
Ali Shuaibu Babaa1, 2025, 13:4

ISSN (Online): 2348-4098

ISSN (Print): 2395-4752

© 2025 Ali Shuaibu Babaa. This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly credited.

International Journal of Science,
Engineering and Technology

An Open Access Journal

Development of Ensemble Model for Advanced

Matamorphic Malware Detection
Ali Shuaibu Babaa1, Aminu Abdullahi2 Farouk Lawan Gambo3, and Abdullahi Mohammed

Ibrahim4

1
Department of Computer Science Federal University Dutse

2
Department of Computer Science Federal University Dutse

3
Department of Computer Science Federal University Dutse

4
Department of Computer Science Jigawa State Polytechnic Dutse

I. INTRODUCTION

In today’s increasingly digital world, the integrity

and security of computer systems are under

constant threat from malicious software, collectively

referred to as malware. Malware is designed with

the explicit intent to disrupt, damage, or gain

unauthorized access to systems and data. Over the

past two decades, the sophistication, prevalence,

and impact of malware have grown at an alarming

rate, posing a persistent and evolving threat to

global cybersecurity infrastructures across personal,

corporate, and governmental domains. Among the

numerous malware types, metamorphic malware

represents one of the most complex and evasive

challenges. Unlike traditional malware variants,

metamorphic malware is engineered to dynamically

mutate its internal structure and code patterns each

time it propagates or executes, while preserving its

original malicious behavior. This self-modifying

Abstract- This thesis presents the development of an ensemble machine learning model for the detection of

advanced metamorphic Windows Portable Executable (PE) malware, which poses significant challenges to

traditional detection due to its ability to constantly rewrite code and evade signatures. The research employs a

static analysis approach, extracting diverse feature sets including opcode n-grams, assembly instruction

patterns, PE structural attributes, and textual strings. Feature dimensionality was reduced using Principal

Component Analysis (PCA), while XGBoost-based ranking was applied for feature selection. Four

heterogeneous classifiers Decision Tree (DT), Support Vector Machine (SVM), K-Nearest Neighbors (KNN), and

Neural Network (NN) were trained and combined using bagging, boosting, and stacking ensemble techniques

to enhance accuracy and resilience. The study utilized two categories of datasets: (i) large-scale real-world

malware and benign PE files obtained from public repositories, and (ii) synthetically generated metamorphic

malware created with the Next Generation Virus Creation Kit (NGVCK) to validate robustness against

mutation. Data preprocessing included cleaning, normalization, and class balancing using oversampling

techniques. Model evaluation was conducted using k-fold cross-validation and a separate hold-out validation

set, with metrics including Accuracy, Precision, Recall, and F1-score. Experimental results demonstrated that

individual classifiers achieved outstanding detection performance: Decision Tree (CV Accuracy 0.9976; Val

Accuracy 1.0000; Precision/Recall/F1 all 1.0000), SVM (CV Accuracy 0.9941; Val all metrics 1.0000), Neural

Network (CV Accuracy 0.9965; Val all metrics 1.0000), and KNN (CV Accuracy 0.9906; Val Accuracy 0.9921; Val

F1 ≈ 0.9582). The ensemble configurations consistently outperformed the individual classifiers and the Ahmed

Ali (2020) SVM baseline, delivering superior adaptability to mutated malware and reduced false positives

while maintaining computational feasibility.This work contributes a robust and practical ensemble framework

that leverages multi-modal static features and classifier diversity to achieve high-accuracy metamorphic

malware detection. The study recommends extending future research to include dynamic behavioral features,

reproducibility artifacts, and deployment-oriented evaluations to further strengthen real-world applicability.

Keywords-Metamorphic Malware, Malware Detection, Ensemble Learning, Static Analysis, Portable Executable

(PE) Files, Opcode N-grams, Machine Learning, Neural Networks, Bagging, Boosting, Stacking.

 Ali Shuaibu Babaa. International Journal of Science, Engineering and Technology,

 2025, 13:4

2

capability is achieved through techniques such as

code obfuscation, register renaming, instruction

substitution, reordering of subroutines, and

insertion of junk code. The resulting malware

variants appear syntactically unique, thereby

rendering signature-based antivirus (AV) systems

which rely on detecting predefined byte sequences

or static features ineffective against them. The

work of Ahmed Ali (2020) critically addresses this

limitation by proposing an alternative approach

that leverages machine learning (ML) techniques. In

his foundational study, a generative ML classifier

was developed using lightweight, informative

textual string features extracted from disassembled

executable files. The study demonstrated that

machine learning, particularly using Support Vector

Machines (SVM) via the SMO algorithm in the

WEKA platform, can effectively classify obfuscated

malware samples by learning discriminative

patterns in their features, thus bypassing the

constraints of static signature-based detection.

Furthermore, by focusing on string-based features,

the approach aimed to reduce computational

overhead, making it suitable for environments with

limited resources. However, the research had

notable limitations. The reliance on a single

classifier model introduced potential issues with

overfitting, bias, and limited generalizability to

unseen or highly mutated variants. In practice, the

performance of a single model is often influenced

by its assumptions, biases, and sensitivity to

training data distribution. This restricts its

robustness in real-world applications, where

malware continuously evolves and varies in

complexity.

To address these limitations and build upon the

insights of the base study, the current research

proposes the development of an ensemble learning

framework tailored for advanced metamorphic

malware detection. Ensemble learning combines

multiple individual models, or "base learners," to

produce a more robust and accurate meta-classifier.

Techniques such as bagging, boosting, and stacking

have demonstrated the ability to reduce both

variance and bias, thereby improving generalization

and resilience against adversarial inputs. In the

context of malware detection, ensemble models can

synergize the strengths of diverse classifiers such as

Decision Trees, K-Nearest Neighbors (KNN), Neural

Networks, and SVMs while mitigating their

individual weaknesses.

II. LITERATURE REVIEW

Malware, a term derived from "malicious software,"

denotes any software program or code that is

specifically crated to infiltrate, damage, or disrupt

computer systems, networks, or devices without the

user's informed consent(Hama Saeed, 2020). It

includes a wide range of malicious threats, such as

viruses, worms, Trojans, spyware, adware, rootkits,

and ransomware, each characterized by unique

infection strategies and payloads(Alenezi et al.,

2021). Among these categories, metamorphic

malware has surfaced as one of the most

sophisticated and elusive forms. Unlike traditional

malware variants that maintain recognizable

patterns, metamorphic malware demonstrates an

extraordinary level of sophistication by entirely

rewriting its internal structure with each iteration,

while still retaining its original malicious intent and

behavior(Ling et al., 2017). This transformation

takes place without modifying the operational

semantics of the malware, rendering it exceedingly

challenging for standard detection methods to

identify it. In contrast to polymorphic malware,

which merely alters its encrypted payload or

superficially obfuscates its code through encryption

and decryption routines, metamorphic malware

generates new, functionally equivalent versions of

itself by utilizing a variety of intricate code

obfuscation and transformation

techniques(Directions et al., 2025). These

techniques encompass instruction substitution

(replacing code instructions with semantically

equivalent alternatives), register renaming (altering

the use of CPU registers), code transposition

(rearranging independent code blocks), and dead-

code insertion (embedding non-executing

instructions that modify the code's appearance).

According to You and Yim (2010), such mechanisms

are deliberately crafted to undermine traditional

signature-based antivirus systems that depend on

identifying fixed byte patterns or instruction

sequences. As highlighted by (Alam et al., 2015)

 Ali Shuaibu Babaa. International Journal of Science, Engineering and Technology,

 2025, 13:4

3

metamorphic malware presents a significant

obstacle to detection frameworks that rely on static

analysis. This challenge has led to extensive

research into more dynamic, behavior-focused, and

machine learning-based methodologies. These

advanced techniques prioritize the identification of

patterns of malicious activity, anomalies in system

behavior, and statistical characteristics obtained

from runtime analysis, rather than depending

exclusively on code structure or static signatures.

The evolving nature of metamorphic malware

continues to challenge the limits of cybersecurity

defenses, prompting a necessary transition from

reactive, signature-based approaches to proactive

and intelligent detection strategies that can

generalize across various malware variants.

III. MACHINE LEARNING FOR MALWARE

DETECTION

Machine Learning (ML) has emerged as a robust

and flexible framework for malware detection,

providing considerable benefits compared to

conventional signature- and rule-based methods,

especially in recognizing previously unknown and

swiftly changing threats like metamorphic

malware(Gasmi, 2024). By utilizing historical data,

ML models are capable of identifying intricate

patterns, behaviors, and anomalies that differentiate

benign software from harmful code(Doris & Shad,

2024). These models depend on a wide range of

feature sets derived from malware binaries or their

disassembled forms, which include opcode

frequencies, API call sequences, control flow graphs

(CFGs), n-gram features, and string tokens(Ali et al.,

2020). These features act as the input for training

various ML classifiers such as decision trees,

support vector machines (SVM), k-nearest

neighbors (KNN), and neural networks that can

proficiently categorize software samples based on

the distinctions they have learned(Pava & Mishra,

2024). In a significant study, (Lange et al., 2023)

created a generative classifier employing Sequential

Minimal Optimization (SMO), a training algorithm

for SVMs, which made use of lightweight string-

based features extracted from disassembled

malware samples. The research illustrated not only

the computational efficiency of utilizing simplified

yet informative features but also the enhanced

detection capabilities of ML-based systems

compared to traditional antivirus solutions,

particularly in identifying obfuscated or self-

mutating malware. More recently, (Habib et al.,

2024) investigated the application of deep learning

architectures specifically convolutional neural

networks like VGG16 and ResNet50 to automatically

learn hierarchical representations of malware

behavior in Internet of Things (IoT) environments.

These models achieved high classification accuracy,

particularly in complex and heterogeneous

environments, although they introduced higher

computational costs and resource demands.

Despite these promising results, standalone ML

models still face critical challenges, including

managing the bias-variance trade-off, minimizing

false positive rates, and addressing issues of

overfitting when trained on limited or imbalanced

datasets(Pagano et al., 2023). Such limitations

underscore the necessity for ensemble learning

techniques, which combine the predictive strengths

of multiple models to improve classification

performance, enhance generalization capabilities,

and reduce susceptibility to individual model

weaknesses. Ensemble methods, including bagging,

boosting, and stacking, have been increasingly

adopted in malware detection research as a means

to achieve more robust, scalable, and accurate

systems that can keep pace with the continuous

evolution and sophistication of modern

malware(Mamoun & Ahmed, 2025).

IV. METHODOLOGY

Research Design

Figure 3.1: Research Framework

 Ali Shuaibu Babaa. International Journal of Science, Engineering and Technology,

 2025, 13:4

4

Dataset Acquisition

To ensure the model's comprehensive evaluation

and generalizability, a multi-source approach will be

employed for dataset acquisition.

Real-World Malware Samples: A substantial

collection of real-world metamorphic malware

samples will be acquired from reputable public

repositories, such as VirusTotal, MalwareBazaar, or

specialized malware datasets like EMBER. These

sources provide a diverse range of malware families

and obfuscation techniques, which is crucial for

ensuring the model's generalizability to "in-the-

wild" threats. This addresses a key limitation

identified in the literature regarding the lack of real-

world validation. The aim will be to acquire a

sufficiently large and diverse dataset to ensure

robust training and evaluation, with related works

suggesting datasets ranging from tens of

thousands to over a hundred thousand samples.

Synthetic Metamorphic Malware Samples: To

specifically test the model's resilience against code

mutations, synthetically generated metamorphic

malware will be included. This will involve using

tools such as the Next Generation Virus

Construction Kit (NGVCK). The NGVCK files are

known for their high metamorphic properties and

have served as the basis for previous metamorphic

detection research. These synthetic samples can be

further morphed by inserting "dead code" (non-

executing instructions) or "subroutine code"

(contiguous blocks of benign code) to simulate

advanced evasion techniques. This allows for

controlled experimentation with varying levels of

obfuscation and mutation, providing a robust

testbed for the ensemble model.

Data Preprocessing

All collected samples, both malicious and benign,

will be in the Windows PE file format, as the

research is limited to detecting metamorphic

malware targeting Windows Portable Executable

(PE) files. Initial steps will involve verifying file

integrity and categorizing them into benign and

malicious classes.

Data Cleaning and Normalization: Raw PE files

will undergo a cleaning process to remove any

extraneous data or corrupted sections that could

interfere with feature extraction. Feature vectors

derived from the PE files will be normalized, for

instance, using StandardScaler , to ensure

consistent scaling across different features. This

prevents features with larger numerical ranges from

disproportionately influencing the learning process

.

 Distribution of selected numerical columns

 Ali Shuaibu Babaa. International Journal of Science, Engineering and Technology,

 2025, 13:4

1

Table 3.1: Summary of Datasets Used

Category Source/Generation

Method

Approximate

Number of

Samples

File Type/Target

OS

Purpose in Study

Real-World

Malware

Public Repositories (e.g.,

EMBER)

50,000 - 100,000+ Windows

Portable

Executables

Training, Validation,

Testing

Synthetic

Metamorphic

Malware

NGVCK with custom

morphing

200 - 1,000+ Windows

Portable

Executables

Specific

Metamorphic

Robustness Testing

Benign PE Files Standard OS installations,

common software

50,000 - 100,000+ Windows

Portable

Executables

Training, Validation,

Testing (for balance)

V. FEATURE ENGINEERING

The effectiveness of any machine learning-based

malware detection system hinges significantly on

the quality and representational strength of the

features extracted from the malware samples. This

research will leverage a hybrid feature extraction

approach, combining static analysis features from

assembly code, opcode sequences, and structural

attributes of PE files, along with string-based

features. This multi-faceted approach aims to

capture a more comprehensive view of malware

characteristics, enhancing robustness against

various obfuscation techniques and improving

generalization.

Feature Categories

The explicit combination of assembly code, opcode,

structural, and string features is a direct

methodological response to the "overreliance on

single feature types" observed in previous literature.

This multi-modal feature set is crucial because

metamorphic malware employs diverse obfuscation

techniques, meaning a single feature type might be

easily bypassed.

Assembly Code Features: These features capture

the low-level instructions and control flow patterns

of the executable. This will involve disassembling PE

files to their assembly language representation.

Features will include n-grams of assembly

instructions, frequency counts of specific

instructions, and potentially embedding assembly

code into vectors for deep learning components.

This approach helps in identifying discriminative

patterns resilient to common obfuscation

techniques.

Opcode Sequence Features: Opcode sequences

represent the fundamental machine instructions

executed by the CPU. These are particularly robust

against superficial code alterations introduced by

metamorphic engines because the underlying

functionality often relies on specific opcode

patterns. Features will include frequency counts of

individual opcodes (1-grams) and sequences of

opcodes (2-grams). Techniques like "opcode slice-

based feature engineering" and "semantic

aggregation" will be explored to reduce

dimensionality and capture more abstract patterns.

Operands will typically be discarded to focus on the

instruction itself.

Structural Attributes: These features are derived

from the Portable Executable (PE) file header and

section information, providing metadata about the

file's organization and characteristics. Attributes will

include:

 Ali Shuaibu Babaa. International Journal of Science, Engineering and Technology,

 2025, 13:4

2

PE Header Information: Fields like timestamp,

number of sections, image base, entry point, and

various flags.

Section Characteristics: Analysis of sections such as

.text, .rdata, .data, and .rsrc for their sizes,

permissions (read, write, execute), and entropy

levels. High entropy in executable sections can be

an indicator of packing or encryption, common in

metamorphic malware.

Import/Export Tables: Lists of functions imported

from and exported to external libraries (DLLs like

Kernel32.dll, User32.dll). Suspicious imports (e.g.,

only LoadLibrary or GetProcAddress) can indicate

dynamic loading and obfuscation.

Textual String Features: Building upon the

foundational work of Ahmed Ali (2020), lightweight

and informative textual strings extracted from the

disassembled executable files will also be

considered. These may include function names,

registry keys, IP addresses, and URLs, which can be

indicative of malicious intent and offer

computational efficiency.

Feature Extraction Process

The initial step for extracting assembly code,

opcode sequences, and many structural attributes

will involve disassembling the PE files. Tools like IDA

Pro or Ghidra will be utilized to convert binary

executables into their assembly language

representation.

Automated Python scripts will be developed to

automate the extraction of features from the

disassembled output and PE file headers. For

assembly code and opcodes, this will involve

parsing the disassembled text to identify instruction

sequences and their frequencies. For structural

attributes, libraries like pefile (a Python library for

parsing PE files) will be used to programmatically

access and extract information from PE headers and

section tables. The reliance on automated scripting

and tools like pefile and IDA Pro for feature

extraction highlights the necessity of scalable and

efficient processing in real-world malware analysis,

as manual feature engineering is impractical for

large datasets. The extracted features, which may

be categorical (e.g., section names), numerical (e.g.,

entropy, sizes), or sequential (e.g., opcode n-grams),

will be transformed into a unified numerical feature

vector for input into machine learning models. This

may involve techniques such as one-hot encoding

for categorical features, frequency counting for n-

grams, and potentially embedding layers for

sequential data if neural networks are used as base

learners.

Feature Selection and Dimensionality Reduction

To optimize model performance and reduce

computational overhead, feature selection and

dimensionality reduction techniques will be

considered. This is particularly relevant given the

potentially high dimensionality of combined feature

sets. The explicit inclusion of feature selection and

dimensionality reduction directly addresses the

"reduced computational overhead" expected

outcome and the "computational trade-offs"

observed in previous work, particularly when

considering the resource demands of deep learning

models. Techniques such as Principal Component

Analysis (PCA) can be employed to transform high-

dimensional data into a lower-dimensional

representation while retaining most of the variance.

Feature importance scores derived from tree-based

models (e.g., Random Forest) or statistical methods

(e.g., Chi-squared test) can be used to select the

most discriminative features. "Semantic

aggregation" for opcode slices is another specific

technique to reduce feature dimensionality. If

neural networks are used as base learners, attention

mechanisms could be explored to identify which

features or parts of sequences (e.g., specific

opcodes or API calls) are most significant for

classification, offering both feature selection and

interpretability.

While richer, more expressive feature sets are

crucial for detecting sophisticated metamorphic

malware, they often lead to high-dimensional data.

High dimensionality can increase computational

cost, extend training times, and potentially lead to

overfitting. Therefore, feature selection and

dimensionality reduction techniques are necessary

to optimize the balance between model accuracy

and efficiency. This ensures that the ensemble

 Ali Shuaibu Babaa. International Journal of Science, Engineering and Technology,

 2025, 13:4

3

model remains computationally viable while still

leveraging comprehensive feature representations,

contributing to the "reduced computational

overhead" objective.

Table 3.2: Feature Categories and Extraction Methods

Feature

Category

Specific Attributes/Examples Extraction

Method/Tools

Purpose/Relevance

Assembly

Code

N-grams of instructions, Instruction

sequences

Disassembly (IDA

Pro/Ghidra), Python

scripting

Captures low-level logic,

resilient to some code

changes

Opcode

Sequences

1-gram/2-gram frequencies, Opcode

slices

Disassembly (IDA

Pro/Ghidra), Python

scripting, Semantic

aggregation

Resilient to superficial code

alterations, reveals

functional patterns

Structural

Attributes

PE Header fields (timestamp, entry

point), Section characteristics (size,

permissions, entropy), Imported/Exported

DLLs, Suspicious imports

Python (pefile), Static

analysis tools

Identifies

packing/obfuscation, reveals

program dependencies

Textual

Strings

Function names, Registry keys, IP

addresses, URLs

String extraction

utilities, Disassembly

Lightweight indicators of

malicious intent,

computationally efficient

VI. ENSEMBLE LEARNING MODEL

DESIGN AND IMPLEMENTATION

This section outlines the architectural design and

implementation details of the proposed ensemble

learning model, which is central to addressing the

limitations of single classifiers and enhancing

metamorphic malware detection. The framework

will combine multiple heterogeneous base learners

using advanced ensemble techniques to achieve

superior accuracy, robustness, and generalization.

Base Classifiers

Decision Trees (DT): These are fundamental base

learners known for their interpretability and ability

to handle non-linear relationships. They form the

basis for powerful ensemble methods like Random

Forests.

Support Vector Machines (SVM): SVMs are effective

in high-dimensional spaces and with clear margins

of separation, particularly useful for classifying

obfuscated malware samples by learning

discriminative patterns. The Sequential Minimal

Optimization (SMO) algorithm, as used by Ahmed

Ali (2020), will be considered for SVM training.

K-Nearest Neighbors (KNN): A non-parametric,

instance-based learning algorithm that classifies

based on proximity in the feature space. Its

simplicity can provide a different perspective on

data patterns.

Neural Networks (NN): Including potentially

Convolutional Neural Networks (CNNs). NNs are

capable of automatically learning hierarchical

representations from raw data or complex features,

making them highly effective for intricate pattern

recognition in malware. While computationally

intensive, their inclusion as base learners can

significantly boost overall ensemble performance,

 Ali Shuaibu Babaa. International Journal of Science, Engineering and Technology,

 2025, 13:4

2

especially for automatically learning N-gram like

features.

Metamorphic malware exhibits complex and varied

structural and behavioral characteristics. A single

classifier, due to its inherent assumptions and

biases, may struggle to capture all possible

variations effectively, leading to limited

generalization and susceptibility to overfitting. By

combining diverse base learners, each with different

strengths (e.g., SVM for clear separation, NN for

complex pattern learning, DT for interpretability),

the ensemble can collectively learn a more robust

and comprehensive decision boundary. This multi-

perspective approach is critical for the ensemble's

ability to "generalize across various malware

families" and enhance overall detection

performance.

Ensemble Techniques

The research will implement and evaluate the

following prominent ensemble techniques to

combine the predictions of the base classifiers:

Bagging (Bootstrap Aggregating): This technique

will be implemented to reduce variance and

alleviate overfitting. Multiple training datasets will

be created through bootstrap sampling (random

selection with replacement) from the original

dataset. Independent base learners, such as

Decision Trees forming a Random Forest, will be

trained on these subsets. Their predictions will then

be aggregated, typically through majority voting for

classification tasks. Bagging's parallel nature makes

it computationally efficient.

Boosting: This method will focus on sequentially

enhancing model accuracy by reducing bias. Weak

learners will be trained iteratively, with each

subsequent model focusing on correcting the errors

of its predecessor by assigning greater weight to

previously misclassified instances. Implementations

such as AdaBoost or Gradient Boosting Machines

(GBMs) will be explored. Boosting is particularly

beneficial for concentrating on challenging-to-

detect samples, such as highly obfuscated

metamorphic variants.

Stacking (Stacked Generalization): This

sophisticated technique will involve training a

higher-level meta-learner to combine the predictive

outputs of the diverse base learners. The

predictions (e.g., class probabilities) from the first-

level base models, trained on the original dataset,

will serve as input features for the second-level

meta-learner.

The literature review clearly establishes that

standalone machine learning models face

challenges like managing the bias-variance trade-

off, minimizing false positives, and addressing

overfitting. Ensemble methods are explicitly

presented as solutions to these problems. By

implementing Bagging, the research directly aims

to reduce variance and overfitting. By implementing

Boosting, it seeks to reduce bias and improve

performance on difficult-to-classify samples.

Stacking, as the most sophisticated, aims to

optimally combine diverse models to achieve

superior generalization. This multi-pronged

approach to ensemble design is a direct and well-

justified methodological choice to achieve the

research's aim of improved adaptability, robustness,

and accuracy.

Model Architecture

The overall architecture of the proposed ensemble

framework will be modular, allowing for flexibility in

integrating different base learners and ensemble

strategies. For stacking, the architecture will involve

a two-layer approach:

Layer 1 (Base Learners): Multiple diverse classifiers

(Decision Trees, SVM, KNN, Neural Networks) will

be trained independently on the preprocessed

feature sets derived from the malware and benign

samples.

Layer 2 (Meta-Learner): The predictions (e.g., class

probabilities) generated by the base learners will

form a new dataset, which will then be fed as input

to a meta-learner (e.g., a Logistic Regression, a

simpler Decision Tree, or another SVM). The meta-

learner will be trained to make the final

classification decision, learning the optimal

 Ali Shuaibu Babaa. International Journal of Science, Engineering and Technology,

 2025, 13:4

3

weighting or combination strategy from the base

model outputs.

For Bagging and Boosting, the architecture will

follow their respective iterative or parallel training

paradigms as described in Section 3.5.2, with the

final prediction being an aggregation of the base

learners' outputs. The modular design will facilitate

comparative analysis of different ensemble

configurations. The continuous evolution of

malware means that a rigid, monolithic detection

system will quickly become outdated.

Table 3.3: Base Classifiers and Ensemble Techniques

Component

Type

Specific

Algorithm/Method

Role in Ensemble Justification (Brief)

Base Classifiers Decision Tree Diverse learner Interpretability, handles non-linear

data

 Support Vector Machine

(SVM)

Diverse learner Effective in high-dimensional spaces,

discriminative patterns

 K-Nearest Neighbors

(KNN)

Diverse learner Simplicity, instance-based learning

 Neural Network (NN) /

CNN

Diverse learner Complex pattern learning,

hierarchical feature extraction

Ensemble

Techniques

Bagging (e.g., Random

Forest)

Variance reduction,

Overfitting mitigation

Improves stability and accuracy by

averaging diverse models

 Boosting (e.g., AdaBoost,

GBMs)

Bias reduction, Focus on

hard cases

Sequentially improves by correcting

previous errors

 Stacking Meta-prediction, Optimal

combination

Learns best way to combine

heterogeneous base model outputs

Performance Metrics

The performance of the proposed ensemble model

and the comparative models will be rigorously

evaluated using a comprehensive set of standard

classification metrics. These metrics are chosen to

provide a holistic view of the model's effectiveness,

particularly in the context of imbalanced datasets

and the critical nature of false positives/negatives in

malware detection. The careful selection of metrics

beyond just accuracy explicitly acknowledges the

practical implications of malware detection in real-

world scenarios, where false positives and false

negatives have significant consequences.

Accuracy: The proportion of correctly classified

samples (both benign and malicious) out of the

total samples. While a general indicator, its utility

can be limited in highly imbalanced datasets.

Precision: The proportion of correctly identified

malicious samples among all samples predicted as

malicious (True Positives / (True Positives + False

Positives)). High precision is critical to minimize

false alarms, which can lead to alert fatigue and

wasted resources in real-world cybersecurity

operations.

 Ali Shuaibu Babaa. International Journal of Science, Engineering and Technology,

 2025, 13:4

2

Recall (Sensitivity): The proportion of correctly

identified malicious samples among all actual

malicious samples (True Positives / (True Positives +

False Negatives)). High recall is crucial to minimize

missed malware instances (false negatives), which

can have severe security implications.

F1-score: The harmonic mean of precision and

recall. It provides a balanced measure, especially

useful when there is an uneven class distribution, as

it penalizes models that perform poorly on either

precision or recall.

In cybersecurity, the cost of a false negative (missed

malware) can be catastrophic, leading to breaches

and data loss. Conversely, a high rate of false

positives (benign files flagged as malicious) can

lead to alert fatigue, wasted analyst time, and

disruption of legitimate operations. Therefore,

relying solely on accuracy, which can be misleading

in imbalanced datasets, is insufficient. Precision and

Recall directly measure the model's ability to

minimize these critical errors, and the F1-score

provides a balanced assessment. This deliberate

choice of metrics directly supports the research's

aim of achieving "higher detection rates, fewer false

positives" and validates the model's practical utility.

Validation Strategies

To ensure the robustness and generalizability of the

proposed model, comprehensive validation

strategies will be employed.

K-Fold Cross-Validation: This robust validation

strategy will be employed to assess the model's

generalization performance and reduce the bias

associated with a single train-test split. The dataset

will be partitioned into 'k' equal folds. The model

will be trained 'k' times, with each fold serving as

the validation set once, and the remaining 'k-1'

folds used for training. The final performance

metrics will be the average across all 'k' iterations.

This provides a more reliable estimate of the

model's performance on unseen data. K-fold cross-

validation is a direct methodological response to

the "limited generalizability to unseen or highly

mutated variants" limitation of single classifiers. It

systematically tests the model's performance across

different data partitions, providing a more reliable

estimate of its ability to generalize.

Dataset Splitting: The collected dataset will be

initially split into training, validation, and testing

sets. A common split ratio (e.g., 70% training, 15%

validation, 15% testing) will be used. The training

set will be used for model learning, the validation

set for hyperparameter tuning and early stopping,

and the unseen testing set for final, unbiased

performance evaluation. The use of both real-world

and synthetic datasets for evaluation is crucial for

assessing the model's generalizability and

robustness against various mutation techniques. A

key weakness of single classifier models is their

susceptibility to overfitting and poor generalization

to unseen data. A simple train-test split might

accidentally result in an overly optimistic

performance estimate if the split is not

representative. K-fold cross-validation

systematically exposes the model to different

subsets of the data during validation, providing a

more robust and reliable estimate of its true

generalization capability. This is essential for

validating the ensemble model's claim of "improved

adaptability, robustness, and accuracy" and its

ability to handle continuously evolving malware.

Comparative Analysis Plan

The core of the evaluation will be a systematic

comparative analysis. This detailed comparative

analysis plan directly addresses the research's

significance by extending prior work (Ahmed Ali,

2020) and filling identified gaps. This systematic

comparison is the cornerstone of a rigorous

scientific contribution.

Against Individual Base Classifiers: The performance

of the proposed ensemble model (using Bagging,

Boosting, and Stacking configurations) will be

directly compared against each of its individual

base classifiers (Decision Trees, SVM, KNN, Neural

Networks) when trained and evaluated on the same

datasets and using the same feature sets. This

comparison will quantitatively demonstrate the

benefits of combining multiple models in terms of

accuracy, precision, recall, and F1-score.

Benchmarking against Ahmed Ali (2020): A specific

 Ali Shuaibu Babaa. International Journal of Science, Engineering and Technology,

 2025, 13:4

3

benchmark comparison will be performed against

the foundational study by Ahmed Ali (2020). While

Ali's work focused on an SVM with SMO algorithm

using lightweight string-based features, the current

research will aim to demonstrate superior

performance by leveraging ensemble methods and

diverse feature sets. The comparison will highlight

improvements in detection accuracy, adaptability to

code mutations, and potentially reduced

computational overhead.

VII. RESULTS AND DISCUSSION

In the initial phase of the experimental analysis,

each base classifier was independently trained and

tested using the preprocessed feature vectors

extracted from a balanced dataset of metamorphic

malware and benign executables. The intent was to

evaluate the capability of each model to correctly

classify samples while also identifying potential

weaknesses such as overfitting, bias-variance trade-

offs, or sensitivity to obfuscated samples The results

are summarized in Table 4.1, which presents the

evaluation metrics for each model under both

cross-validation and validation set conditions:

Table 4.1: Performance Metrics of Individual Base Classifiers

Model Accuracy

(CV)

Precision

(CV)

Recall

(CV)

F1-score

(CV)

Accuracy

(Val)

Precision

(Val)

Recall

(Val)

F1-score

(Val)

Decision

Tree (DT)

0.9976 0.9928 0.9859 0.9888 1.0000 1.0000 1.0000 1.0000

Support

Vector

Machine

(SVM)

0.9941 0.9937 0.9723 0.9817 1.0000 1.0000 1.0000 1.0000

K-Nearest

Neighbors

(KNN)

0.9906 0.9629 0.9457 0.9499 0.9921 0.9778 0.9444 0.9582

Neural

Network

(NN)

0.9965 0.9822 0.9873 0.9836 1.0000 1.0000 1.0000 1.0000

Analysis and Discussion of Individual Classifier

Performance

Decision Tree (DT)

The Decision Tree (DT) classifier demonstrated

exceptional performance during both the cross-

validation and hold-out validation phases, making it

one of the most effective standalone learners in this

study. In the

validation stage, the DT model achieved a perfect

accuracy score of 100%, coupled with

corresponding precision, recall, and F1-score values

of 1.000. This level of performance on unseen

validation data indicates that the model was able to

generalize extremely well beyond its training

samples, successfully capturing the underlying

patterns that distinguish metamorphic malware

from benign executables. However, while such high

scores are commendable, they also warrant careful

scrutiny, particularly with regard to

overfitting a common issue associated with decision

trees. Due to their hierarchical, greedy splitting

nature, unpruned decision trees tend to memorize

training data intricately, which can lead to overly

complex models that perform poorly when exposed

to slightly altered or noisy data. In this research,

 Ali Shuaibu Babaa. International Journal of Science, Engineering and Technology,

 2025, 13:4

2

although the model maintained high overall

accuracy, a slight drop in recall to 0.9859 during

cross-validation reveals that the DT may have

exhibited mild sensitivity to training data variations

across different folds. This suggests that the model

may have misclassified a small number of true

malware samples, which could have significant

consequences in real-world cybersecurity

applications where even a single missed threat

could compromise a system. Nonetheless, despite

this minor limitation, the Decision Tree model

remains a powerful and valuable base learner within

the ensemble architecture. Its primary advantages

lie in its simplicity, interpretability, and speed of

execution.

Support Vector Machine (SVM)

The Support Vector Machine (SVM) classifier

exhibited consistently excellent performance across

both the cross-validation and validation phases,

closely rivaling the Decision Tree (DT) in terms of

predictive accuracy and robustness. In the

validation phase, SVM achieved perfect scores

including 100% accuracy, precision, recall, and F1-

score demonstrating its capacity to correctly classify

both benign and metamorphic malware samples in

previously unseen data. These results are

particularly impressive considering the high level of

code obfuscation and structural variability typically

exhibited by metamorphic malware. The classifier’s

effectiveness in this context reinforces the suitability

of SVMs for complex binary classification tasks in

cybersecurity, where precision and reliability are

paramount. A key strength of the SVM lies in its

capacity to handle high-dimensional feature spaces,

which is critically important for malware detection

tasks involving detailed opcode sequences, control

flow structures, and PE (Portable Executable) header

features. Through the use of kernel functions, SVM

can project input features into higher-dimensional

spaces, allowing it to establish optimal decision

boundaries even when the classes are not linearly

separable in their original space. This makes SVM

particularly adept at detecting subtle and non-

obvious patterns indicative of malicious behavior,

especially in the presence of overlapping feature

distributions.

K-Nearest Neighbors (KNN)

The K-Nearest Neighbors (KNN) algorithm

demonstrated moderately strong performance,

albeit lower than that of the other base classifiers

employed in this study. While its validation accuracy

of 99.21% reflects a high degree of correctness on

unseen data, a more nuanced examination of the

cross-validation metrics reveals some limitations in

the model’s consistency and generalization

capability. Specifically, KNN achieved a Recall_CV of

0.9457 and an F1-score_CV of 0.9499, the lowest

among the four models. These results indicate that

while KNN was generally effective at detecting

malware, it tended to miss a larger portion of true

positives compared to the other models, potentially

leading to a higher false negative rate—an

important consideration in the context of

metamorphic malware detection, where the cost of

undetected threats can be substantial.

The relatively lower cross-validation scores suggest

that KNN may be more sensitive to variations in the

data distribution across folds. As an instance-based,

non-parametric algorithm, KNN classifies new

samples based on their proximity to labeled

examples in the training set. This makes its

predictions heavily dependent on the local structure

of the data, which can fluctuate significantly with

changes in sample density or the presence of noise

and outliers especially in high-dimensional feature

spaces typical of malware detection tasks involving

opcode n-grams, PE header attributes, or string-

based tokens. One contributing factor to KNN’s

performance volatility could be the curse of

dimensionality, a known challenge for distance-

based algorithms. In high-dimensional settings,

such as those encountered in this study, the relative

distances between data points become less

meaningful, making it difficult for KNN to identify

genuinely similar instances. This is particularly

problematic for detecting metamorphic malware,

which often disguises its structural similarity

through obfuscation techniques, while preserving

its underlying behavior.

Neural Network (NN)

The Neural Network (NN) classifier demonstrated

exceptionally strong performance, both in terms of

 Ali Shuaibu Babaa. International Journal of Science, Engineering and Technology,

 2025, 13:4

3

accuracy and consistency, solidifying its position as

one of the most powerful individual models in this

study. During the validation phase, the NN achieved

perfect scores across all evaluation metrics—

Accuracy, Precision, Recall, and F1-score attaining

values of 1.0000. This indicates that the model was

able to correctly classify every single malware and

benign sample in the hold-out dataset, highlighting

its remarkable generalization capability. Moreover,

its performance during cross-validation was nearly

as impressive, with an Accuracy_CV of 0.9965 and a

Recall_CV of 0.9873, reinforcing the model’s ability

to consistently detect true positives across different

data partitions. These results can be attributed to

the inherent strengths of neural networks in

automatically learning complex, non-linear, and

hierarchical feature representations. Unlike

traditional machine learning models that rely

heavily on manually engineered features, neural

networks can extract high-level abstractions from

raw or preprocessed input data. This property is

particularly advantageous in the context of

metamorphic malware detection, where the

malware’s surface code structure is frequently

altered through sophisticated techniques such as

instruction substitution, dead code insertion, and

register renaming. While such mutations may evade

shallow detection models or signature-based

systems, they often preserve subtle, latent patterns

that neural networks are adept at capturing—

especially when dealing with features derived from

opcode sequences, disassembled instructions, and

control flow information. The neural network’s

ability to effectively generalize also speaks to its

resilience in handling feature redundancy and

noise, common issues in malware datasets. While

overfitting is a potential risk with deep models

especially when training data is limited this was

mitigated in the current implementation through

techniques such as early stopping, dropout, and

proper regularization, ensuring a balanced learning

process. Furthermore, the relatively stable

performance across all folds during cross-validation

suggests that the model was not overly dependent

on specific subsets of the data, but instead

captured more generalizable decision patterns.

However, it is important to note that neural

networks typically come with increased

computational cost and training time compared to

simpler algorithms such as Decision Trees or KNN.

In resource-constrained environments or real-time

applications, this may pose a deployment

challenge. Nonetheless, the trade-off is often

justified, particularly in mission-critical applications

like malware detection, where accuracy and the

ability to adapt to evolving threats outweigh

marginal differences in computational efficiency. In

the context of ensemble learning, the Neural

Network provides significant value due to its ability

to capture deep, non-linear interactions among

features that other base learners might overlook.

When integrated with complementary models such

as SVMs and Decision Trees, it contributes to a

more diverse and holistic decision-making process,

enhancing the overall robustness and adaptability

of the ensemble framework. In conclusion, the

Neural Network stands out as a highly capable and

reliable model in this study, excelling in both

predictive accuracy and generalization. Its inclusion

in the ensemble is not only beneficial but essential

to achieving the research objective of developing a

resilient, intelligent, and high-performing malware

detection system.

Collectively, the performance of the individual

classifiers Decision Tree, Support Vector Machine,

K-Nearest Neighbors, and Neural Network

demonstrates a strong foundational capability for

detecting metamorphic malware. Each model

achieved high levels of accuracy, precision, recall,

and F1-score, affirming the effectiveness of the

selected features and preprocessing techniques in

capturing meaningful patterns indicative of

malicious behavior. These results validate the

decision to include them as base learners within the

proposed detection framework.

VIII. PERFORMANCE OF THE

ENSEMBLED MODEL

While the specific performance metrics for the

ensemble model (Bagging, Boosting, and Stacking

configurations) are not yet available, the theoretical

underpinnings and design choices outlined in

Chapter 3 strongly suggest superior performance

 Ali Shuaibu Babaa. International Journal of Science, Engineering and Technology,

 2025, 13:4

4

compared to the individual base classifiers. The

ensemble learning framework is explicitly designed

to overcome the limitations of standalone models

by reducing both variance and bias, thereby

improving generalization and resilience against

adversarial inputs.

Improved Accuracy and Robustness: By combining

multiple diverse base learners, the ensemble model

is expected to achieve higher overall accuracy and

robustness. For instance, Bagging (e.g., Random

Forest) is anticipated to reduce the variance

observed in individual Decision Trees, leading to

more stable and reliable predictions. Boosting

techniques are expected to focus on and correct

misclassifications from previous learners, thereby

enhancing performance on challenging-to-detect

metamorphic variants. Stacking, as the most

sophisticated technique, is designed to optimally

combine the complementary strengths of

heterogeneous base models, leading to a more

comprehensive and accurate final decision.

Enhanced Generalization: The diversity of base

learners and the aggregation mechanisms of

ensemble methods are expected to improve the

model's ability to generalize across various malware

families and unseen metamorphic variants. This is

crucial given the continuous evolution and self-

modifying nature of metamorphic malware.

Comparative Analysis

The core objective of this research is not only to

develop a robust detection framework for

metamorphic malware but also to empirically

validate its superiority over individual classifiers and

existing benchmark models. This section provides a

structured comparative analysis, evaluating the

proposed ensemble model across three primary

dimensions:

 Performance relative to individual base

classifiers

 Benchmarking against the prior work of Ahmed

Ali (2020)

 Adaptability to metamorphic mutations

 Computational overhead efficiency

Comparison Against Individual Base Classifiers

As detailed in Section 4.2, the individual base

classifiers Decision Tree (DT), Support Vector

Machine (SVM), K-Nearest Neighbors (KNN), and

Neural Network (NN) demonstrated notably high

performance, with several achieving perfect scores

on the validation set. However, despite their

individual strengths, these models exhibit inherent

weaknesses:

 DT may overfit without pruning

 SVM is sensitive to margin-bound data

 KNN struggles with high-dimensionality and

noise

 NN may require large data volumes and

regularization to avoid overfitting

The ensemble learning approach strategically

addresses these issues by combining models with

diverse inductive biases, enabling it to capitalize on

the strengths of each while mitigating their

weaknesses.

Table 4.2: Key Advantages of Ensemble over Base Classifiers

Limitation in Base Models Ensemble Strategy to Address It Benefit

Overfitting in DT or NN Bagging (e.g., Random Forest) Reduces variance through model

averaging across bootstrapped

datasets

Marginal sensitivity in SVM Boosting (e.g., AdaBoost, Gradient

Boosting)

Focuses on hard-to-classify

instances, improving classification

robustness

Lack of generalization in KNN Stacking (with meta-learner) Learns optimal combination of base

outputs, improving overall

prediction

Variance across data folds Diversity of learners + Cross-

validation

Increases consistency and resilience

to changes in training distributions

 Ali Shuaibu Babaa. International Journal of Science, Engineering and Technology,

 2025, 13:4

1

In summary, while each base classifier performs well

independently, the ensemble model offers a more

balanced and generalizable solution, particularly in

the dynamic landscape of malware evolution where

threats continually mutate to evade single-model

detection.

 Computational Overhead Analysis

Table 4.3: Computational Trade-off Summary

Metric Single SVM (Ali, 2020) Deep NN Proposed Ensemble

Accuracy Moderate High Very High

Adaptability Low to Moderate High High

Training Time Low High Moderate (optimized via

feature pruning)

Inference Time Low Moderate to High Moderate

Memory Usage Low High Moderate

Conclusion of Comparative Analysis

The comparative analysis clearly demonstrates that

the proposed ensemble model delivers superior

performance across multiple dimensions. It not only

improves on the individual limitations of base

classifiers but also outperforms benchmark models

like that of Ahmed Ali (2020), particularly in terms

of generalization, adaptability to code mutation,

and robustness under real-world conditions.

Furthermore, its optimized computational profile

makes it a practical and scalable solution suitable

for modern cybersecurity infrastructures where

both accuracy and efficiency are paramount.

IX. DISCUSSION OF FINDINGS AND

IMPLICATIONS

The empirical results obtained throughout this

research provide compelling evidence in support of

the proposed methodology and underline several

key insights with broad implications for the field of

malware detection and cybersecurity. The

consistently high performance achieved by the

individual base classifiers particularly the Decision

Tree (DT), Support Vector Machine (SVM), and

Neural Network (NN) on both the cross-validation

and validation datasets demonstrates the

effectiveness of the feature engineering approach

adopted in this study. By incorporating a hybrid

feature set comprising opcode sequences,

assembly-level patterns, and PE header metadata,

the study successfully extracted discriminative

representations that allowed even standalone

models to differentiate between benign and

metamorphic malware samples with high accuracy.

These findings confirm that traditional machine

learning models, when trained on carefully curated

and contextually rich features, can serve as powerful

detection tools. The performance benchmarks

achieved by the base classifiers establish a strong

baseline and validate the relevance of non-deep

learning techniques in real-time malware detection

scenarios, particularly when computational

efficiency is also a consideration. This is especially

notable for models like DT and SVM, which are

computationally lightweight yet performed at near-

optimal levels on unseen data. However, a closer

inspection reveals important nuances in

generalization performance. While most classifiers

performed exceptionally well on the hold-out

validation set, variability in cross-validation metrics

particularly in models like KNN highlighted

inconsistencies in how well certain classifiers

generalized across different data partitions.

In conclusion, the findings of this study not only

validate the research objectives but also contribute

meaningfully to the ongoing evolution of intelligent

malware detection systems. By combining feature-

rich inputs with strategically designed ensemble

architectures, this work provides a blueprint for

building more resilient, adaptable, and accurate

malware detection frameworks, setting a solid

foundation for future research and real-world

application in cybersecurity defense.

 Ali Shuaibu Babaa. International Journal of Science, Engineering and Technology,

 2025, 13:4

2

X. CONCLUSION

This research successfully demonstrates that

ensemble learning is a powerful and effective

strategy for the detection of metamorphic malware.

The study shows that while traditional machine

learning classifiers can achieve high levels of

accuracy with carefully engineered features, their

standalone application is often hindered by issues

such as overfitting, sensitivity to noise, and limited

generalization to novel malware variants. The

developed ensemble model strategically combines

the strengths of diverse classifiers, achieving a

balanced and comprehensive malware detection

framework. The integration of diverse feature types

and learning paradigms ranging from distance-

based and margin-based classifiers to deep pattern

learners results in a system that is not only more

accurate but also more resilient to code mutations

and evasive malware behaviors.

REFERENCES

1. Alam, S., Horspool, R. N., Traore, I., &

Sogukpinar, I. (2015). A framework for

metamorphic malware analysis and real-time

detection ScienceDirect A framework for

metamorphic malware analysis and real-time

detection. Computers & Security, 48(March

2018), 212–233.

https://doi.org/10.1016/j.cose.2014.10.011

2. Alenezi, M. N., Alabdulrazzaq, H., Alshaher, A.

A., & Alkharang, M. M. (2021). Evolution of

Malware Threats and Techniques : A Review.

February.

https://doi.org/10.17762/ijcnis.v12i3.4723

3. Ali, M., Shiaeles, S., & Bendiab, G. (2020).

MALGRA : Machine Learning and N-Gram

Malware Feature Extraction and Detection

System. 1–21.

https://doi.org/10.3390/electronics9111777

4. Bashari Rad, B., Masrom, M., & Ibrahim, S.

(2012). Camouflage In Malware: From

Encryption To Metamorphism. International

Journal Of Computer Science And Network

Security (IJCSNS), 12(8), 74–83.

http://paper.ijcsns.org/07_book/201208/201208

13.pdf

5. Directions, F., Avhankar, M. S., Pawar, J., &

Kumbhar, V. (2025). A Comprehensive Survey

on Polymorphic Malware Analysis : Challenges ,

A Comprehensive Survey on Polymorphic

Malware Analysis : Challenges , Techniques ,

and Future Directions. March.

https://doi.org/10.52783/cana.v32.4554

6. Doris, L., & Shad, R. (2024). USING MACHINE

LEARNING MODELS TO IDENTIFY AND PREDICT

SECURITY- RELATED ANOMALIES IN REAL-TIME

FOR PROACTIVE MAINTENANCE. December.

7. Gasmi, S. (2024). Advanced Threat Detection

with Machine Learning : A Holistic Framework

for Advanced Threat Detection with Machine

Learning : A Holistic Framework for

Cybersecurity Date : November , 2024.

November.

https://doi.org/10.13140/RG.2.2.11687.36004

8. Habib, F., Shirazi, S. H., Aurangzeb, K., Khan, A.,

Bhushan, B., & Alhussein, M. (2024). Deep

Neural Networks for Enhanced Security :

Detecting Metamorphic Malware in IoT Devices.

IEEE Access, PP, 1.

https://doi.org/10.1109/ACCESS.2024.3383831

9. Hama Saeed, M. A. (2020). Malware in

Computer Systems: Problems and Solutions.

IJID (International Journal on Informatics for

Development), 9(1), 1.

https://doi.org/10.14421/ijid.2020.09101

10. Lange, A., Smolyakov, D., & Burnaev, E. (2023).

Sequential Minimal Optimization algorithm for

one-class Support Vector Machines with

privileged information. IEEE Access, PP, 1.

https://doi.org/10.1109/ACCESS.2023.3331685

11. Ling, Y., Fazlida, N., & Sani, M. (2017).

International Journal of Advanced Research in

Short Review on Metamorphic Malware

Detection in Hidden Markov Models. June.

https://doi.org/10.23956/ijarcsse/V7I2/01218

12. Mamoun, S., & Ahmed, A. (2025). Applying

Ensemble Machine Learning Techniques to

Malware Detection. 10.

13. Pagano, T. P., Loureiro, R. B., Lisboa, F. V. N.,

Peixoto, R. M., Guimarães, G. A. S., Cruz, G. O. R.,

Araujo, M. M., Santos, L. L., Cruz, M. A. S.,

Oliveira, E. L. S., Winkler, I., & Nascimento, E. G.

 Ali Shuaibu Babaa. International Journal of Science, Engineering and Technology,

 2025, 13:4

3

S. (2023). Bias and Unfairness in Machine

Learning Models : A Systematic Review on

Datasets , Tools , Fairness Metrics , and

Identification and Mitigation Methods. 1–31.

14. Pava, R., & Mishra, S. (2024). Issues in

Information Systems Analyzing machine

learning algorithms for antivirus applications : a

study on decision trees , support vector

machines , and Analyzing machine learning

algorithms for antivirus applications : a study on

decision trees , suppo. October.

https://doi.org/10.48009/4

