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I. INTRODUCTION 
 

A cell cycle is a progression of a cell through steps of 

growth and chromosome duplication to complete 

cell division. The cell cycle of a eukaryotic cell is 

traditionally divided in four phases - G1, S , G2 and 

M. Phases G1, S and G2 together are called the 

interphase. A gap phase G1 (G for gap) is an interval 

before the DNA synthesis (S -phase) that is followed 

by another gap phase named G2, where the cell 

keeps growing until mitosis takes place (M-phase). A 

cell cycle consists of various cyclins and cyclin-

dependent kinases that have to react at certain cell-

cycle control checkpoints. During its cell  

 

cycle, a cell makes two vital decisions: first, the 

decision of “entering into S -phase” is made in late 

G1-phase, called G1 checkpoint. DNA replication 

begins when the cell is ready to undergo the entire 

cell cycle. Second decision is the “entry into mitosis”, 

mitosis will proceed through all its stages once 

initiated, called G2 checkpoint. The cell-cycle control 

system, the key proteins of the control system, 

initiates and controls the progression of the cell cycle 

and can arrest it at specific checkpoints. Cells in a cell 

cycle are called dividing or proliferating cell. If a cell 

is non-dividing or quiescent it is said to be in G0-

phase. A cell in G0-phase can return to the G1-phase 

again under the influence of mitogenic signals 
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Key Words - Cancer, Balanced Exponential Growth (BEG), Cell-cycle. Population doubling time,average cell cycle 

age, in vitro, in vivo.Based Anonymization, Big Data Privacy. 

 



 Biwott, K. L., International Journal of Science, Engineering and Technology, 

 2025, 13:4 

 

2 

 

 

(growth factors, tumor viruses etc.), A diagram 

outlining cell-cycle control with key checkpoints is 

shown in Figure 1.1. Some non-dividing cells like 

neurons and skeletal muscle fibre cells are unable to 

re-enter the cell cycle. Others, like fibroblasts and 

lymphocytes are ordinarily in the G0 - phase but can 

be activated by external agents. 

 

 
 

Figure 1.1: The cell-cycle control diagram. During  

 

G1-phase cell grows then DNA is replicated and new 

chromatin is formed, denoted as S -phase. During 

G2-phase cell prepares for mitosis or M- phase, 

where it divides into two daughter cells. A cell 

passing through the cell-cycle control checkpoints in 

G1 and G2 phases and completing cell division is 

called proliferating. G0 depicts the non-proliferating 

cell phase. 

  

III. METHODOLOGY 
 

Our mathematical model is initially designed to 

depict the growth of cancer cell population in the 

BEG state, i.e., population that has not been exposed 

to any cancer treatment. We assume that all cells in 

the population are proliferating and can be viewed 

as subdivided among phases G1, S , G2, and M. Due 

to presented experimental data, we combine 

subpopulations in G2 and M phases and refer to it as 

G2M-phase. Cells move from one phase to the next 

with a certain transition probability rate (r). Age (τ) is 

considered to be the time spent by a given cell in its 

current phase. Thus, each cell is at age zero when 

entering into a new phase of cell growth. No cells are 

in the non-proliferating state or G0-phase. Although 

cells from cell lines exhibit immortality properties, we 

have incorporated a probability of apoptosis in each 

phase (µ). Figure 1.2 presents a schematically 

illustrated cancer cell population in BEG. 

 
Figure 1.2: Diagram of the cell-cycle control of in 

vitro (outside the body) tumour cells showing the 

proportions in each phase. 

 

In our model, cell cycle is subdivided into three 

phases: G1, S , and G2M (with combined phases G2 

and M because we apply our model to flow 

cytometry [FC] profiles, and FC measurements 

cannot distinguish between G2 and M phases 

because DNA contents in both phases are twice that 

of S -phase). E a c h cell has age zero when entering 

into a new phase of cell growth. 

  

Let us assume that there is a continuous function n(t, 

τ) that represents the number density of the cancer 

cell population and is a vector quantity, with 

 

n(t, τ) = [nG (t, τ) nS (t, τ) nG M(t, τ)]T . (1) 

1 2 

Here vector components np(t, τ) with p ∈ {G1, S, 

G2M} are continuous functions, where 

np : [0, ∞) ×[0, T) → [0, ∞), that shows the number 

density of cells with age τ at time t in a cell cycle 

phase p. Age τ states the duration of a cell in 

particular phase p. Let us assume that the probability 

rate at which cells leave phase p is given by term 

bp(t, τ). Assumptions that the transition probability 

depends on time t and age τ and is a non-negative 

piecewise continuous function, are comprehensible 

in biological terms. Here, transition rate bp(t, τ) with: 

p ∈ {G1, S, G2M} is defined as follows: 

 

bG1 (t, τ) = rG1→S (t, τ) + µG1 (t, τ), bS (t, τ) = rS 

→G2 M (t, τ) + µS (t, τ), 

bG2 M (t, τ) = rG2 M→G1 (t, τ) + µG2 M (t, τ), 

where rG1→S (t, τ), rS →G2 M (t, τ), and rG2 M→G1 

(t, τ) are the transition probability rates (probability 
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per time unit per cell) between two consecutive 

phases and µp(t, τ) depicts the death rate from the 

phase 

p. 

We also assume that cancer cells taken from cancer 

cell lines have a potential undergoing apoptosis at 

any phase of the cell cycle. The conservation law 

states that the variation of the population number 

density in p phasein time is caused by a transition to 

the next phase or death; thus, the following linear 

partial differential equation can be derived: 

𝛛 𝑛 (𝑡, 𝜏) + 𝛛 𝑛 (𝑡, 𝜏) = −𝑏 (𝑡, 𝜏)𝑛 (𝑡, 𝜏)  

𝛛𝑡  𝑝 

𝛛𝜏  𝑝 
𝑝 𝑝 

   

Conservation between the various phases and the 

death phase, which is not explicitly modelled, fol- 

lows from the continuity of the derivatives on the 

domain. 

Additional conditions for equation (3) are provided: 

the initial number density distribution and renewal 

condition (also called Lotka equation) for each 

phase. The initial age distribution is defined as: 

𝑛𝑝(𝑡 = 0, 𝜏) = 𝑛0(𝜏) (4) 

with the initial distribution 𝑛0(𝜏) in (L1 ∩ L∞)[0, T ). 

All cells at age zero have transferred from the 

previous phase and are expressed as follows: 

  

𝑛𝑝 

(𝑡, 𝜏 = 0) = ∫𝑇 𝑎 

𝑝−1 

(𝑡, 𝜏)𝑛𝑝−1  

(𝑡, 𝜏)𝑑𝜏 

where transition rate ap(t, τ) with p ∈ {G1, S, G2M} is 

defined as: 

aG1 (t, τ) = rG1→S (t, τ), (6) 

aS (t, τ) = rS →G2 M (t, τ), aG2 M (t, τ) = 2rG2 M→G1 

(t, τ). 

  

Cells are presumed to be in the G1-phase 

immediately after division. Here, subscript p −1 in 

equation 

(5) is taken to signify the following: 

G1 − 1 = G2M; S − 1 = G1; G2M − 1 = S. 

We note that for the G1 - phase, the renewal 

condition (5) is as follows: 

𝑛 (𝑡, 𝜏 = 0) = ∫𝑇 2𝑟 

 (𝑡, 𝜏)𝑛 

(𝑡, 𝜏)𝑑𝜏 

𝐺1 

0 𝐺2𝑀→𝐺1 

𝐺2𝑀 

  

where 2 refers to each cell that has completed 

mitosis producing two daughter cells. 

It is assumed that rp→p+1, µp ∈ C−1([0, ∞) ×[0, T )) 

for all p ∈ {G1, S, G2M}, and, in addition, they are 

bounded and strictly positive. We also assume that 

derivatives of rp→p+1(t, τ) and µp(t, τ) for all p ∈ {G1, 

S, G2M} are bounded and piecewise continuous in t 

and τ. Finally, we assume that there exists a positive 

lower bound. Note that for biological realism, we 

also assume µp(t, τ) is non- negative. The simplicity 

of the model is due to the linearity that is present 

when dealing with a cancer cell population that 

grows in vitro exponentially without any 

environmental constraints. We provide the analytical 

solution of the problem (3) - (5) and show the 

condition for the existence of such solution. We 

impose change in variables: now arguments t and τ 

depend on parameter z. Thus, the number density 

function can be rewritten as follows: 

 

𝑛𝑝(𝑧) = 𝑛𝑝(𝑡(𝑧), 𝜏(𝑧) (8) 

 

Hence, the derivative of n  ̄ (z) with respect to new 

variable z can be expressed as follows: 

 

𝑑𝑛 𝑑 

= 𝑛 

(𝑡(𝑧), 𝜏(𝑧) = 𝜕𝑛𝑝 𝑑𝑡 + 𝜕𝑛𝑝 𝑑𝜏   

𝑑𝑧 𝑑𝑧  𝑝   
𝜕𝑡 𝑑𝑧 𝜕𝜏 𝑑𝑧 

  

Where z varies along the characteristic cell lines: 

𝑑𝑡 = 1, 𝑑𝜏 = 1 (9) 

𝑑𝑧 𝑑𝑧 

=z+1 (10) 

 

Equation 3.3.3 can be written as. 

𝑑𝑛𝑝 (𝑧) + 𝑏 (𝑡(𝑧), (𝑧)𝑛 (𝑧) = 0 𝑑𝑧 𝑝 𝑝 

 

 

We choose point( t0,, 0) along the characteristic line 

(9). This point can be any point in the first quadrant 

as shown in figure 2.1 Thus the following expressions 

are derived. 
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𝑡 = 𝑡0 + 𝑧.  = 0 + 𝑧 

 
𝑛𝑝(𝑡, 𝜏 = 0) 

 

For simplicity, we define the number density function 

np at point (t0, τ0) as np(t0, τ0) = n0. Therefore, 

equation (11) can be solved by integrating along the 

characteristic lines as follows: 

𝑛𝑝  

(𝑧) = 𝑛0  

𝑒− ∫𝑧 𝑏𝑝(𝑡(𝜉),𝜏(𝜉)𝑑𝜉  

𝑒− ∫𝑧 𝑏𝑝(𝑏𝑝(𝑡0+𝜉,𝜏0+𝜉)𝑑𝜉=𝑛0𝑒 

− 𝜏0+𝑧 𝑏 (𝑠+𝑡 −𝜏 ,𝑠)𝑑𝑠 0 

Where 𝑠 = 𝜏0 + 𝜉. Further we divide analysis of the 

solution into two cases: 𝑡 < 𝜏 𝑎𝑛𝑑 𝑡 > 𝜏 

as depicted in figure 2.1. In this case 𝑡 < 𝜏 we express 

solution 𝑛𝑝(𝑧) as: 

 

𝑡 = 0 + 𝑧, 𝜏 = 𝜏0 + 𝑧 

− ∫𝜏0+𝑧 𝑏𝑝(𝑠−𝜏0,𝑠)𝑑𝑠 

𝑛𝑝(𝑧) = 𝑛𝑝(𝑧, 𝜏0 + 𝑧) = 𝑛𝑝(0, 𝜏0)𝑒 𝜏0 

 

Thus the number density 𝑛𝑝(𝑡, 𝜏) for the case 𝑡 < 𝜏can 

be expressed as follows: 

 

− ∫𝜏  𝑏𝑝(𝑠+𝑡−𝜏,𝑠)𝑑𝑠 

𝑛(𝑡, 𝜏) = 𝑛𝑝(0, 𝜏 − 𝑡)𝑒 𝜏−1 , 𝑡 < 𝜏 (13) 

 

We note that the analytical solution of the problem 

(3) – (5) in the case of 𝑡 > 𝜏, portrays the growth of 

the cancer cell population taken from the cancer cell 

line culture i.e the time it takes for the cell population 

to grow is longer than the age  that the cells have 

to spend in phase p for the case 𝑡 > 𝜏 and solution 

of n¯p (z) is as follows: 

 

  

t = t0 + z, τ = z, 

𝑛 ̂ = 𝑛𝑝(𝑡0 + 𝑧, 𝑧) = 𝑛𝑝(𝑡0, 0)𝑒 

− ∫𝑧 𝑏𝑝(𝑠+𝑡0,𝑠)𝑑𝑠 

Here, the variable change gives us cell number 

density function np(t, τ), for the case t > τ, as: 

− 𝜏 𝑏 (𝑠+𝑡−𝜏,𝑠)𝑑𝑠 

𝑛𝑝(𝑡, 𝜏) = 𝑛𝑝(𝑡 − 𝜏, 0)𝑒 

∫0 𝑝 

, 𝑡 > 𝜏 (14) 

 

Thus, by using the renewal condition (5), equation 

(14) can be rewritten in its general form as a 

representation of the asymptotic solution of the 

problem (3) - (5) as follows: 

  

𝑇 − 𝜏 𝑏 (𝑠+𝑡−𝜏,𝑠)𝑑𝑠 

  

𝑛𝑝(𝑡, 𝜏) = ∫0 𝑎𝑝−1(𝑡 − 𝜏, 𝑠)𝑛𝑝−1(𝑡 − 𝜏, 𝑠)𝑑𝑠 𝑒 

∫𝑜 𝑝 

, 𝑡 > 𝜏 

. In more general notation, McKendrick - von 

Foerster equation (3) can be rewritten as: 

 

∂ ∂ 

n(t, τ) +  n(t, τ) = −Dout(t, τ)n(t, τ), 0 < t < ∞,

 0 < τ < T, (16) 

∂t ∂τ 

with respective side conditions defined as follows: 

 

n(t = 0, τ) = n0(τ), initial age distribution,

 (17) 

𝒏(𝑡, 𝜏 = 0) = ∫𝑻 𝑫 𝒕, 𝝉 𝒏 𝑡, 𝜏 𝑑𝜏, 𝑡 > 0 renewal 

distribution, (18) 

𝒊𝒏( ) ( ) 

The matrix Dout represents the loss of cells from the 

various phases via death and transfer to other 

phases, and is defined as: 

 

𝑫𝑜𝑢𝑡(𝑡, 𝜏) = [ 

  

𝑟𝐺1→𝑠+𝜇𝐺1 0 0 

0 𝑟𝑠→𝐺2𝑀+𝜇𝑠 0 

0 0 𝑟𝐺2𝑀→𝐺1+𝜇𝐺2𝑀 

] (𝑡, 𝜏) (19) 

  

 

 

 

The renewal matrix Din represents the gain of cells 

at age τ = 0 in each phase and is caused by transfer 

from other phases. Din is defined as: 
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0 0 2𝑟𝐺2𝑚→𝐺1 

𝑫𝑖𝑛(𝑡, 𝜏) = [𝑟𝐺1→𝑠 0 0 

0 𝑟𝑠→𝐺2𝑀 0 

] (𝑡, 𝜏) (20) 

  

 

Transition rates rp→p+1 and µp for p ∈ {G1, S, G2M}, 

with the cell- cycle control depicted in Figure 

1.2. Solution to the governing differential equation 

(16) along the characteristic lines, already 

expressed for each component of vector function n(t, 

τ) in equations (13) and (14), is as follows: 

 

𝒏(𝑡, 𝜏) = [ 

𝑒𝑥𝑝(− ∫𝜏 
 𝑫𝑜𝑢𝑡 

(𝑠 + 𝑡 − 𝜏, 𝑠)𝑑𝑠)𝑛(𝜏 − 𝑡), 0 ≤ 𝑡 ≤ 𝜏, 

𝑒𝑥𝑝(− ∫𝜏 𝑫 (𝑠 + 𝑡 − 𝜏, 𝑠) 𝑑𝑠)𝑛(𝑡 − 𝜏, 0), 0 ≤ 𝜏 ≤ 𝑡, 
𝒐𝒖𝒕 

 

Analytical solution of McKendrick-von Foerster 

equation (16) assumes that the solution on the 

boundary τ = 0 has been given. However, in our 

problem, we are given the renewal boundary con- 

dition (18). Substituting the formal solution from (21) 

into the boundary condition (18) gives us a Volterra 

integral equation of the second kind for n(t, 0): 

𝒏(𝑡, 0) = 𝓕(𝑡) + ∫𝑡 𝐾(𝑡, 𝑠)𝒏(𝑠, 0)𝑑𝑠(t) (22) 

where 

ℱ(𝑡) = 𝑇 𝐷  (𝑡, 𝜏)𝑒𝑥𝑝(−  𝜏 𝐷 (𝑠 + 𝑡 − 𝜏, 

𝑠)𝑑𝑠)𝑛0 (𝜏 − 𝑡)𝑑𝜏 (23) 

 

∫𝑡 
𝑖𝑛 

∫𝜏−1 

𝑜𝑢𝑡 

and kernel of integro-equation is defined as follows: 

𝑘(𝑡, 𝑠) = 𝑫 

𝑖𝑛 

(𝑡, 𝑡 − 𝑠)exp(− 

𝑡−𝑠 

∫0 𝑫 

𝑜𝑢𝑡 

(𝜉 + 𝑠, 𝜉)𝑑𝜉) (24) 

  

By the assumptions made in our problem, we know 

that Dout (t, τ) and Din (t, τ) are piecewise continu-

ous: therefore, K(t, s) is piecewise continuous. 

Furthermore, because the components of n0(τ) are 

in (L1 ∩ L∞)[0, T ) and the components of Din(t, τ) 

are bounded, we find that F(t) exists. We observe, by 

the piecewise continuity of Dout and Din, that F(t) is 

continuous. 

 

Because kernel K(t, s) is piecewise continuous, we use 

method of continuation to first establish existence 

and uniqueness in some interval [0, T1], and then 

show that this solution can be continued to 

successive intervals [T1, T2], [T2, T3],and so on. 

Eventually the whole interval [0, T ) is covered. We 

rewrite kernel K(t, s) as p(t, s)k(t, s), where k(t, s) is 

continuous and p(t, s) represents the piecewise 

continuous part (effectively p(t, s) is the same as 

equation 

(24)); thus, we may apply the existence and 

uniqueness theorem from Linz (1985): 

 

When the kernel is unbounded (or has some 

irregular behaviour) it is often convenient to rewrite 

linear second kind Volterra equation 𝑓(𝑡) = 𝑔(𝑡) + ∫𝑡 

𝑘(𝑡, 𝑠)𝑓(𝑠)𝑑𝑠, as follows: 

 

𝑡 

𝑓(𝑡) = 𝑔(𝑡) + ∫ 𝑝(𝑡, 𝑠)𝑘(𝑡, 𝑠)𝑓(𝑠)𝑑𝑠, 

0 

where p(t, s) represents the part with the non-

smooth behaviour. which tells us there is a unique 

continuous solution to equation (22) on [0, T ) for any 

T > 0. 

Theorem 1. There exists a unique non-negative 

solution n(t,τ) (along characteristic lines) to problem 

(16) such that each component of n(t, τ) belongs to 

(L1 ∩ L∞)([0, ∞) × [0, T )) for any T > 0, and each 

component of n(t, ·) belongs to (L1 ∩ L∞)[0, ∞) for all 

t ≥ 0. The solution is given by equation (21), where 

n(t, 0) is continuous for all t ≥ 0. 

  

 

 

 

IV.CONCLUSION 

 
In this paper, investigation of the age-structured 

models has led to the derivation of biologically sig- 

nificant parameters describing the dynamics of an 
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exponentially growing cancer cell population. We 

shall show the relationship between the average cell-

cycle time (also called the average cell-removal time) 

and the population doubling time, where the cell-

cycle time of the population is greater or equal to 

the population doubling time. This result is of great 

interest to biologists, as they generally assume that 

the cell-cycle time is always equal to the population 

doubling time. 

 

We have proven the existence of the balanced 

exponential growth state for the age- structured 

model with piecewise continuous transition rates. 

For the case of piecewise constant tran- sition rates, 

we have derived analytical formulae for the 

population distribution among the cell-cycle phases, 

the average cell age and the expected (average) 

removal time for the population in BEG. We note that 

the average age of the cells removed from all phases 

is the average cell-cycle time. We shall show that a 

delay differential equation system can be obtained 

from the age-structured model with piecewise 

constant transition rates. We shall present the 

reduction of the age-structure model to the ordinary 

differential equation model and thereafter apply it in 

the analysis of the cancer cell population response 

to various cancer treatments. A study of a case of 

piecewise linear transition rates, would provide a 

further generalisation of the model. 
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