors of a 

study on machine learning multi-agent systems [11] 

only discuss how these systems are used in the oil 

and gas sector. With reference to various industry 

4.0 levels, [12] concentrates on machine learning 

techniques used in production control and 

planning. In a similar vein, [13] offers an overview of 

ML techniques for industrial process optimization. 

We can locate other specialized publications that 

examine ML for production energy efficiency [15] or 

summarize ML techniques for smart production 

generally [14] to compare with the subject of our 

current article. An extensive review of prognostic 

techniques in the context of Industry 4.0 is given by 

the authors of [16]. The writers of [17] concentrate 

on predictive maintenance and sustainability. A 

focused survey of safety and reliability engineering 

is given by the authors of [18]. Additionally, a 

survey of ML support for safety assurance can be 

found in [19].  

 

This paper's primary contribution is that it offers an 

organized state-of-the-art perspective of the field, 

complete with detailed information on the current 

level of knowledge in this sector and well-

structured comparison tables. Despite the fact that 

industrial innovation is very interested in this field, 

there isn't yet an organized, application-focused 

overview of machine learning techniques in the 

Industrial Internet of Things (IIoT) space. 

Specifically, there isn't a comprehensive overview of 

production quality, safety, sustainability, and 

maintenance available. Therefore, by offering a 

thorough overview of applicable machine learning 

techniques within the aforementioned disciplines, 

the current study aims to close this gap. In order to 

give readers a better grasp of the methods 

employed for particular common tasks, the article 
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also organizes these applications according to their 

primary goals. 

 

The paper is organized as follows. Every chapter 

discusses a particular application area and offers a 

broad synopsis of the problems and potential fixes. 

The associated machine learning techniques are 

accompanied by application examples. Each chapter 

includes summary tables and a section on lessons 

learned to draw attention to the key ideas. As a 

result, Section 2 concentrates on security and safety 

concerns and solutions, Section 3 highlights the key 

developments in asset localization, Section 4 offers 

a summary of quality control techniques and 

application use cases, Section 5 addresses 

sustainability and maintenance, and Section 6 wraps 

up the work. 

 

II. SAFETY AND SECURITY 
 

Operational technology (OT) and information 

technology (IT) combine in the field of industrial 

IoT, which raises concerns about security and safety. 

Without a question, one of the most crucial 

elements of IIoT is security and safety. To 

emphasize this, the Industry IoT Consortium 

summarized all of its experience and knowledge in 

a technical report [20] about security concerns in 

IIoT systems. 

 

Achieving trustworthiness—defined as "the degree 

of confidence one has that the system performs as 

expected in respect to all the key system 

characteristics in the face of environmental 

disruptions, human errors, system faults, and 

attacks"—is the primary objective of IIoT systems. 

When fending off internal or external dangers, 

Figure 3 illustrates the essential features of a 

reliable system. The salient features are [21]: 

 

Protection of the system from unwanted or 

unauthorized access, alteration, or destruction is 

guaranteed by security. 

 

Privacy: By determining how information can be 

shared both inside and outside of an organization, 

privacy gives businesses authority over the 

gathering, handling, and archiving of their data.  

Reliability: Reliability ensures that the system will 

function error-free and continuously throughout 

the allotted period. Reliability and availability are 

related, but availability also accounts for scheduled 

operation pauses.  

 

Safety: System safety makes ensuring that there is 

no intolerable risk to people, property, or the 

environment while the system is operating. 

 

Resilience—System resilience offers a means of 

quickly avoiding, absorbing, and recovering from 

shifting unfavorable circumstances. The capacity to 

endure and bounce back from intentional assaults 

and mishaps is a component of resilience or 

naturally occurring threats or incidents. 

 

 
Figure 3. Trustworthiness of an IIoT System as 

specified by the Industrial IoT Consortium [20]. The 

key characteristics of the trustworthy IoT system are 

security, privacy, reliability, safety and resilience. 

 

Although proper system design, implementation, 

and deployment are necessary for a secure and safe 

industrial IoT system, machine learning-based 

solutions are frequently utilized to provide extra 

security and safety layers. While machine learning-

based solutions are also offered in [1,22], there are 

a few survey studies that examine the security 

concerns of IIoT systems, primarily concentrating on 

general security issues. A layer-by-layer 

examination of security problems and fixes, 

particularly in 5G-based IIoT systems, is presented 

in [23]. A layer-wise method is also used in ref. [24], 

which offers a thorough summary of the security 

features of edge and fog computing in addition to 

information on common security concerns. 
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Although all of the essential elements of reliable 

IIoT systems are significant, the majority of machine 

learning-based solutions focus on security—the 

defense against unwanted and illegal access. 

Intrusion detection is one of its common 

application areas, where the learning approach 

looks for unauthorized system access using 

arbitrary features, such as system logs, monitoring 

services, etc. The majority of works accomplish this 

by detecting intrusion from features using 

supervised learning approaches (i.e., classification), 

such as k-nearest neighbor (kNN) [25], support 

vector machines (SVM) [26–28], decision trees [29], 

Bayes networks [30–32], random forests [33], and 

neural networks [34–36]. There are fuzzy 

approaches and association-based methods in 

addition to standard classification solutions [37]. 

 

Hidden Markov models (HMM) have also been 

proposed in the past [38, 39]. The topic of intrusion 

detection is so broad that it is the exclusive focus of 

a few thorough survey publications [40, 41]. 

Although intrusion detection frequently uses 

classification, intrusion can be viewed as an 

anomaly that targets authorized users. The survey 

in [42] summarizes instances of intrusion detection 

in the IIoT domain and examines the application 

areas of outlier detection in IoT systems. In addition 

to intrusion detection, machine learning in IIoT 

systems can be used to detect anomalies at a 

broader level by identifying outliers or anomalous 

system behavior using supervised or unsupervised 

techniques [43–45]. 

 

Machine learning approaches can support 

authentication, which is closely related to intrusion 

detection. Although machine learning algorithms by 

themselves are rarely employed for authentication, 

they can offer an extra degree of protection over 

traditional authentication methods. Using ensemble 

learning techniques, network traffic analysis-based 

authentication is carried out in [46]. As 

demonstrated in [47], WiFi-capable IoT devices can 

be authenticated by triggering routine tasks. Man-

in-the-Middle attacks can be identified during 

authentication by combining Bregman divergence 

with the k-nearest neighbor algorithm [48]. 

Additionally, a high accuracy in identifying WiFi 

impersonation attacks was attained by the use of 

stacked autoencoders (SAE) and k-means clustering 

[49]. 

 

Blockchains are used for a variety of applications, 

such as distributed secure databases, and are 

crucial to the security of IIoT systems. A deep 

learning technique taught via transfer learning is 

frequently combined with user authentication to 

access blockchain [50,51]. It's interesting to note 

that authentication can be done just in the physical 

layer.  

 

Ref [25] suggests a software-defined radio (SDR) 

approach for RF fingerprinting-based IoT device 

authentication. The study examines several machine 

learning techniques, including kNN, SVM, and 

decision trees, all of which have been shown to be 

sufficiently accurate to carry out authentication 

using only RF data. 

 

Although encryption (using cryptography) largely 

ensures privacy, IIoT systems present some 

challenges. Although a few machine learning 

techniques have been used (for example, in 

authentication and intrusion detection), large 

datasets are needed for deep neural network 

training. In addition to publicly available datasets, 

networks must frequently be trained using 

distributed real datasets; yet, this may lead to 

"privacy leaking." Some research and solutions, 

such as differential privacy and federated learning 

[53] or privacy-preserving asynchronous deep 

learning systems (DeepPAR [52]), suggest ways to 

prevent privacy leakage. A comprehensive 

evaluation of alternative techniques for protecting 

IIoT privacy through differential privacy may be 

found in [54]. 

 

An essential component of a reliable IIoT system is 

data integrity. Data integrity is the state in which 

information is correct and consistent throughout its 

lifecycle. False data injection (FDI) is one of the 

most common attacks against data integrity; 

nonetheless, data integrity encompasses all 

potential combinations of data change, data 

injection, and even data relation disintegrity. Data 

integrity check algorithms typically learn the 
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distribution of legitimate data and detect low-

probability outlier samples. In [55], where a gas 

pipeline system remote terminal unit (RTU) was 

observed, data and the command injection were 

examined. Six machine learning methods (such as 

SVM, random forests, etc.) were used to precisely 

identify the injection attacks. 

 

Ref. [56] suggests a technique for identifying data 

change in programmable logic controllers (PLC) 

using k-means clustering. In order to detect data 

injection threats in smart grids, deep belief 

networks and limited Boltzmann machines were 

used in [57]. In order to prevent fake data attacks, 

autoencoders were trained using smart sensor data 

from a sophisticated hydraulic IIoT system in [58]. 

 

High availability, or the system's readiness to offer 

services to users, is a prerequisite for a dependable, 

trustworthy IIoT system. However, a popular attack 

against IIoT devices is known as a denial-of-service 

(DoS) attack, which stops the device from providing 

services and causes it to become momentarily 

unavailable by imposing a massive workload.  

Distributed DoS (DDoS) attacks are a typical variant 

of this assault that can come from multiple sources. 

Ref. [59] suggests a hybrid deep learning 

framework (deep belief networks, auto encoders, 

etc.) that uses a few network and log features to 

categorize the kind of attack that is reaching the 

device, such as DoS attacks, among others. In [60], a 

reinforcement learning method was put up to 

detect DDoS attacks using the game-theory 

approach. Traffic delays and DDoS attacks can also 

be successfully predicted using Bayesian networks; 

in [61], for instance, the method was motivated by 

the economics concept of portfolio theory. 

 

Offload security is a unique security concern for 

industrial IoT devices. Edge computing, also known 

as fog computing, is the process of offloading 

various computations to edge devices in order to 

use machine learning methods in IIoT systems. 

Because tasks that are offloaded to the cloud or 

edge are susceptible to security breaches by hostile 

devices, this offloading creates new types of 

security risks. A common solution implements a 

double-dueling Q-network and avoids the security 

issues of compute offloading by utilizing 

blockchains and the reinforcement learning 

technique [62]. Other solutions, like the one in 

[63,64], usually make use of reinforcement learning 

techniques. 

 

Datasets 

A few publicly accessible datasets are provided for 

the purpose of training and validating machine 

learning algorithms related to IIoT security. By 

examining these datasets, one can gain a better 

knowledge of the machine learning algorithms and 

uncover the potential characteristics and results of 

each one. These datasets are typically used to train 

the previously described studies.  

 

The "The Third International Knowledge Discovery 

and Data Mining Tools Competition" KDD-99 

dataset is among the most well-known intrusion 

detection datasets [65]. The DARPA experiment was 

used to build the dataset, which includes 4 GB of 

network traffic over seven weeks with attacks falling 

into four categories (DOS, R2L, U2R, and probing). 

 

A variety of cybersecurity datasets are available 

from the Canadian Institute for Cybersecurity. The 

CSE-CIC-IDS2018 dataset [66] includes 30 servers 

and 420 computers in an infrastructure with seven 

distinct attack scenarios. The institute also offers a 

cutting-edge dataset for DDoS attack detection 

[67].  

 

Additional Intrusion Detection and Privacy 

Attack Datasets are Available In [68,69].  

For a variety of security uses, such as malware and 

intrusion detection, the University of Arizona offers 

datasets [70]. 

 

Opponents of Security Based on Machine 

Learning 

Some critiques of IIoT security and training datasets 

were presented in Zolanvari's study [71]. For the 

training and validation stages, the majority of 

machine learning-based IIoT security algorithms 

and solutions (such as intrusion detection and 

DDoS protection) require some data. For instance, 

for machine learning algorithms to work well, 

network traffic datasets need features that have 
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been carefully chosen. The method won't work if 

the features don't change in response to the attack. 

Furthermore, sensor data in IIoT applications is 

typically collected over a long period of time using 

varying sample rates, producing large dimensional 

datasets. Training and detection procedures will be 

significantly delayed if raw data like this is used. 

Additionally, confidentiality and privacy regulations 

make it difficult to obtain actual IIoT data from 

businesses; as a result, all of the solutions that are 

offered are usually trained on the same publicly 

accessible datasets.  

 

Remarkably, the primary issue with the datasets 

that are now accessible is that there are 

comparatively few actual attacks in comparison to 

typical behavior; the extremely unbalanced datasets 

make it challenging to efficiently train learning 

algorithms. 

 

Safety and Security Summary 

In IIoT security, machine learning is frequently 

employed as an extra security layer to offer a 

system that is genuinely reliable. However, there are 

just a few clearly defined use cases for the often 

used approaches. The most crucial are the 

techniques for anomaly detection, or more broadly, 

intrusion detection. To identify anomalous behavior 

or, more specifically, intrusion, the majority of works 

train and use SVM or Bayesian networks. Even when 

credentials are not used for authentication, such as 

when only the physical layer is used, a variety of 

techniques are still used. The detection and 

prevention of DDoS assaults through the use of 

unsupervised methods, such as autoencoders, is the 

other important application of machine learning 

algorithms in IIoT security. 

 

The security problems that arise from offloading 

computations in edge computing, or so-called 

offload security, are a unique area of IIoT security. A 

few publicly available datasets are available for 

training machine learning methods, which are 

necessary for their effective operation. 

Nevertheless, some researchers oppose the use of 

these datasets for the training and validation of safe 

machine learning-based solutions. Table 1 displays 

the references for the various applications 

discussed in this section. 

 

Table 1. Summary of applications of machine 

learning techniques in IIoT security and safety. 

Application 
Typical Machine 

Learning Techniques 
References 

Intrusion 

detection 

Classification on 

network data (SVM, 

Bayes networks, 

decision tree, Random 

forest, neural 

network) 

[25–42] 

Authentication 

Classification on 

network data, 

Clustering 

[25,46–51] 

Privacy 

leaking 

Differential privacy 

and federated 

learning 

[52–54] 

Data integrity 

Latent space methods 

(Boltzmann-machine, 

DBN), Classification 

(Random Forest, SVM) 

[55–58] 

Availability 

Reinforcement 

learning and Neural 

networks (DBN, 

autoencoders) 

[59–61] 

Offload 

security 

Reinforcement 

learning 
[62–64] 

 

III. ASSET LOCALIZATION 
 

One of the most crucial and specialized aspects of 

IIoT systems is asset localization, since tracking the 

position of potentially semi-finished goods or 

assets is necessary for site security or the 

manufacturing process. Figure 4 shows a few 

common applications for asset monitoring and 

localization. Although GPS (Global Positioning 

System) is mostly used for localization outside, 

interior factories are unable to use it because the 

building's construction obscures the GPS signal.  

 

To get over this problem, a few radio-based 

technologies are used to give an asset position that 

is more or less precise indoors. More specifically, all 

the radio technologies used in IoT or IIoT systems 

can provide measurements to acquire asset 

position; however, some solutions are more suitable 

for asset localization than others. 
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Since the characteristics of radio signal propagation 

can be computed, i.e., the equations for attenuation 

and propagation delay are well known, localization 

appears to be a geometric problem at first glance. 

However, the dense multipath environment 

indoors, particularly on industrial sites, makes the 

propagation so stochastic and random that the 

received signal and its characteristics don't reveal 

anything about the propagation. For this reason, 

several works use sophisticated machine learning 

techniques to address the localization issue rather 

than the geometrical one. Nonetheless, machine 

learning techniques are also often applied to raise 

the geometric solution's correctness. 

 

 
Figure 4: Common applications for industrial asset 

location and tracking, both indoors and outside. In 

addition to the traditional indoor and outdoor use 

cases, there are a few lesser-known subjects, such 

as tracking disposable objects or tracing the food 

chain (icons from Flaticon.com). 

 

UWB 

Since Ultra-Wideband (UWB) is specifically 

designed for localization, it is frequently utilized in 

IIoT solutions to enable precise localization. UWB's 

enormous bandwidth (a few hundred megahertz) 

allows for the application of very brief pulses (e.g., 

1-2 ns long) that aid in differentiating the rays in 

multipath propagation and offer precise 

timestamps for the received packets, leading to a 

localization that is centimeter-capable. In UWB 

systems, the position estimation method often 

relies on calculating the range (or distance) 

between anchors and tags; optimization is then 

used to solve the geometry problem. However, 

faults in the timestamping process lead to 

positioning inaccuracies because multipath 

propagation might distort the received signal. 

 

In order to address this problem, ref. [72] looks into 

the kNN (knearest neighbour), decision tree, and 

random forest methods to increase the localization 

accuracy based just on the computed position data. 

Using the receiver's indicator to ascertain if the 

timestamp is part of the actual first path (line-of-

sight, or LOS) or not (non line-of-sight, or NLOS) is 

a more complex method. Using this data, ref. [73] 

infers the device's better position using a naïve 

Bayes technique. 

 

In actuality, UWB systems frequently employ 

machine learning techniques to categorize 

reception as either LOS or NLOS propagation. The 

received channel impulse response (CIR) of the 

packet is provided by the majority of UWB chips, 

supporting these techniques. The study in [74] uses 

CIR to train a convolutional neural network to 

distinguish between LOS and NLOS packet 

receptions, which aids the localization engine in 

weighing the measurement when determining 

position. Although it analyzes three machine 

learning approaches—support vector machines, 

random forests, and dense neural networks—Ref 

[75] also focuses on the classification of reception. 

Ref. [76] explores various convolutional neural 

network and recurrent neural network 

combinations for CIR classification in order to use 

the temporal behavior of the channel impulse 

response. It demonstrates that the best accuracy is 

achieved with a CNN followed by stacked LSTM 

networks.   

 

In addition to categorization, the CIR can be used 

to estimate the timestamping error of every packet 

that is received. Ref [77] improves location accuracy 

by one order of magnitude on average when 

compared to the geometric approach by using 

neural networks to anticipate the timestamping 

error based on the CIR of received packets. A few 

further UWB-based solutions are shown in the 

survey in [78], albeit they are not limited to the IIoT 

context. 
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A general approach for estimation of the position 

from CIR using deep learning techniques can be 

found in [79]. 

 

5G 

5G is an advanced mobile technology that 

facilitates both large-scale infrastructure and on-

site installations. The previous LTE standard's 

location capabilities were greatly enhanced in the 

5G standard; with Release 17, IIoT localization has 

grown in importance within the standard [80]. 5G 

offers time- and angle-based positioning, and the 

NR (New Radio) interface's changeable 

parameters—such as increased bandwidth, variable 

subcarrier spacing, various antenna layouts, etc.—

help to increase the precision of 5G positioning. 

 

Although 5G allows for a variety of localization 

techniques, these are primarily closed-form or 

geometrical approaches. Nonetheless, there are a 

few studies that use machine learning techniques to 

increase localization accuracy; these studies 

primarily focus on IIoT environments, or indoor 

settings. "Fingerprinting" is a common locating 

technique that relies on easily observable radio 

channel characteristics, like the receive signal 

strength (RSSI). Using various machine learning 

models, ref. [81] attempts to estimate and rectify 

the location inaccuracy in order to increase the 

accuracy of such solutions. Vanilla neural networks 

and the kNN approach were compared to estimate 

the position. 

 

Referencing the same issue, ref. [82] contrasts the 

specified DELTA method, which uses a dense neural 

network to infer the position from RSSI 

measurements, with kNN- and SVR- (Support 

Vector Regression)-based approaches.  

 

Angle-based positioning is a more advanced 5G 

localization technique. The method in [83] uses 

beamforming to build beamformed fingerprints by 

sampling the received PDPs (Power Delay Profile). 

TCN and LSTM networks are trained to use the 

beamformed fingerprints to infer location. On 

average, the TCN network can track the location 

with an accuracy of a few meters. Even in 

comparison to GPS systems, the solution uses very 

little energy. Additionally, ref. [84] uses deep neural 

networks to improve 5G localization based on 

beamforming, which optimizes the handover 

process. 

 

A comprehensive study on 5G and positioning can 

be found in [85], where a couple of methods—

including machine learning-aided localization 

methods—are compared and introduced. 

 

Wi-Fi and Bluetooth Low Energy 

Broadband communication technology is made 

possible by the WiFi standard (IEEE 802.11) and is 

extensively utilized in commercial and industrial 

settings. WiFi localization solutions often use 

fingerprinting techniques without the need for 

specialized gear. Many trained machine learning 

models are employed to increase localization 

accuracy. While [87] included decision trees and 

naïve Bayes methods in the comparison, [86] 

compares the baseline kNN solution to the SVM 

and Random Forest approaches. Dense neural 

networks are used in the publications [88,89] to 

learn fingerprint and localization mapping, while 

denoising autoencoders are used in [90] to enhance 

the received fingerprints and determine the asset's 

precise position. 

 

Bluetooth minimal Energy (BLE) is a widely utilized 

technology in many different fields that uses 

minimal energy to deliver low-speed, low-range 

communication. Fingerprinting is the fundamental 

localization method used in BLE, and the same 

techniques can be used to increase accuracy as in 

WiFi. There are, nevertheless, works that are 

especially about BLE. In order to train and assess 

random forest, XGBoost, decision tree, and kNN-

based algorithms for location inference from the 

RSSI measurements, Ref. [91] uses a unique data 

augmentation procedure.  

 

By assisting learners in handling RSSI values with 

significant fluctuations, the augmentation process 

produces predictions that are more accurate. 

 

The application of the well-known LDA (Linear 

Discriminant Analysis) technique in fingerprinting is 

introduced in Ref. [92], which makes it intriguing. 
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The study shows that the LDA improves localization 

accuracy while maintaining a respectable execution 

time when compared to naive Bayes, kNN, and SVM 

approaches. There are a few other fingerprinting-

based works available [93,94], and the study in [95] 

describes fingerprinting techniques in BLE 

instances. Since Bluetooth 5.1 was developed, the 

BLE standard has enabled direction-of-arrival (DoA) 

techniques through the use of antenna arrays. In 

order to substitute the well-known MUSIC (Multiple 

Signal Classification) algorithm for determining the 

direction of a signal, [96] uses the BLE DoA 

capability to apply a tiny neural network suitable for 

a restricted device. 

 

Other 

In addition to these popular technologies, asset 

localization in IIoT systems offers a few other 

solutions. In [97], LOS/NLOS classification is 

demonstrated using SVM, random forests, and 

neural networks for the less prevalent IEEE 802.15.4 

systems. In [98], an IIoT underwater wireless sensor 

network used acoustic localization technology, and 

the accuracy of node localization was predicted 

using linear regression.  

 

There are a growing number of published studies 

that examine the suitability of so-called device free 

localization (DFL), which locates users or assets 

without the need for any gear. These algorithms 

make use of a few machine learning approaches, 

such as Bayesian methods [100] and block-sparse 

coding with the proximal operator [99]. A useful 

summary of this topic and recent state-of-the-art 

can be found in [101,102]. 

 

Summary of Asset Localization 

Although a number of technologies, such as UWB, 

5G, WiFi, BLE, and others, can be used to execute 

asset localization in IIoT systems, UWB is the only 

one that focuses exclusively on localization. For 

each technology, machine learning techniques are 

typically employed for the two reasons listed below:  

 To become familiar with the relationship 

between location and measurements  

 To make the location inferred from closed-

form, geometrical issues more accurate 

The first is primarily utilized in fingerprinting, where 

machine learning models attempt to discover the 

relationship between the location and the 

measurements (usually RSSI). Although a few 

different regression techniques are employed, 

perhaps including classification on grids, the kNN 

learner is frequently the baseline solution. The 

second one, which blends geometric models with 

machine learning models, distinguishes between 

two fundamental techniques: LOS or NLOS 

propagation prediction and localization error 

prediction. The techniques typically make use of 

extra data, such as the channel impulse response. 

Table 2 displays the references for the various 

applications discussed in this section. 

 

For further details, an in-depth study on indoor 

localization using machine learning techniques can 

be found in [103]. 

 

Table 2. Summary of applications of machine 

learning techniques in IIoT asset localization 

Application 

Typical Machine 

Learning 

Techniques 

References 

Learning 

mapping 

between 

measurements 

and location 

kNN, SVM, Random 

Forest, XGBoost, 

Regression tree, 

neural networks, 

etc. 

[79,82,83,86–

96] 

Predicting non-

LOS 

propagation 

Neural network 

(CNN, TCN, etc.), 

SVM, Random 

Forests on channel 

impulse response 

[72–76] 

Predicting 

location error 

Neural network on 

channel impulse 
[77,81,98] 

 

Quality Assurance 

Through the process of quality control, 

organizations examine the caliber of numerous 

production-related components. Monitoring, 

inspection, minimizing product variation, and 

removing failure cases are the main duties. The two 

primary steps of quality inspection in industrial 

manufacturing processes are functional and visual 

tests, sometimes known as automated 

visual/surface inspection. These days, both of these 

inspection types are typically carried out by 
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machines rather than people, however they still 

depend on human knowledge. Well-defined quality 

requirements are necessary for the discovery of 

defective products. It is quite difficult to 

comprehend and adjust these parameters for 

certain automated identification processes in order 

to automate such quality inspection procedures. 

Such challenges can be addressed with the aid of 

machine learning techniques. 

 

Inspection of Visual Quality 

In many industry fields, the presence of surface 

imperfections impacts the product's quality and 

appearance. Consequently, visual inspection of 

certain product features is one of the most popular 

quality inspection techniques used in production. 

There are numerous options for both exterior and 

surface flaw inspection in a variety of industry 

sectors, such as the fiber, metal, and semi-

conductor sectors. The primary directions of 

machine learning-supported visual quality 

inspection techniques are presented in this section. 

The overall concept for vision-based product 

quality inspection, as per [104], is shown in Figure 5. 

 

 
Figure 5. General architecture model for vision-

based product quality inspection [104]. 

 

Generally speaking, feature extraction and defect 

detection are the two clearly defined procedures 

needed to identify a problematic product. Features 

of the product may be in the transform domain or 

the spatial domain. Furthermore, the state-of-the-

art employs a number of feature extraction 

techniques, such as clustering (K-means, PCA), 

regression (linear regression, logistic regression), 

and classification (KNN, Naive Bayes classifier, SVM, 

Decision trees). Unlike previous methods, deep-

learning algorithms eliminate the requirement to 

build a set of features, such as statistical or spectral 

features. The state-of-the-art surface inspection for 

supervised (CNN, LSTM) and unsupervised 

(Autoencoder) learning solutions includes a number 

of instances. 

 

A machine learning-based computer vision system 

for examining the outside and interior of aircraft 

components is shown in Ref. [105]. CNN and LSTM 

are combined to categorize problems in the 

internal sections of the product, while SVM is 

utilized to classify defects in the external parts. On 

the other hand, a quality-level estimate method for 

steel microstructure inspection utilizing the VGG 

network model is presented in ref. [106]. 

Convolutional Neural Networks (CNN) and 

Convolutional Autoencoders (CAE) are used in Ref. 

[107] to evaluate the casting surface. A supervised 

learning-based method for inspecting press-casting 

goods utilizing CNN, Random Forest, PCA, and 

XGBoost is presented in Ref. [108]. 

 

The use of supervised machine learning (random 

forest, gradient boosting) in defect identification, 

quality control, and throughput enhancement for 

optical transceiver production is also examined in 

ref. [109]. By using a CNN model for optical 

inspection of assembling machines, Ref. [110] 

suggests an approach for error detection.  

 

In order to categorize Pin-in-Paste solder 

connections using a YOLOv4 architecture, [111] 

uses a CNN-based method. The framework includes 

near real-time solder joint localization based on a 

YOLO single-stage detector and highly automated 

picture data labeling functionality utilizing a 

Convolutional Autoencoder. For metal workpieces, 

surface flaw detection is introduced in Ref. [112]. 

The study presents the outcomes of the 

DenseNet40 and ResNet50 architectures. 

Ref. [104] offers a machine vision model to detect 

faulty products and classifies defects using CNN 

and SVM. Semi-supervised deep learning-based 
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surface inspection methods for labeled data are 

presented in Ref. [113] for automated surface fault 

detection. An unsupervised clustering technique for 

spatial patterns using wafer map measurement data 

is presented in Ref. [114]. After pre-processing the 

measured test values using computer vision 

techniques, high-dimensional wafer maps are 

broken down into a low-dimensional latent 

representation using feature extraction based on 

variational autoencoders. 

 

Finding Anomalies 

Anomaly detection is the other important area of 

quality inspection. Finding all instances that are 

different from the rest or the necessary instances is 

the aim of anomaly detection, also known as outlier 

detection. According to Ref. [115], an outlier is an 

observation that differs from other observations in 

such a way that it raises the possibility that it was 

produced by a separate mechanism. A machine 

learning method that can identify faulty bearings 

and continuously adjust the parameters of the 

quality testing procedure is presented in Ref. [116]. 

In particular, a vote classifier fed statistical metrics 

derived from the gathered experiments is used to 

identify faulty bearings. k-neighbors, SVC, Decision 

Tree, Random Forest, Multi-Layer Perceptron, 

AdaBoost, Naive Bayes, Gradient Boost, and Voting 

Classifier methods are among the machine learning 

techniques evaluated in this work.  

 

Ref. [117] suggests a method wherein (1) the 

Support Vector Machine (SVM) algorithm is used to 

classify manufacturing processes, (2) the Horse 

Optimization Algorithm (HOA) is used to optimize 

the regularization parameter value and the gamma 

coefficient value of the SVM algorithm, and (3) the 

results of the HOA-based SVM algorithm are 

compared to those of Particle Swarm Optimization 

(PSO) and Chicken Swarm Optimization (CSO)-

based SVM algorithms. Additionally, PSO and DNN 

are used for a similar problem in ref. [118].  

 

The SEMCOM dataset is used to validate both 

approaches [119]. For industry product quality 

inspection, ref. [120] presents an anomaly detection 

technique based on the Gaussian Restricted 

Boltzmann Machine without application  

dependability or a case study. The key problems 

with machine learning-based condition monitoring 

systems are covered in Ref. [121]. Using six 

industrial test datasets, Ref. [122] examines a 

number of unsupervised learning approaches, 

including the Gaussian model, SVM, isolation forest, 

and autoencoder. A specific usage of telemetry—

anomaly detection on time-series data—is the 

subject of Ref. [123]. It offers an enhanced iteration 

of the cutting-edge machine learning algorithm 

ReRe, which is based on long short-term memory. 

 

[124] presents a malfunction diagnosis method for 

rotating machinery using vibration signals that is 

based on fuzzy neural networks. A long short-term 

memory (LSTM)-Gauss-NBayes approach for IIoT 

outlier detection is presented in Ref. [125].  

 

By using the Gaussian Naive Bayes model's 

predictive error, LSTM-NN creates a model based 

on a normal time series and finds outliers. An on-

device federated learning-based deep anomaly 

detection system for IIoT timeseries data sensing is 

proposed in Ref. [126]. To precisely identify 

abnormalities, the framework employed a 

convolutional neural network-long short-term 

memory (AMCNN-LSTM) model based on an 

attention mechanism. In a similar vein, ref. [127] 

suggests a federated learning-based anomaly 

detection method for IIoT. Specifically, it applies the 

federated learning technique to build a universal 

anomaly detection model with each local model 

trained by the deep reinforcement learning 

algorithm. 

 

On the other hand, a useful study on graph neural 

networks (GNNs) for anomaly detection in IIoT-

enabled smart factories, smart energy, and smart 

transportation is presented in ref. [128]. To evaluate 

the plant's operating conditions, Ref. [127] creates 

an anomaly detection program that makes use of 

deep learning techniques. K-means clustering 

carries out the actual anomaly detection, PCA 

handles a subsequent reduction, while AE and 

deepAE handle the initial dimensionality reduction. 

Using a PCA-based approach, Ref. [129] creates a 

framework for identifying anomalous behavior in 

the context of aging IIoT. 
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Anomaly Detection Datasets 

Machine learning techniques for IIoT quality 

inspection and outlier detection can be trained and 

validated using a few publicly available datasets. By 

examining these datasets, one can gain a better 

knowledge of the machine learning algorithms and 

uncover the potential characteristics and results of 

each one. The machine learning community uses 

the databases, domain theories, and data 

generators listed in Ref. [119] to empirically analyze 

machine learning algorithms. The semi-conductor 

domain is one of several datasets from the 

manufacturing domain that are used to validate 

algorithms. A sizable collection of outlier detection 

datasets including ground truth (if available) can be 

found in Ref. [130]. 

 

The focus of the repository is to provide datasets 

from different domains and present them under a 

single platform for the research community, 

including several manufacturing domains (wafer 

map). 

 

Summary of Quality Control Using Machine 

Learning 

The most widely used quality inspection techniques 

are visual quality inspection and surface detection, 

which are applied in practically every sector of the 

economy and in manufacturing (see Table 3). While 

autoencoders are utilized for feature extraction, 

pretrained CNN networks (ResNet, DenseNet, and 

VGG) can be employed for object recognition.  

 

Accurate and even real-time anomaly detection is 

becoming more and more crucial in the Industrial 

Internet of Things (IIoT) since device failures have a 

significant impact on the manufacturing of 

industrial products. Federated learning systems are 

utilized in numerous industrial areas due to the 

nature of the IIoT. Since time series data is one of 

the most prevalent data sources in anomaly 

detection situations, LSTM networks have drawn a 

lot of interest for their ability to classify, process, 

and predict data. 

 

 

 

Table 3. Summary of applications of machine 

learning techniques in IIoT quality control. 

Application 

Typical Machine 

Learning 

Techniques 

References 

Visual quality 

inspection 

CNN (Yolo, VGG, 

ResNet, 

DenseNet), 

Autoencoders 

[104,106,107,110–

112,114] 

Anomaly 

detection 

LSTM and PSO, 

kNN, SVM, PCA, 

XGBoost, 

Regressions, etc. 

[117,122,125–

127,127,129] 

 

IV. MAINTENANCE 
 

Because it involves essential duties that have a 

direct impact on productivity, maintenance has 

long been a significant part of industrial 

manufacturing. The cost of replacing or repairing 

equipment and the expense of stopping production 

lines when necessary tools or equipment are not 

available are the two main components of 

maintenance as they have historically been defined.  

As a result, maintenance changes in tandem with 

new methods and industrial technology.  

 

Reactive and proactive maintenance are two 

distinct strategies. The intuitive approach to 

maintenance, known as reactive maintenance, is 

carrying out the activity when an item breaks or 

wears out. In order to prevent failure to save costs 

by guaranteeing shorter-term and scheduled 

maintenance and longer operational capabilities, 

proactive maintenance uses a variety of approaches 

to actively monitor the equipment, develop 

strategies, and estimate the conditions. 

 

Predictive and preventive maintenance are the 

approaches that are most frequently used. The goal 

of the second is to create a regular, periodic 

maintenance procedure for preventing failures and 

keeping machinery operational for as long as 

possible by extending its life-time [131–133], as 

illustrated in Figure 6, whereas the first focuses on 

estimating the time of failure to enable scheduled 

maintenance—and thus production line down-

times. 
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Figure 6. Difference between maintenance 

approaches in terms of condition and time 

 

Usually, proactive maintenance refers to the 

application of predictive with preventive 

approaches in the same maintenance ecosystem to 

overcome the disadvantages of wasting working 

hours and costs by performing unnecessary, 

periodic maintenance. 

 

Proactive Maintenance Tasks 

Proactive maintenance is not only made possible by 

Industry 4.0 applications, which typically also 

incorporate IoT systems, but they also gain from its 

implementation. This brings us to the idea of cyber-

physical systems, which are made up of many 

interconnected subsystems on both a digital and 

physical level. In order to optimize specific system 

parameters and establish a feedback loop, such a 

CPS gathers information about the state and 

condition of the subsystems or pieces of 

equipment. In order to develop a proactive 

maintenance system that is enabled by CPS and 

IoT, this scheme can also be used for maintenance 

duties. Several key components of such a system 

fall under the following categories [134–136]: 

 

Fault Detection—Identifying malfunctions is a 

difficult operation that requires information from 

multiple sources, including telemetry data, 

environment monitoring sensors, equipment 

monitoring sensors, etc. Vibration monitoring, 

sound or acoustic monitoring, and oil-analysis or 

lubricant monitoring are the most often collected 

data by sensors [137,138].  

 

Diagnostics—Prognostics and strategy planning 

are based on diagnostic processes, which analyze 

failures and hazards and allow for the development 

of models. Root cause analysis, a methodology for 

examining risks and methodically identifying 

potential root causes, is one of the primary tasks of 

diagnostics [139–141]. 

 

Prognostics—Predicting the future state of 

equipment by modeling it using diagnostic data is 

the goal of prognostics. Calculating the Mean Time 

to Failure (MTTF) and Remaining Useful Life (RUL) is 

typically the last objective of prognostics. These 

elements aid in the timely scheduling of necessary 

maintenance chores and are crucial in anticipating 

and averting potential future faults and breakdowns 

[142]. 

 

As previously said, these maintenance activities 

include data analysis, pattern recognition, creating 

intricate models of objects or processes, and 

predicting occurrences (failures and dangers), all of 

which are areas where machine learning techniques 

have historically performed better than alternative 

approaches and solutions. State-of-the-art 

solutions can be developed based on requirements 

and expectations because the maintenance, repair, 

and overhaul (MRO) fields are not subject to strict 

regulations. They can also adopt previously 

implemented solutions that are available in the 

literature or as an open-source project. 

 

Fault Detection 

A vast amount of data is needed for every aspect of 

maintenance, including fault detection (FD) and 

anomaly identification. Because of their similarities, 

this task's solutions are similar to those of the 

previously mentioned anomaly detection approach 

in quality control. Classification, clustering, 

regression, and anomaly detection techniques are 

most appropriate for this use-case since the 

primary objective is to watch and identify problems 

[143]. A clustering-based approach for a Power 

Distribution Network fault detection is covered in 

[144], where the decision tree algorithm performed 

better in terms of accuracy than KNN and SVM. A 

clustering method for identifying multi-component 

deterioration in airplane fuel systems was put forth 

by the authors in [145]. While keeping their 

computational complexity low, decision tree-based 

systems, like the one described in [146,147], can 

also offer an accurate detection rate.  
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However, employing neural networks for this 

function is also a popular approach, as seen in 

[148], where a finished maintenance framework is 

constructed using them. As demonstrated in 

[149,150], artificial neural network-based methods 

can be employed successfully for feature extraction 

and time-series data analysis. Furthermore, one of 

the primary predictive maintenance activities that 

heavily depends on real-time processing is defect 

detection. A Convolutional Neural Network (CNN)-

based method for motor defect detection that can 

deliver precise estimations in real time is presented 

in Ref. [151]. 

 

Diagnostics 

Classification or clustering-based solutions are 

frequently needed because diagnostic procedures, 

most notably root cause analysis, examine dangers 

by methodically generating problem subsets.  

 

The authors of [152] suggested an RCA solution for 

rotating machinery based on Decision Trees and 

Principal Component Analysis (PCA), where 

Decision Trees can accurately categorize data and 

PCA can remove duplicate features. Additionally, it 

was demonstrated in Ref. [153] that ensemble and 

decision tree algorithms work well with huge data 

sets and uncertain issues. In their suggested 

methodological framework, [154] employed 

Random Forest and KNN as classifiers for timeseries 

data in the particular rotating equipment use-case, 

and [155] likewise employed Random Forest for 

time-domain classification. 

 

RCA is not the only crucial diagnostic activity; 

modeling, which forms the foundation of 

prognostics, is also part of diagnostics. In order to 

create models for such tasks, feature extraction is 

typically required. The authors of [156] suggested a 

method for diagnosing rotating machinery faults 

that relies on a fish swarm algorithm to optimize its 

critical parameters and an auto-encoder to extract 

features. A comparable technique for rolling 

bearings is also suggested in Ref. [157], but it 

makes use of an improved Deep Wavelet Auto-

encoder and Extreme Learning Machine. In 

[158,159], various CNN-based techniques for 

processing time and frequency series data from 

sensors were introduced for bearings. In [157], a 

further approach utilizing RNN and GRU for strong 

performance and high accuracy is provided. 

 

Prognostics 

Prognostics typically entails designing or creating 

models that may explain the behavior of the 

equipment or component under investigation, in 

addition to estimating RUL and MTTF. Physical 

model-based, knowledge-based, data-driven, and 

other approaches are among the many that can be 

used in this sector; however, because of the vast 

quantity of data that is already available and the 

burgeoning machine learning applications, data-

driven approaches are currently the most common. 

However, some learning strategies, like fuzzy logic, 

can also be used to make knowledge-based 

predictions [160]. 

 

A method based on Support Vector Machines 

(SVM) and Restricted Boltzmann Machines (RBM) is 

suggested for predicting RUL with reference to the 

data-driven approach in [161]. 

 

In this work, RBM was utilized to enable learning 

without aberrant data, and SVM was employed to 

classify a dataset measured using a vibration 

sensor. In this field, a functional combination like 

this is common, with one technique being used for 

classification and the other for overcoming uneven 

data. SVM is one of the most widely used 

classification algorithms, according to [162]. 

Nevertheless, statistical algorithms like Bayesian 

Networks are still useful, primarily in situations with 

little data or in unpredictable contexts [163,164]. 

 

A common issue with modeling large systems is the 

enormous state space, which makes it challenging 

to build a model that accounts for every attribute. 

Therefore, in this industry, where auto-encoder-

based [165] solutions can be heavily used, lowering 

complexity is a regular task. Before determining 

RUL, the authors of [166] suggested using an Auto-

Encoder Gated Recurrent Unit (GRU) for dimension 

reduction; in [167], the same method was used, but 

in a framework. 
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It is typically advantageous to put in place systems 

that can handle time-series data because these 

forecasts are mostly dependent on it. Because of its 

strong time-series prediction capabilities, Recurrent 

Neural Networks (RNN) and Long Short-Term 

Memory (LSTM) were used for high-speed railway 

power equipment in Ref. [168]. A combined LTSM-

RNN approach was used in the same way in [169], 

although the study noted that because of its 

complexity, it is only appropriate for essential 

systems, whereas vanilla-RNN is better suited for 

large amounts of data. 

 

Optimization of Manufacturing 

The main ideas and machine learning techniques 

for manufacturing optimization are presented in 

this section. It exclusively addresses procedures that 

are directly related to manufacturing and 

production lines. The production optimization 

process's goal variables include the product's 

quality, cost, time, power usage, and other aspects 

unique to the product. There are relationships 

among these optimization elements, of course, but 

these are the most prominent ones. The foundation 

of factory optimization processes, pattern 

recognition, greatly benefits from the application of 

machine learning techniques. Correlations between 

various data types or manufacturing domains can 

be found and used to optimize the manufacturing 

process with the aid of machine learning 

techniques. 

 

Q-learning in an automated system is used in ref. 

[170] for electricity optimization in order to lower 

electricity consumption. A Deep Q-network 

algorithm based on mixed online bipartite 

matching is suggested in ref. [171] for smart 

manufacturing that maximizes profits. The paper 

tackles the crucial problem of efficiency and latency 

in the blockchain-based live manufacturing process 

by formulating a joint optimization of the block 

size, task scheduling, and supply-demand 

configuration to maximize customers' net profit 

with the probabilistic delay requirements. On the 

other hand, the study in [172] troubleshoots 

production data using a support vector regression 

technique with an RBF kernel to find the 

parameters causing fluctuations in high energy 

conversion efficiency. 

 

In order to transfer the input mask patterns straight 

to the output resist patterns, Ref. [173] suggests 

LithoGAN, an end-to-end lithography modeling 

system built on a generative adversarial network 

(GAN). The findings demonstrate that LithoGAN can 

accurately anticipate resist designs at a speed 

orders of magnitude faster than traditional 

lithography simulation and earlier machine 

learning-based methods. Ultrasound imaging 

applications include CNN and RNN in addition to 

GAN and Q-learning. In an IIoT setting, Ref. [174] 

suggests an automatic fetal ultrasound standard 

plane recognition model that uses multi-task 

learning to understand the temporal and spatial 

characteristics of the ultrasound video stream. 

While the RNN component gathers the temporal 

information between neighboring frames, the CNN 

component recognizes important anatomical 

features of the fetus and it realizes the precise 

localization and tracking of fetal organs across 

frames. 

 

Particle Swarm Optimization has been used to solve 

a number of optimization problems. For example, in 

[175], a PSO-based method is proposed to optimize 

the LSTM's hyperparameter settings in a FL 

environment, and in [176], combined multi-

Objective particle swarm optimization (CMOPSO) is 

suggested for an energy system used in green 

manufacturing. Additionally, regression difficulties 

are rather common in the production optimization 

industry. Ref. [177] suggests using machine learning 

(ML) based on a regression technique to optimize 

semiconductor production operations. The 

effectiveness of several supervised machine 

learning techniques, such as Linear Regression and 

Artificial Neural Network solutions, for the field 

calibration of inexpensive IoT sensors is compared 

in Ref. [178]. Furthermore, a solution for solving the 

inverse problem in electrical impedance 

tomography using logistic regression is presented 

in ref. [179]. 

 

Nonetheless, the industrial sector typically offers 

fully integrated NN systems. A NN model and Finite 
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Element Analysis are suggested in Ref. [180] for 

chip package design optimization. An optimization 

technique for Bipolar-CMOS-DMOS process 

development based on NN and an Automatic 

Multi-objective Optimization solution is presented 

in Ref. [181].  

 

In the area of production optimization, there are a 

few survey works. The majority of pertinent 

literature from 2008 to 2018 that deals with 

machine learning and optimization techniques for 

process or product quality improvement in the 

manufacturing sector is covered in the study in [13]. 

According to the review, there is very little 

relationship between the use of data, data volume, 

machine learning techniques, optimizers, and the 

corresponding production issue. Furthermore, there 

are publications that provide an overview of some 

of the most current developments in machine 

learning, emphasizing how they are used in process 

industries like additive manufacturing [182,183]. 

Additionally, ref. [185] analyzes the applicability of 

RL for various scheduling problems, summarizes 

state and action designs, and offers RL-based 

scheduling methods. 

 

Smart Maintenance Datasets 

Machine learning algorithms for smart maintenance 

chores can be trained and validated using a few 

publicly available datasets. By examining these 

datasets, one can gain a better knowledge of the 

machine learning algorithms and uncover the 

potential characteristics and results of each one. 

The majority of these datasets are synthetic due to 

the dearth of actual, industrial data. Ref. [119] is 

also a helpful source for smart maintenance 

applications because defect identification is a part 

of both quality control and maintenance. 

 

The benchmark dataset for predictive maintenance, 

MetroPT, which was gathered in 2022 regarding an 

urban metro public transportation service in Porto, 

is used in Ref. [186]. For the objectives of anomaly 

detection and failure prediction, the data includes 

samples from digital signals (control signals, 

discrete signals), analog sensor signals (pressure, 

temperature, current consumption), and GPS data 

(latitude, longitude, and speed). A dataset of alarms  

recorded by packaging machinery in an industrial 

setting is provided in Ref. [187] for categorization, 

forecasting, and anomaly detection applications. 

The collection comprises data from 20 equipment 

that were deployed at various sites worldwide 

between February 21, 2019, and June 17, 2020. The 

distribution is extremely lopsided for the 154 

different alarm codes. 

 

The Platform for Proactive Maintenance by MANTIS 

In 2015, 47 partners from 12 different countries in 

Europe began working on the Electronic 

Components and Systems for European Leadership 

(MANTIS) project.  

 

The primary goal, according to the authors in [188], 

was to create a proactive maintenance service 

platform architecture based on CPS that would 

facilitate collaborative maintenance ecosystems. In 

order to maximize maintenance, the requirements 

were defined to align with expectations.  

 

CPS mechanisms [189]. The Remaining Useful Life 

(RUL) of components, Fault Prediction (FP), Root 

Cause Analysis (RCA), and Maintenance Strategy 

Optimization (MSO) are the four primary proactive 

maintenance focus areas that they suggested. 

 

As seen in Figure 7, the architecture model adheres 

to the Industrial Internet of Things Reference 

Architecture of the Industrial Internet Consortium 

and comprises the edge, platform, and enterprise 

tiers. It also facilitates multi-stakeholder 

interactions and has undergone various evaluations 

for validation. In addition to using the Open 

Standards for the Physical Asset Management of 

Machinery Information Management Open System 

Alliance (MIMOSA) for data ontology, databus, and 

shared understanding across partners and 

applications, MANTIS processes data using the 

Lambda architecture pattern. 

 

 
Figure 7. Overview of the MANTIS reference 

architecture [188]. 



 Vennila P.  International Journal of Science, Engineering and Technology, 

 2025, 13:3 

 

17 

 

 

The authors of [190] offer an expansion of MANTIS 

that incorporates Big Data technologies and an 

implementation, including Apache Spark and the 

Hadoop Distributed File System.  

 

They employed two methods: Remaining Useful 

Life, which was based on time series forecasting, 

and Root Cause Analysis, which was fueled by 

Attribute Oriented Induction (AOI) Clustering.  

 

The four primary building blocks of the platform's 

technology implementation are described as 

follows: Data ingestion and access via batch 

processors, data storage systems, edge brokers, 

and human-machine interfaces. 

 

The authors of [191] described CPS-populated 

systems that employ MANTIS for proactive 

maintenance. In addition to summarizing the three 

primary research challenges—system performance, 

quality, and acceptance; applied development and 

deployment; and science and engineering 

foundations—they presented the key features of a 

CPS. Additionally, they discussed MANTIS's 

interoperability viewpoint, covering its technical, 

conceptual, application, and specification 

integrations. 

 

The authors of [192,193] provide intricate case 

studies on proactive maintenance and ongoing 

track and switch monitoring. They made use of the 

MANTIS platform and principles during the entire 

process. They described the procedures involved in 

data processing, implementation strategies, and 

visualization options, emphasizing the benefits of 

using MANTIS at each stage. 

 

Summary of Maintenance and Manufacturing 

Optimization Using Machine Learning 

Fault detection, diagnostics, and prognostics—the 

three primary facets of proactive maintenance—

share certain prerequisites and goals, and as a 

result, the tasks that must be completed. 

Classification, clustering, regression, complexity 

reduction, system modeling, and data series 

analysis are typically among these crucial activities. 

Though the latter are more concerned with 

prognostics, the former are more closely tied to  

fault identification and diagnostics; the applied 

machine-learning techniques also overlap to some 

extent. Nevertheless, both domains have unique 

goals. Table 4 provides an overview of the 

maintenance techniques. KNN and SVM are 

commonly used for clustering, whereas decision 

trees, random forests, and principal component 

analysis are utilized for classification and regression. 

The most popular techniques for modelling, 

complexity reduction, and data series analysis are 

neural network-based applications including CNN, 

auto-encoder, RNN, GRU and LSTM. 

 

It goes without saying that the manufacturing 

sector has a wide range of application-specific 

optimization challenges, with variations in their 

regularities depending on the machine learning 

approaches employed. In most situations, 

supervised machine learning techniques (SVM, 

regression) are employed for classification and 

prediction, as well as as an analytical tool 

throughout the optimization process. In many 

manufacturing processes, reinforcement learning—

particularly Q-learning—is used to solve decision-

making issues like single- and multi-objective 

scheduling difficulties. Nonetheless, it may be said 

that quality inspection and manufacturing 

optimization are just slightly different. The two 

processes are frequently inseparable; these 

machine learning-supported manufacturing 

processes depend on one another in a number of 

ways. 

 

Table 4. Summary of applications of machine 

learning techniques in IIoT proactive maintenance 

Application 

Typical Machine 

Learning 

Techniques 

References 

Fault 

Detection 

KNN, SVM, 

Decision Tree, 

CNN 

[143–151] 

Diagnostics 

Decision Tree, 

Random Forest, 

KNN, SVM, CNN, 

RNN 

[152–157,157–

159] 

Prognostics 

SVM, Bayesian 

Networks, RNN, 

CNN, Auto-

Encoder, LSTM, 

Gated Recurrent 

[160–169] 
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Unit (GRM) 

Manufacturing 

optimization 

Unsupervised 

learning 

(Regressions, 

SVM, GAN), 

Reinforcement 

learning (Q-

learning, LSTM) 

[170,171,173–

175,177,178,181] 

 

V. CONCLUSION  
 

This study included a thorough analysis of machine 

learning methods used in IIoT and smart 

production for a variety of applications. Proactive 

maintenance, asset localization, quality assurance, 

and safety and security are among the topics 

discussed.  

 

Since IIoT security and safety are crucial to the 

Industry 4.0 technological shift, ML approaches 

have a wide range of application sectors. 

 

Intrusion detection, authentication support, privacy 

leak detection, data integrity checks, availability 

support, and security service offloading are a few of 

these. One highly specialized area of smart 

manufacturing where machine learning has been 

widely used is asset localization. forecasting non-

LOS propagation, learning the mapping between 

measurements and location, and forecasting 

location inaccuracy are some of the application 

areas for asset localization. In terms of quality 

control, it was discovered that machine learning 

techniques were particularly needed for 

applications involving visual quality inspection and 

anomaly detection. The primary application areas 

for maintenance include prognostics, diagnostics, 

fault detection, and some factory optimization 

applications that were also examined. 

 

This work made it simpler for researchers and 

practitioners to identify ML-application trends for 

their respective fields by summarizing the relevant 

references found for application domains in 

addition to offering a broad overview of the used 

approaches for the listed application areas. The 

most crucial public dataset references for creating 

domain-specific algorithms and applications are 

also included in the study (see Table 5). To support 

the key conclusions regarding the state-of-the-art 

and the research needs in the application area 

under discussion, each major chapter contains a 

special lessons-learned section. 

 

Table 5. Summary of major and typical datasets for 

IIoT machine learning applications 

Topic 
Name of 

Dataset 
Description 

Smart 

maintenance 
MetroPT [186] 

Consists of samples 

of analog sensor 

signals (pressure, 

temperature, current 

consumption), digital 

signals (control 

signals, discrete 

signals), and GPS 

information (latitude, 

longitude, and 

speed). 

 

Alarm Logs in 

Packaging 

Industry (ALPI) 

[187] 

Contains a sequence 

of alarms logged by 

packaging 

equipment in an 

industrial 

environment. The 

collection includes 

data logged by 20 

machines, deployed 

in different plants 

around the world, 

from 21 February 

2019 to 17 June 

2020. 

Quality 

inspection 

UCI Machine 

Learning 

Repository 

[119] 

A UCI collection of 

databases, domain 

theories, and data 

generators. There are 

several datasets from 

the manufacturing 

domain that are used 

for algorithm 

validation, including 

the semi-conductor 

domain. 

 

Outlier 

Detection 

DataSets [130] 

ODDS provide access 

to a large collection 

of outlier detection 

datasets with ground 

truth (if available). 

The focus of the 

repository is to 

provide datasets 



 Vennila P.  International Journal of Science, Engineering and Technology, 

 2025, 13:3 

 

19 

 

 

from different 

domains including 

several 

manufacturing 

domains (wafer map). 

Safety and 

security 

KDD-99 dataset 

[65] 

The dataset used for 

The Third 

International 

Knowledge Discovery 

and Data Mining 

Tools Competition, 

the competition task 

was to build a 

network intrusion 

detector algorithm. 

 

CSE-CIC-

IDS2018 

dataset [66] 

The dataset includes 

seven different attack 

scenarios, namely 

Brute-force, 

Heartbleed, Botnet, 

DoS, DDoS, Web 

attacks, and 

infiltration of the 

network from inside. 

The attacking 

infrastructure 

includes 50 machines 

and the victim 

organization has 5 

departments 

including 420 PCs 

and 30 servers. 

 

CIC DDoS 

attack dataset 

[67] 

The dataset contains 

different modern 

reflective DDoS 

attacks such as 

PortMap, NetBIOS, 

LDAP, MSSQL, UDP, 

UDP-Lag, SYN, NTP, 

DNS and SNMP 

 

Intrusion 

detection and 

privacy attack 

dataset [68,69] 

Dataset for 

developing and 

evaluating different 

IEEE 802.11 Wi-Fi 

algorithms. 

 

The University 

of Arizona 

datasets [70] 

Different malware 

and network traffic 

datasets for 

developing and 

evaluating network 

security algorithms. 

Localization 
UTIL: An Ultra-

wideband 

An Ultra-wideband 

Time-difference-of-

Time-

difference-of-

arrival Indoor 

Localization 

Dataset [194] 

arrival Indoor 

Localization Dataset. 

Raw sensor data 

including UWB 

TDOA, inertial 

measurement unit 

(IMU), optical flow, 

time-of-flight (ToF) 

laser, and millimeter-

accurate ground 

truth data were 

collected during the 

flights of drones. 

 

CSI Dataset 

towards 5G NR 

High-Precision 

Positioning 

[195] 

This dataset can be 

used for indoor 

positioning, indoor-

outdoor-integrated 

positioning, NLoS, 5G 

channel estimation 

and other types of 

research, providing 

researchers with CSI-

level position-related 

feature data. 
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