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I. INTRODUCTION 
 

Sparse learning techniques have attracted significant 

interest due to their ability to deliver efficient and 

interpretable models, especially in high-dimensional 

classification tasks. Among these methods, the 

Relevance Vector Machine (RVM) has emerged as a 

probabilistic counterpart to the well-known Support 

Vector Machine (SVM) [5]. While SVM offers strong 

generalization with a large number of support 

vectors, RVM achieves comparable performance 

with far fewer "relevance vectors", thanks to its 

Bayesian framework. 

 

Despite these advantages, the accuracy of RVM 

often lags behind SVM in practical applications. A 

key reason is that RVM treats all training points 

uniformly, without special emphasis on data near the 

decision boundary, which are most critical for 

classification. SVM, in contrast, inherently focuses on 

margin-maximization, naturally prioritizing these 

informative points. 

 

 

 

 

In this work, we propose a SVM-guided RVM (SG-

RVM) architecture that exploits the strengths of both 

models. The idea is to first train an SVM, extract its 

support vectors (and possibly their nearest 

neighbors), and then use these as the reduced 

training set for the RVM. This hybrid strategy 

leverages the boundary-awareness of SVM and the 

sparsity of RVM, resulting in a compact yet accurate 

model. 

 

II. Related Work 
 

The SVM, introduced by Cortes and Vapnik [1], has 

become a standard classifier in numerous domains 

due to its margin-maximizing principles and 

versatility via kernel functions. However, its major 

limitation is the computational burden and lack of 

probabilistic outputs, particularly when a large 

number of support vectors are needed. 

 

To address these issues, Tipping [2] introduced the 

Relevance Vector Machine - a Bayesian regression 

and classification framework which produces sparser 
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models with fewer relevance vectors. However, RVM 

suffers from long training times and sensitivity to 

data distribution, especially in cases where decision 

boundaries are complex. Adaptive sparsity 

techniques have been explored to mitigate these 

issues by adjusting model complexity based on data 

characteristics [6]. 

 

Prior studies have attempted to combine or extend 

these methods. Yu et al. [3] explored SVM-RVM 

hybrids using ensemble techniques, while Zhu and 

Hastie [4] proposed related models like the import 

vector machine. Additionally, Kim and Ghahramani 

presented Bayesian classification methods closely 

related to the probabilistic foundation of RVM [7]. 

However, these approaches often increase 

complexity without significantly improving 

interpretability. 

 

Our proposed SG-RVM is simpler in structure and 

more interpretable: it directly transfers the decision 

boundary information encoded in SVM support 

vectors to guide RVM training. 

 

III. Proposed Method: SVM-Guided RVM 

(SG-RVM) 

 
The SG-RVM framework is designed to guide the 

learning of RVM using information obtained from 

SVM. The overall architecture is illustrated in Figure 

1. 

Figure 1: SG-RVM Model Architecture 

 

Methodology 

The SG-RVM consists of the following steps: 

 Train an SVM model on the entire training 

dataset using a suitable kernel function (e.g., 

radial basis function). 

 Extract support vectors (SVs) from the trained 

SVM model. 

 Optionally expand the SV set using a k-nearest 

neighbor approach to include samples close to 

the decision boundary. 

 Train an RVM on the reduced dataset comprising 

SVs (and their neighbors, if any). 

 Deploy RVM for inference, providing both 

classification and probabilistic outputs. 

 

Benefits of the SG-RVM Architecture 

 Higher accuracy: Since SVM naturally focuses on 

hard-to-classify points, RVM learns from more 

informative data. 

 Improved sparsity: RVM already eliminates 

redundant vectors, but with fewer inputs, the 

final model is even sparser. 

 Faster training: Training on a smaller, focused 

dataset reduces computational overhead. This 

approach aligns with techniques suggested by 

Cawley and Talbot, emphasizing Bayesian 

regularization to prevent over-fitting and 

enhance model efficiency [8]. 

 

Faster Training Time 

Since SG-RVM restricts the RVM training to a subset 

of support vectors (and optionally their neighbors), 

the computational complexity is substantially 

reduced compared to training on the entire dataset. 

This approach aligns with prior efforts to simplify 

SVM models by reducing the number of support 

vectors, such as the improved SimpSVM methods 

proposed by PQ Thang, which aim to accelerate 

classification while maintaining accuracy [11]. This 

results in faster convergence and makes the model 

well-suited for real-time or resource-constrained 

applications.  

 

IV. EXPERIMENTS 
DataSets 

We evaluated the SG-RVM on standard benchmark 

datasets from the UCI repository [9]: 
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 Iris: A classical small dataset for binary 

classification (3 classes, 4 features) 

 Wine: A dataset of chemical analysis of wines 

grown in the same region in Italy (multiclass, 13 

features) 

 DNA: Binary classification of nucleotide 

sequences (3 classes, 4 features) 

 Pendigits: Handwritten digit recognition 

(multiclass, 13 features) 

 USPS: Grayscale handwritten digits (multiclass, 

13 features) 

All datasets were standardized, and 5-fold cross-

validation was used. 

 

Implementation Details 

 SVM was implemented using scikit-learn with 

RBF kernel. 

 RVM was implemented using skbayes or PyRVM. 

 

Results 

Table-1: Comparison of RVM and SG-RVM 

Performance 

 

Dataset Model Accuracy 

(%) 

RVs Train 

Time (s) 

DNA 
RVM 92.4 167 599 

SG-RVM 92.8 159 290 

Pendigits 
RVM 97.9 142 15874 

SG-RVM 97.7 152 123 

USPS 
RVM 93.7 307 54624 

SG-RVM 94.3 300 1490 

Iris 
RVM 100 2 1.5736 

SG-RVM 100 2 0.1333 

Wine 
RVM 97.4 3 1.9544 

SG-RVM 97.4 3 0.3617 

 

Table 1 presents a comparative evaluation between 

the baseline RVM and the proposed SG-RVM across 

five benchmark datasets: Iris, Wine, DNA, Pendigits, 

and USPS. The metrics include classification 

accuracy, number of relevance vectors (RVs), and 

total training time. 

 

On small datasets like Iris and Wine, both models 

achieve identical or nearly identical accuracy (100% 

and 97.4%, respectively), confirming that SG-RVM 

does not degrade performance even when trained 

on a smaller subset. On the large-scale USPS dataset, 

SG-RVM actually outperforms RVM in accuracy 

(94.3% vs. 93.7%), highlighting its robustness despite 

training on fewer data points. 

 

SG-RVM consistently produces a comparable or 

slightly reduced number of relevance vectors 

compared to full RVM. For example, DNA: 159 (SG-

RVM) vs. 167 (RVM); USPS: 300 vs. 307. The 

difference is small, but combined with reduced 

training time, it results in a more compact and 

computationally cheaper model. 

 

The most striking advantage of SG-RVM is the 

drastic reduction in training time: Pendigits from 

~4.4 hours (15,874s) to just 2 minutes (123s); USPS 

from ~15.2 hours (54,624s) to 25 minutes (1490s). 

Even on the smaller DNA dataset, training time was 

cut in half. 

 

This efficiency gain is attributed to SG-RVM’s 

strategy of filtering the training data through SVM, 

thereby reducing the dimensionality of the design 

matrix Φ passed to the RVM. As RVM involves matrix 

inversions, the quadratic cost is significantly lowered. 

 

In summary, SG-RVM achieves its original goal: it 

preserves the core benefits of RVM (sparsity and 

probabilistic outputs), while vastly improving 

scalability to larger datasets. 

 

V. DISCUSSION 

 
The experiments confirm that focusing RVM training 

on informative samples near the SVM decision 

boundary significantly boosts performance. This 

aligns with prior studies highlighting that boundary-

based selection of training samples can significantly 

improve classifier accuracy [10]. This suggests that 

RVM’s probabilistic modeling is more effective when 

applied to regions of high uncertainty. Furthermore, 

reduced training time and model complexity make 

SG-RVM highly suitable for real-world applications, 

especially in time-sensitive or large-scale scenarios. 

 

Another noteworthy advantage of SG-RVM is the 

significant reduction in training time. By learning 

from a smaller, boundary-focused subset of data, the 
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RVM component converges faster than when trained 

on the full dataset. This efficiency, combined with 

improved accuracy and sparsity, makes SG-RVM 

particularly appealing in time-sensitive or large-scale 

applications. 

 

VI. CONCLUSION 

 
We presented a hybrid classification framework 

called SVM-Guided RVM (SG-RVM) that combines 

the decision boundary sensitivity of SVM with the 

sparse probabilistic nature of RVM. By restricting 

RVM training to SVM’s support vectors, the 

proposed method enhances classification accuracy 

while reducing model complexity. Experimental 

results on standard datasets validate the efficacy of 

the approach. This framework opens new directions 

for efficient sparse learning in high-stakes 

classification tasks. 
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