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I. INTRODUCTION 
 

In today’s increasingly digital world, the integrity 

and security of computer systems are under 

constant threat from malicious software, collectively 

referred to as malware. Malware is designed with 

the explicit intent to disrupt, damage, or gain 

unauthorized access to systems and data. Over the 

past two decades, the sophistication, prevalence, 

and impact of malware have grown at an alarming 

rate, posing a persistent and evolving threat to 

global cybersecurity infrastructures across personal, 

corporate, and governmental domains. Among the 

numerous malware types, metamorphic malware 

represents one of the most complex and evasive 

challenges. Unlike traditional malware variants, 

metamorphic malware is engineered to dynamically 

mutate its internal structure and code patterns each 

time it propagates or executes, while preserving its 

original malicious behavior. This self-modifying 
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capability is achieved through techniques such as 

code obfuscation, register renaming, instruction 

substitution, reordering of subroutines, and 

insertion of junk code. The resulting malware 

variants appear syntactically unique, thereby 

rendering signature-based antivirus (AV) systems 

which rely on detecting predefined byte sequences 

or static features ineffective against them.  The 

work of Ahmed Ali (2020) critically addresses this 

limitation by proposing an alternative approach 

that leverages machine learning (ML) techniques. In 

his foundational study, a generative ML classifier 

was developed using lightweight, informative 

textual string features extracted from disassembled 

executable files. The study demonstrated that 

machine learning, particularly using Support Vector 

Machines (SVM) via the SMO algorithm in the 

WEKA platform, can effectively classify obfuscated 

malware samples by learning discriminative 

patterns in their features, thus bypassing the 

constraints of static signature-based detection. 

Furthermore, by focusing on string-based features, 

the approach aimed to reduce computational 

overhead, making it suitable for environments with 

limited resources. However, the research had 

notable limitations. The reliance on a single 

classifier model introduced potential issues with 

overfitting, bias, and limited generalizability to 

unseen or highly mutated variants. In practice, the 

performance of a single model is often influenced 

by its assumptions, biases, and sensitivity to 

training data distribution. This restricts its 

robustness in real-world applications, where 

malware continuously evolves and varies in 

complexity. 

 

To address these limitations and build upon the 

insights of the base study, the current research 

proposes the development of an ensemble learning 

framework tailored for advanced metamorphic 

malware detection. Ensemble learning combines 

multiple individual models, or "base learners," to 

produce a more robust and accurate meta-classifier. 

Techniques such as bagging, boosting, and stacking 

have demonstrated the ability to reduce both 

variance and bias, thereby improving generalization 

and resilience against adversarial inputs. In the 

context of malware detection, ensemble models can 

synergize the strengths of diverse classifiers such as 

Decision Trees, K-Nearest Neighbors (KNN), Neural 

Networks, and SVMs while mitigating their 

individual weaknesses. 

 

II. LITERATURE REVIEW 

 
Malware, a term derived from "malicious software," 

denotes any software program or code that is 

specifically crated to infiltrate, damage, or disrupt 

computer systems, networks, or devices without the 

user's informed consent(Hama Saeed, 2020). It 

includes a wide range of malicious threats, such as 

viruses, worms, Trojans, spyware, adware, rootkits, 

and ransomware, each characterized by unique 

infection strategies and payloads(Alenezi et al., 

2021). Among these categories, metamorphic 

malware has surfaced as one of the most 

sophisticated and elusive forms. Unlike traditional 

malware variants that maintain recognizable 

patterns, metamorphic malware demonstrates an 

extraordinary level of sophistication by entirely 

rewriting its internal structure with each iteration, 

while still retaining its original malicious intent and 

behavior(Ling et al., 2017). This transformation 

takes place without modifying the operational 

semantics of the malware, rendering it exceedingly 

challenging for standard detection methods to 

identify it. In contrast to polymorphic malware, 

which merely alters its encrypted payload or 

superficially obfuscates its code through encryption 

and decryption routines, metamorphic malware 

generates new, functionally equivalent versions of 

itself by utilizing a variety of intricate code 

obfuscation and transformation 

techniques(Directions et al., 2025). These 

techniques encompass instruction substitution 

(replacing code instructions with semantically 

equivalent alternatives), register renaming (altering 

the use of CPU registers), code transposition 

(rearranging independent code blocks), and dead-

code insertion (embedding non-executing 

instructions that modify the code's appearance). 

According to You and Yim (2010), such mechanisms 

are deliberately crafted to undermine traditional 

signature-based antivirus systems that depend on 

identifying fixed byte patterns or instruction 

sequences.  As highlighted by (Alam et al., 2015) 
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metamorphic malware presents a significant 

obstacle to detection frameworks that rely on static 

analysis. This challenge has led to extensive 

research into more dynamic, behavior-focused, and 

machine learning-based methodologies. These 

advanced techniques prioritize the identification of 

patterns of malicious activity, anomalies in system 

behavior, and statistical characteristics obtained 

from runtime analysis, rather than depending 

exclusively on code structure or static signatures. 

The evolving nature of metamorphic malware 

continues to challenge the limits of cybersecurity 

defenses, prompting a necessary transition from 

reactive, signature-based approaches to proactive 

and intelligent detection strategies that can 

generalize across various malware variants. 

 

III. MACHINE LEARNING FOR MALWARE 

DETECTION 

 
Machine Learning (ML) has emerged as a robust 

and flexible framework for malware detection, 

providing considerable benefits compared to 

conventional signature- and rule-based methods, 

especially in recognizing previously unknown and 

swiftly changing threats like metamorphic 

malware(Gasmi, 2024). By utilizing historical data, 

ML models are capable of identifying intricate 

patterns, behaviors, and anomalies that differentiate 

benign software from harmful code(Doris & Shad, 

2024). These models depend on a wide range of 

feature sets derived from malware binaries or their 

disassembled forms, which include opcode 

frequencies, API call sequences, control flow graphs 

(CFGs), n-gram features, and string tokens(Ali et al., 

2020). These features act as the input for training 

various ML classifiers such as decision trees, 

support vector machines (SVM), k-nearest 

neighbors (KNN), and neural networks that can 

proficiently categorize software samples based on 

the distinctions they have learned(Pava & Mishra, 

2024). In a significant study, (Lange et al., 2023) 

created a generative classifier employing Sequential 

Minimal Optimization (SMO), a training algorithm 

for SVMs, which made use of lightweight string-

based features extracted from disassembled 

malware samples. The research illustrated not only 

the computational efficiency of utilizing simplified 

yet informative features but also the enhanced 

detection capabilities of ML-based systems 

compared to traditional antivirus solutions, 

particularly in identifying obfuscated or self-

mutating malware. More recently, (Habib et al., 

2024) investigated the application of deep learning 

architectures specifically convolutional neural 

networks like VGG16 and ResNet50 to automatically 

learn hierarchical representations of malware 

behavior in Internet of Things (IoT) environments. 

These models achieved high classification accuracy, 

particularly in complex and heterogeneous 

environments, although they introduced higher 

computational costs and resource demands. 

Despite these promising results, standalone ML 

models still face critical challenges, including 

managing the bias-variance trade-off, minimizing 

false positive rates, and addressing issues of 

overfitting when trained on limited or imbalanced 

datasets(Pagano et al., 2023). Such limitations 

underscore the necessity for ensemble learning 

techniques, which combine the predictive strengths 

of multiple models to improve classification 

performance, enhance generalization capabilities, 

and reduce susceptibility to individual model 

weaknesses. Ensemble methods, including bagging, 

boosting, and stacking, have been increasingly 

adopted in malware detection research as a means 

to achieve more robust, scalable, and accurate 

systems that can keep pace with the continuous 

evolution and sophistication of modern 

malware(Mamoun & Ahmed, 2025). 

 

IV. METHODOLOGY 

 
Research Design 

Figure 3.1: Research Framework 
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Dataset Acquisition 

To ensure the model's comprehensive evaluation 

and generalizability, a multi-source approach will be 

employed for dataset acquisition. 

 

Real-World Malware Samples: A substantial 

collection of real-world metamorphic malware 

samples will be acquired from reputable public 

repositories, such as VirusTotal, MalwareBazaar, or 

specialized malware datasets like EMBER. These 

sources provide a diverse range of malware families 

and obfuscation techniques, which is crucial for 

ensuring the model's generalizability to "in-the-

wild" threats. This addresses a key limitation 

identified in the literature regarding the lack of real-

world validation. The aim will be to acquire a 

sufficiently large and diverse dataset to ensure 

robust training and evaluation, with related works 

suggesting datasets ranging from tens of 

thousands to over a hundred thousand samples.    

Synthetic Metamorphic Malware Samples: To 

specifically test the model's resilience against code 

mutations, synthetically generated metamorphic 

malware will be included. This will involve using 

tools such as the Next Generation Virus 

Construction Kit (NGVCK). The NGVCK files are 

known for their high metamorphic properties and 

have served as the basis for previous metamorphic 

detection research. These synthetic samples can be 

further morphed by inserting "dead code" (non-

executing instructions) or "subroutine code" 

(contiguous blocks of benign code) to simulate 

advanced evasion techniques. This allows for 

controlled experimentation with varying levels of 

obfuscation and mutation, providing a robust 

testbed for the ensemble model.  

 

Data Preprocessing 

All collected samples, both malicious and benign, 

will be in the Windows PE file format, as the 

research is limited to detecting metamorphic 

malware targeting Windows Portable Executable 

(PE) files. Initial steps will involve verifying file 

integrity and categorizing them into benign and 

malicious classes.    

 

Data Cleaning and Normalization: Raw PE files 

will undergo a cleaning process to remove any 

extraneous data or corrupted sections that could 

interfere with feature extraction. Feature vectors 

derived from the PE files will be normalized, for 

instance, using StandardScaler , to ensure 

consistent scaling across different features. This 

prevents features with larger numerical ranges from 

disproportionately influencing the learning process 

.    

 
 Distribution of selected numerical columns 
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Table 3.1: Summary of Datasets Used 

 
Category Source/Generation 

Method 

Approximate 

Number of 

Samples 

File Type/Target 

OS 

Purpose in Study 

Real-World 

Malware 

Public Repositories (e.g., 

EMBER) 

50,000 - 100,000+ Windows 

Portable 

Executables 

Training, Validation, 

Testing 

Synthetic 

Metamorphic 

Malware 

NGVCK with custom 

morphing 

200 - 1,000+ Windows 

Portable 

Executables 

Specific 

Metamorphic 

Robustness Testing 

Benign PE Files Standard OS installations, 

common software 

50,000 - 100,000+ Windows 

Portable 

Executables 

Training, Validation, 

Testing (for balance) 

 

V. FEATURE ENGINEERING 

 
The effectiveness of any machine learning-based 

malware detection system hinges significantly on 

the quality and representational strength of the 

features extracted from the malware samples. This 

research will leverage a hybrid feature extraction 

approach, combining static analysis features from 

assembly code, opcode sequences, and structural 

attributes of PE files, along with string-based 

features. This multi-faceted approach aims to 

capture a more comprehensive view of malware 

characteristics, enhancing robustness against 

various obfuscation techniques and improving 

generalization.    

 

Feature Categories 

The explicit combination of assembly code, opcode, 

structural, and string features is a direct 

methodological response to the "overreliance on 

single feature types" observed in previous literature. 

This multi-modal feature set is crucial because 

metamorphic malware employs diverse obfuscation 

techniques, meaning a single feature type might be 

easily bypassed. 

    

Assembly Code Features: These features capture 

the low-level instructions and control flow patterns 

of the executable. This will involve disassembling PE  

 

files to their assembly language representation. 

Features will include n-grams of assembly 

instructions, frequency counts of specific 

instructions, and potentially embedding assembly 

code into vectors for deep learning components. 

This approach helps in identifying discriminative 

patterns resilient to common obfuscation 

techniques.   

  

Opcode Sequence Features: Opcode sequences 

represent the fundamental machine instructions 

executed by the CPU. These are particularly robust 

against superficial code alterations introduced by 

metamorphic engines because the underlying 

functionality often relies on specific opcode 

patterns. Features will include frequency counts of 

individual opcodes (1-grams) and sequences of 

opcodes (2-grams). Techniques like "opcode slice-

based feature engineering" and "semantic 

aggregation" will be explored to reduce 

dimensionality and capture more abstract patterns. 

Operands will typically be discarded to focus on the 

instruction itself.   

  

Structural Attributes: These features are derived 

from the Portable Executable (PE) file header and 

section information, providing metadata about the 

file's organization and characteristics. Attributes will 

include:    
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PE Header Information: Fields like timestamp, 

number of sections, image base, entry point, and 

various flags.    

 

Section Characteristics: Analysis of sections such as 

.text, .rdata, .data, and .rsrc for their sizes, 

permissions (read, write, execute), and entropy 

levels. High entropy in executable sections can be 

an indicator of packing or encryption, common in 

metamorphic malware.    

Import/Export Tables: Lists of functions imported 

from and exported to external libraries (DLLs like 

Kernel32.dll, User32.dll). Suspicious imports (e.g., 

only   LoadLibrary or GetProcAddress) can indicate 

dynamic loading and obfuscation.   

  

Textual String Features: Building upon the 

foundational work of Ahmed Ali (2020), lightweight 

and informative textual strings extracted from the 

disassembled executable files will also be 

considered. These may include function names, 

registry keys, IP addresses, and URLs, which can be 

indicative of malicious intent and offer 

computational efficiency.  

   

Feature Extraction Process 

The initial step for extracting assembly code, 

opcode sequences, and many structural attributes 

will involve disassembling the PE files. Tools like IDA 

Pro or Ghidra will be utilized to convert binary 

executables into their assembly language 

representation.   

  

Automated Python scripts will be developed to 

automate the extraction of features from the 

disassembled output and PE file headers. For 

assembly code and opcodes, this will involve 

parsing the disassembled text to identify instruction 

sequences and their frequencies. For structural 

attributes, libraries like pefile (a Python library for 

parsing PE files) will be used to programmatically 

access and extract information from PE headers and 

section tables. The reliance on automated scripting 

and tools like pefile and IDA Pro for feature 

extraction highlights the necessity of scalable and 

efficient processing in real-world malware analysis, 

as manual feature engineering is impractical for 

large datasets.    The extracted features, which may 

be categorical (e.g., section names), numerical (e.g., 

entropy, sizes), or sequential (e.g., opcode n-grams), 

will be transformed into a unified numerical feature 

vector for input into machine learning models. This 

may involve techniques such as one-hot encoding 

for categorical features, frequency counting for n-

grams, and potentially embedding layers for 

sequential data if neural networks are used as base 

learners.   

 

Feature Selection and Dimensionality Reduction 

To optimize model performance and reduce 

computational overhead, feature selection and 

dimensionality reduction techniques will be 

considered. This is particularly relevant given the 

potentially high dimensionality of combined feature 

sets. The explicit inclusion of feature selection and 

dimensionality reduction directly addresses the 

"reduced computational overhead" expected 

outcome and the "computational trade-offs" 

observed in previous work, particularly when 

considering the resource demands of deep learning 

models.   Techniques such as Principal Component 

Analysis (PCA) can be employed to transform high-

dimensional data into a lower-dimensional 

representation while retaining most of the variance. 

Feature importance scores derived from tree-based 

models (e.g., Random Forest) or statistical methods 

(e.g., Chi-squared test) can be used to select the 

most discriminative features. "Semantic 

aggregation" for opcode slices is another specific 

technique to reduce feature dimensionality. If 

neural networks are used as base learners, attention 

mechanisms could be explored to identify which 

features or parts of sequences (e.g., specific 

opcodes or API calls) are most significant for 

classification, offering both feature selection and 

interpretability.    

 

While richer, more expressive feature sets are 

crucial for detecting sophisticated metamorphic 

malware, they often lead to high-dimensional data. 

High dimensionality can increase computational 

cost, extend training times, and potentially lead to 

overfitting. Therefore, feature selection and 

dimensionality reduction techniques are necessary 

to optimize the balance between model accuracy 

and efficiency. This ensures that the ensemble 
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model remains computationally viable while still 

leveraging comprehensive feature representations, 

contributing to the "reduced computational 

overhead" objective.   

  

Table 3.2: Feature Categories and Extraction Methods 

 
Feature 

Category 

Specific Attributes/Examples Extraction 

Method/Tools 

Purpose/Relevance 

Assembly 

Code 

N-grams of instructions, Instruction 

sequences 

Disassembly (IDA 

Pro/Ghidra), Python 

scripting 

Captures low-level logic, 

resilient to some code 

changes 

Opcode 

Sequences 

1-gram/2-gram frequencies, Opcode 

slices 

Disassembly (IDA 

Pro/Ghidra), Python 

scripting, Semantic 

aggregation 

Resilient to superficial code 

alterations, reveals 

functional patterns 

Structural 

Attributes 

PE Header fields (timestamp, entry 

point), Section characteristics (size, 

permissions, entropy), Imported/Exported 

DLLs, Suspicious imports 

Python (pefile), Static 

analysis tools 

Identifies 

packing/obfuscation, reveals 

program dependencies 

Textual 

Strings 

Function names, Registry keys, IP 

addresses, URLs 

String extraction 

utilities, Disassembly 

Lightweight indicators of 

malicious intent, 

computationally efficient 

 

VI. ENSEMBLE LEARNING MODEL 

DESIGN AND IMPLEMENTATION 

 
This section outlines the architectural design and 

implementation details of the proposed ensemble 

learning model, which is central to addressing the 

limitations of single classifiers and enhancing 

metamorphic malware detection. The framework 

will combine multiple heterogeneous base learners 

using advanced ensemble techniques to achieve 

superior accuracy, robustness, and generalization.   

  

Base Classifiers 

Decision Trees (DT): These are fundamental base 

learners known for their interpretability and ability 

to handle non-linear relationships. They form the 

basis for powerful ensemble methods like Random 

Forests.    

Support Vector Machines (SVM): SVMs are effective 

in high-dimensional spaces and with clear margins 

of separation, particularly useful for classifying 

obfuscated malware samples by learning  

 

discriminative patterns. The Sequential Minimal 

Optimization (SMO) algorithm, as used by Ahmed 

Ali (2020), will be considered for SVM training. 

    

K-Nearest Neighbors (KNN): A non-parametric, 

instance-based learning algorithm that classifies 

based on proximity in the feature space. Its 

simplicity can provide a different perspective on 

data patterns.  

   

Neural Networks (NN): Including potentially 

Convolutional Neural Networks (CNNs). NNs are 

capable of automatically learning hierarchical 

representations from raw data or complex features, 

making them highly effective for intricate pattern 

recognition in malware. While computationally 

intensive, their inclusion as base learners can 

significantly boost overall ensemble performance, 
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especially for automatically learning N-gram like 

features. 

    

Metamorphic malware exhibits complex and varied 

structural and behavioral characteristics. A single 

classifier, due to its inherent assumptions and 

biases, may struggle to capture all possible 

variations effectively, leading to limited 

generalization and susceptibility to overfitting. By 

combining diverse base learners, each with different 

strengths (e.g., SVM for clear separation, NN for 

complex pattern learning, DT for interpretability), 

the ensemble can collectively learn a more robust 

and comprehensive decision boundary. This multi-

perspective approach is critical for the ensemble's 

ability to "generalize across various malware 

families" and enhance overall detection 

performance.    

 

Ensemble Techniques 

The research will implement and evaluate the 

following prominent ensemble techniques to 

combine the predictions of the base classifiers: 

Bagging (Bootstrap Aggregating): This technique 

will be implemented to reduce variance and 

alleviate overfitting. Multiple training datasets will 

be created through bootstrap sampling (random 

selection with replacement) from the original 

dataset. Independent base learners, such as 

Decision Trees forming a Random Forest, will be 

trained on these subsets. Their predictions will then 

be aggregated, typically through majority voting for 

classification tasks. Bagging's parallel nature makes 

it computationally efficient.   

  

Boosting: This method will focus on sequentially 

enhancing model accuracy by reducing bias. Weak 

learners will be trained iteratively, with each 

subsequent model focusing on correcting the errors 

of its predecessor by assigning greater weight to 

previously misclassified instances. Implementations 

such as AdaBoost or Gradient Boosting Machines 

(GBMs) will be explored. Boosting is particularly 

beneficial for concentrating on challenging-to-

detect samples, such as highly obfuscated 

metamorphic variants.    

 

Stacking (Stacked Generalization): This 

sophisticated technique will involve training a 

higher-level meta-learner to combine the predictive 

outputs of the diverse base learners. The 

predictions (e.g., class probabilities) from the first-

level base models, trained on the original dataset, 

will serve as input features for the second-level 

meta-learner.    

 

The literature review clearly establishes that 

standalone machine learning models face 

challenges like managing the bias-variance trade-

off, minimizing false positives, and addressing 

overfitting. Ensemble methods are explicitly 

presented as solutions to these problems. By 

implementing Bagging, the research directly aims 

to reduce variance and overfitting. By implementing 

Boosting, it seeks to reduce bias and improve 

performance on difficult-to-classify samples. 

Stacking, as the most sophisticated, aims to 

optimally combine diverse models to achieve 

superior generalization. This multi-pronged 

approach to ensemble design is a direct and well-

justified methodological choice to achieve the 

research's aim of improved adaptability, robustness, 

and accuracy.    

 

Model Architecture 

The overall architecture of the proposed ensemble 

framework will be modular, allowing for flexibility in 

integrating different base learners and ensemble 

strategies. For stacking, the architecture will involve 

a two-layer approach: 

 

Layer 1 (Base Learners): Multiple diverse classifiers 

(Decision Trees, SVM, KNN, Neural Networks) will 

be trained independently on the preprocessed 

feature sets derived from the malware and benign 

samples. 

 

Layer 2 (Meta-Learner): The predictions (e.g., class 

probabilities) generated by the base learners will 

form a new dataset, which will then be fed as input 

to a meta-learner (e.g., a Logistic Regression, a 

simpler Decision Tree, or another SVM). The meta-

learner will be trained to make the final 

classification decision, learning the optimal 



 Ali Shuaibu Babaa.  International Journal of Science, Engineering and Technology, 

 2025, 13:4 

 

3 

 

 

weighting or combination strategy from the base 

model outputs.  

   

For Bagging and Boosting, the architecture will 

follow their respective iterative or parallel training 

paradigms as described in Section 3.5.2, with the 

final prediction being an aggregation of the base 

learners' outputs. The modular design will facilitate 

comparative analysis of different ensemble 

configurations. The continuous evolution of 

malware means that a rigid, monolithic detection 

system will quickly become outdated.  

 

Table 3.3: Base Classifiers and Ensemble Techniques

Component 

Type 

Specific 

Algorithm/Method 

Role in Ensemble Justification (Brief) 

Base Classifiers Decision Tree Diverse learner Interpretability, handles non-linear 

data 

 Support Vector Machine 

(SVM) 

Diverse learner Effective in high-dimensional spaces, 

discriminative patterns 

 K-Nearest Neighbors 

(KNN) 

Diverse learner Simplicity, instance-based learning 

 Neural Network (NN) / 

CNN 

Diverse learner Complex pattern learning, 

hierarchical feature extraction 

Ensemble 

Techniques 

Bagging (e.g., Random 

Forest) 

Variance reduction, 

Overfitting mitigation 

Improves stability and accuracy by 

averaging diverse models 

 Boosting (e.g., AdaBoost, 

GBMs) 

Bias reduction, Focus on 

hard cases 

Sequentially improves by correcting 

previous errors 

 Stacking Meta-prediction, Optimal 

combination 

Learns best way to combine 

heterogeneous base model outputs 

 

Performance Metrics 

The performance of the proposed ensemble model 

and the comparative models will be rigorously 

evaluated using a comprehensive set of standard 

classification metrics. These metrics are chosen to 

provide a holistic view of the model's effectiveness, 

particularly in the context of imbalanced datasets 

and the critical nature of false positives/negatives in 

malware detection. The careful selection of metrics 

beyond just accuracy explicitly acknowledges the 

practical implications of malware detection in real-

world scenarios, where false positives and false 

negatives have significant consequences.    

 

Accuracy: The proportion of correctly classified 

samples (both benign and malicious) out of the 

total samples. While a general indicator, its utility 

can be limited in highly imbalanced datasets.    

 

Precision: The proportion of correctly identified 

malicious samples among all samples predicted as 

malicious (True Positives / (True Positives + False 

Positives)). High precision is critical to minimize 

false alarms, which can lead to alert fatigue and 

wasted resources in real-world cybersecurity 

operations. 
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Recall (Sensitivity): The proportion of correctly 

identified malicious samples among all actual 

malicious samples (True Positives / (True Positives + 

False Negatives)). High recall is crucial to minimize 

missed malware instances (false negatives), which 

can have severe security implications.  

   

F1-score: The harmonic mean of precision and 

recall. It provides a balanced measure, especially 

useful when there is an uneven class distribution, as 

it penalizes models that perform poorly on either 

precision or recall.    

 

In cybersecurity, the cost of a false negative (missed 

malware) can be catastrophic, leading to breaches 

and data loss. Conversely, a high rate of false 

positives (benign files flagged as malicious) can 

lead to alert fatigue, wasted analyst time, and 

disruption of legitimate operations. Therefore, 

relying solely on accuracy, which can be misleading 

in imbalanced datasets, is insufficient. Precision and 

Recall directly measure the model's ability to 

minimize these critical errors, and the F1-score 

provides a balanced assessment. This deliberate 

choice of metrics directly supports the research's 

aim of achieving "higher detection rates, fewer false 

positives" and validates the model's practical utility.  

   

Validation Strategies 

To ensure the robustness and generalizability of the 

proposed model, comprehensive validation 

strategies will be employed. 

 

K-Fold Cross-Validation: This robust validation 

strategy will be employed to assess the model's 

generalization performance and reduce the bias 

associated with a single train-test split. The dataset 

will be partitioned into 'k' equal folds. The model 

will be trained 'k' times, with each fold serving as 

the validation set once, and the remaining 'k-1' 

folds used for training. The final performance 

metrics will be the average across all 'k' iterations. 

This provides a more reliable estimate of the 

model's performance on unseen data. K-fold cross-

validation is a direct methodological response to 

the "limited generalizability to unseen or highly 

mutated variants" limitation of single classifiers. It 

systematically tests the model's performance across 

different data partitions, providing a more reliable 

estimate of its ability to generalize.   

  

Dataset Splitting: The collected dataset will be 

initially split into training, validation, and testing 

sets. A common split ratio (e.g., 70% training, 15% 

validation, 15% testing) will be used. The training 

set will be used for model learning, the validation 

set for hyperparameter tuning and early stopping, 

and the unseen testing set for final, unbiased 

performance evaluation. The use of both real-world 

and synthetic datasets for evaluation is crucial for 

assessing the model's generalizability and 

robustness against various mutation techniques. A 

key weakness of single classifier models is their 

susceptibility to overfitting and poor generalization 

to unseen data. A simple train-test split might 

accidentally result in an overly optimistic 

performance estimate if the split is not 

representative. K-fold cross-validation 

systematically exposes the model to different 

subsets of the data during validation, providing a 

more robust and reliable estimate of its true 

generalization capability. This is essential for 

validating the ensemble model's claim of "improved 

adaptability, robustness, and accuracy" and its 

ability to handle continuously evolving malware.    

 

Comparative Analysis Plan 

The core of the evaluation will be a systematic 

comparative analysis. This detailed comparative 

analysis plan directly addresses the research's 

significance by extending prior work (Ahmed Ali, 

2020) and filling identified gaps. This systematic 

comparison is the cornerstone of a rigorous 

scientific contribution.    

 

Against Individual Base Classifiers: The performance 

of the proposed ensemble model (using Bagging, 

Boosting, and Stacking configurations) will be 

directly compared against each of its individual 

base classifiers (Decision Trees, SVM, KNN, Neural 

Networks) when trained and evaluated on the same 

datasets and using the same feature sets. This 

comparison will quantitatively demonstrate the 

benefits of combining multiple models in terms of 

accuracy, precision, recall, and F1-score.   

Benchmarking against Ahmed Ali (2020): A specific 
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benchmark comparison will be performed against 

the foundational study by Ahmed Ali (2020). While 

Ali's work focused on an SVM with SMO algorithm 

using lightweight string-based features, the current 

research will aim to demonstrate superior 

performance by leveraging ensemble methods and 

diverse feature sets. The comparison will highlight 

improvements in detection accuracy, adaptability to 

code mutations, and potentially reduced 

computational overhead.   

  

VII. RESULTS AND DISCUSSION 

In the initial phase of the experimental analysis, 

each base classifier was independently trained and 

tested using the preprocessed feature vectors 

extracted from a balanced dataset of metamorphic 

malware and benign executables. The intent was to 

evaluate the capability of each model to correctly 

classify samples while also identifying potential 

weaknesses such as overfitting, bias-variance trade-

offs, or sensitivity to obfuscated samples The results 

are summarized in Table 4.1, which presents the 

evaluation metrics for each model under both 

cross-validation and validation set conditions: 

 

Table 4.1: Performance Metrics of Individual Base Classifiers 

 

Model Accuracy 

(CV) 

Precision 

(CV) 

Recall 

(CV) 

F1-score 

(CV) 

Accuracy 

(Val) 

Precision 

(Val) 

Recall 

(Val) 

F1-score  

(Val) 

Decision 

Tree (DT) 

0.9976 0.9928 0.9859 0.9888 1.0000 1.0000 1.0000 1.0000 

Support 

Vector 

Machine 

(SVM) 

0.9941 0.9937 0.9723 0.9817 1.0000 1.0000 1.0000 1.0000 

K-Nearest 

Neighbors 

(KNN) 

0.9906 0.9629 0.9457 0.9499 0.9921 0.9778 0.9444 0.9582 

Neural 

Network 

(NN) 

0.9965 0.9822 0.9873 0.9836 1.0000 1.0000 1.0000 1.0000 

 

Analysis and Discussion of Individual Classifier 

Performance 

Decision Tree (DT) 

The Decision Tree (DT) classifier demonstrated 

exceptional performance during both the cross-

validation and hold-out validation phases, making it 

one of the most effective standalone learners in this 

study. In the  

 
 

 

validation stage, the DT model achieved a perfect 

accuracy score of 100%, coupled with 

corresponding precision, recall, and F1-score values 

of 1.000. This level of performance on unseen 

validation data indicates that the model was able to 

generalize extremely well beyond its training 

samples, successfully capturing the underlying 

patterns that distinguish metamorphic malware 

from benign executables. However, while such high 

scores are commendable, they also warrant careful 

scrutiny, particularly with regard to  

 

overfitting a common issue associated with decision 

trees. Due to their hierarchical, greedy splitting 

nature, unpruned decision trees tend to memorize 

training data intricately, which can lead to overly 

complex models that perform poorly when exposed 

to slightly altered or noisy data. In this research, 
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although the model maintained high overall 

accuracy, a slight drop in recall to 0.9859 during 

cross-validation reveals that the DT may have 

exhibited mild sensitivity to training data variations 

across different folds. This suggests that the model 

may have misclassified a small number of true 

malware samples, which could have significant 

consequences in real-world cybersecurity 

applications where even a single missed threat 

could compromise a system. Nonetheless, despite 

this minor limitation, the Decision Tree model 

remains a powerful and valuable base learner within 

the ensemble architecture. Its primary advantages 

lie in its simplicity, interpretability, and speed of 

execution.  

 

Support Vector Machine (SVM) 

The Support Vector Machine (SVM) classifier 

exhibited consistently excellent performance across 

both the cross-validation and validation phases, 

closely rivaling the Decision Tree (DT) in terms of 

predictive accuracy and robustness. In the 

validation phase, SVM achieved perfect scores 

including 100% accuracy, precision, recall, and F1-

score demonstrating its capacity to correctly classify 

both benign and metamorphic malware samples in 

previously unseen data. These results are 

particularly impressive considering the high level of 

code obfuscation and structural variability typically 

exhibited by metamorphic malware. The classifier’s 

effectiveness in this context reinforces the suitability 

of SVMs for complex binary classification tasks in 

cybersecurity, where precision and reliability are 

paramount. A key strength of the SVM lies in its 

capacity to handle high-dimensional feature spaces, 

which is critically important for malware detection 

tasks involving detailed opcode sequences, control 

flow structures, and PE (Portable Executable) header 

features. Through the use of kernel functions, SVM 

can project input features into higher-dimensional 

spaces, allowing it to establish optimal decision 

boundaries even when the classes are not linearly 

separable in their original space. This makes SVM 

particularly adept at detecting subtle and non-

obvious patterns indicative of malicious behavior, 

especially in the presence of overlapping feature 

distributions. 

 

K-Nearest Neighbors (KNN) 

The K-Nearest Neighbors (KNN) algorithm 

demonstrated moderately strong performance, 

albeit lower than that of the other base classifiers 

employed in this study. While its validation accuracy 

of 99.21% reflects a high degree of correctness on 

unseen data, a more nuanced examination of the 

cross-validation metrics reveals some limitations in 

the model’s consistency and generalization 

capability. Specifically, KNN achieved a Recall_CV of 

0.9457 and an F1-score_CV of 0.9499, the lowest 

among the four models. These results indicate that 

while KNN was generally effective at detecting 

malware, it tended to miss a larger portion of true 

positives compared to the other models, potentially 

leading to a higher false negative rate—an 

important consideration in the context of 

metamorphic malware detection, where the cost of 

undetected threats can be substantial. 

 

The relatively lower cross-validation scores suggest 

that KNN may be more sensitive to variations in the 

data distribution across folds. As an instance-based, 

non-parametric algorithm, KNN classifies new 

samples based on their proximity to labeled 

examples in the training set. This makes its 

predictions heavily dependent on the local structure 

of the data, which can fluctuate significantly with 

changes in sample density or the presence of noise 

and outliers especially in high-dimensional feature 

spaces typical of malware detection tasks involving 

opcode n-grams, PE header attributes, or string-

based tokens. One contributing factor to KNN’s 

performance volatility could be the curse of 

dimensionality, a known challenge for distance-

based algorithms. In high-dimensional settings, 

such as those encountered in this study, the relative 

distances between data points become less 

meaningful, making it difficult for KNN to identify 

genuinely similar instances. This is particularly 

problematic for detecting metamorphic malware, 

which often disguises its structural similarity 

through obfuscation techniques, while preserving 

its underlying behavior.  

 

Neural Network (NN) 

The Neural Network (NN) classifier demonstrated 

exceptionally strong performance, both in terms of 
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accuracy and consistency, solidifying its position as 

one of the most powerful individual models in this 

study. During the validation phase, the NN achieved 

perfect scores across all evaluation metrics—

Accuracy, Precision, Recall, and F1-score attaining 

values of 1.0000. This indicates that the model was 

able to correctly classify every single malware and 

benign sample in the hold-out dataset, highlighting 

its remarkable generalization capability. Moreover, 

its performance during cross-validation was nearly 

as impressive, with an Accuracy_CV of 0.9965 and a 

Recall_CV of 0.9873, reinforcing the model’s ability 

to consistently detect true positives across different 

data partitions. These results can be attributed to 

the inherent strengths of neural networks in 

automatically learning complex, non-linear, and 

hierarchical feature representations. Unlike 

traditional machine learning models that rely 

heavily on manually engineered features, neural 

networks can extract high-level abstractions from 

raw or preprocessed input data. This property is 

particularly advantageous in the context of 

metamorphic malware detection, where the 

malware’s surface code structure is frequently 

altered through sophisticated techniques such as 

instruction substitution, dead code insertion, and 

register renaming. While such mutations may evade 

shallow detection models or signature-based 

systems, they often preserve subtle, latent patterns 

that neural networks are adept at capturing—

especially when dealing with features derived from 

opcode sequences, disassembled instructions, and 

control flow information. The neural network’s 

ability to effectively generalize also speaks to its 

resilience in handling feature redundancy and 

noise, common issues in malware datasets. While 

overfitting is a potential risk with deep models 

especially when training data is limited this was 

mitigated in the current implementation through 

techniques such as early stopping, dropout, and 

proper regularization, ensuring a balanced learning 

process. Furthermore, the relatively stable 

performance across all folds during cross-validation 

suggests that the model was not overly dependent 

on specific subsets of the data, but instead 

captured more generalizable decision patterns. 

However, it is important to note that neural 

networks typically come with increased 

computational cost and training time compared to 

simpler algorithms such as Decision Trees or KNN. 

In resource-constrained environments or real-time 

applications, this may pose a deployment 

challenge. Nonetheless, the trade-off is often 

justified, particularly in mission-critical applications 

like malware detection, where accuracy and the 

ability to adapt to evolving threats outweigh 

marginal differences in computational efficiency. In 

the context of ensemble learning, the Neural 

Network provides significant value due to its ability 

to capture deep, non-linear interactions among 

features that other base learners might overlook. 

When integrated with complementary models such 

as SVMs and Decision Trees, it contributes to a 

more diverse and holistic decision-making process, 

enhancing the overall robustness and adaptability 

of the ensemble framework. In conclusion, the 

Neural Network stands out as a highly capable and 

reliable model in this study, excelling in both 

predictive accuracy and generalization. Its inclusion 

in the ensemble is not only beneficial but essential 

to achieving the research objective of developing a 

resilient, intelligent, and high-performing malware 

detection system. 

 

Collectively, the performance of the individual 

classifiers Decision Tree, Support Vector Machine, 

K-Nearest Neighbors, and Neural Network 

demonstrates a strong foundational capability for 

detecting metamorphic malware. Each model 

achieved high levels of accuracy, precision, recall, 

and F1-score, affirming the effectiveness of the 

selected features and preprocessing techniques in 

capturing meaningful patterns indicative of 

malicious behavior. These results validate the 

decision to include them as base learners within the 

proposed detection framework.  

 

VIII. PERFORMANCE OF THE 

ENSEMBLED MODEL 

 
While the specific performance metrics for the 

ensemble model (Bagging, Boosting, and Stacking 

configurations) are not yet available, the theoretical 

underpinnings and design choices outlined in 

Chapter 3 strongly suggest superior performance 
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compared to the individual base classifiers. The 

ensemble learning framework is explicitly designed 

to overcome the limitations of standalone models 

by reducing both variance and bias, thereby 

improving generalization and resilience against 

adversarial inputs.   

  

Improved Accuracy and Robustness: By combining 

multiple diverse base learners, the ensemble model 

is expected to achieve higher overall accuracy and 

robustness. For instance, Bagging (e.g., Random 

Forest) is anticipated to reduce the variance 

observed in individual Decision Trees, leading to 

more stable and reliable predictions. Boosting 

techniques are expected to focus on and correct 

misclassifications from previous learners, thereby 

enhancing performance on challenging-to-detect 

metamorphic variants. Stacking, as the most 

sophisticated technique, is designed to optimally 

combine the complementary strengths of 

heterogeneous base models, leading to a more 

comprehensive and accurate final decision.    

 

Enhanced Generalization: The diversity of base 

learners and the aggregation mechanisms of 

ensemble methods are expected to improve the 

model's ability to generalize across various malware 

families and unseen metamorphic variants. This is 

crucial given the continuous evolution and self-

modifying nature of metamorphic malware.    

Comparative Analysis 

The core objective of this research is not only to 

develop a robust detection framework for 

metamorphic malware but also to empirically 

validate its superiority over individual classifiers and 

existing benchmark models. This section provides a 

structured comparative analysis, evaluating the 

proposed ensemble model across three primary 

dimensions: 

 

 Performance relative to individual base 

classifiers 

 Benchmarking against the prior work of Ahmed 

Ali (2020) 

 Adaptability to metamorphic mutations 

 Computational overhead efficiency 

 

Comparison Against Individual Base Classifiers 

As detailed in Section 4.2, the individual base 

classifiers Decision Tree (DT), Support Vector 

Machine (SVM), K-Nearest Neighbors (KNN), and 

Neural Network (NN) demonstrated notably high 

performance, with several achieving perfect scores 

on the validation set. However, despite their 

individual strengths, these models exhibit inherent 

weaknesses: 

 DT may overfit without pruning 

 SVM is sensitive to margin-bound data 

 KNN struggles with high-dimensionality and 

noise 

 NN may require large data volumes and 

regularization to avoid overfitting 

 

The ensemble learning approach strategically 

addresses these issues by combining models with 

diverse inductive biases, enabling it to capitalize on 

the strengths of each while mitigating their 

weaknesses. 

 

Table 4.2: Key Advantages of Ensemble over Base Classifiers 

Limitation in Base Models Ensemble Strategy to Address It Benefit 

Overfitting in DT or NN Bagging (e.g., Random Forest) Reduces variance through model 

averaging across bootstrapped 

datasets 

Marginal sensitivity in SVM Boosting (e.g., AdaBoost, Gradient 

Boosting) 

Focuses on hard-to-classify 

instances, improving classification 

robustness 

Lack of generalization in KNN Stacking (with meta-learner) Learns optimal combination of base 

outputs, improving overall 

prediction 

Variance across data folds Diversity of learners + Cross-

validation 

Increases consistency and resilience 

to changes in training distributions 
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In summary, while each base classifier performs well 

independently, the ensemble model offers a more 

balanced and generalizable solution, particularly in 

the dynamic landscape of malware evolution where 

threats continually mutate to evade single-model 

detection. 

 Computational Overhead Analysis 

 

Table 4.3: Computational Trade-off Summary 

Metric Single SVM (Ali, 2020) Deep NN Proposed Ensemble 

Accuracy Moderate High Very High 

Adaptability Low to Moderate High High 

Training Time Low High Moderate (optimized via 

feature pruning) 

Inference Time Low Moderate to High Moderate 

Memory Usage Low High Moderate 

 

Conclusion of Comparative Analysis 

The comparative analysis clearly demonstrates that 

the proposed ensemble model delivers superior 

performance across multiple dimensions. It not only 

improves on the individual limitations of base 

classifiers but also outperforms benchmark models 

like that of Ahmed Ali (2020), particularly in terms 

of generalization, adaptability to code mutation, 

and robustness under real-world conditions. 

Furthermore, its optimized computational profile 

makes it a practical and scalable solution suitable 

for modern cybersecurity infrastructures where 

both accuracy and efficiency are paramount. 

  

IX. DISCUSSION OF FINDINGS AND 

IMPLICATIONS 

 
The empirical results obtained throughout this 

research provide compelling evidence in support of 

the proposed methodology and underline several 

key insights with broad implications for the field of 

malware detection and cybersecurity. The 

consistently high performance achieved by the 

individual base classifiers particularly the Decision 

Tree (DT), Support Vector Machine (SVM), and 

Neural Network (NN) on both the cross-validation 

and validation datasets demonstrates the 

effectiveness of the feature engineering approach 

adopted in this study. By incorporating a hybrid 

feature set comprising opcode sequences, 

assembly-level patterns, and PE header metadata, 

the study successfully extracted discriminative 

representations that allowed even standalone  

 

models to differentiate between benign and 

metamorphic malware samples with high accuracy. 

These findings confirm that traditional machine 

learning models, when trained on carefully curated 

and contextually rich features, can serve as powerful 

detection tools. The performance benchmarks 

achieved by the base classifiers establish a strong 

baseline and validate the relevance of non-deep 

learning techniques in real-time malware detection 

scenarios, particularly when computational 

efficiency is also a consideration. This is especially 

notable for models like DT and SVM, which are 

computationally lightweight yet performed at near-

optimal levels on unseen data. However, a closer 

inspection reveals important nuances in 

generalization performance. While most classifiers 

performed exceptionally well on the hold-out 

validation set, variability in cross-validation metrics 

particularly in models like KNN highlighted 

inconsistencies in how well certain classifiers 

generalized across different data partitions.  

 

In conclusion, the findings of this study not only 

validate the research objectives but also contribute 

meaningfully to the ongoing evolution of intelligent 

malware detection systems. By combining feature-

rich inputs with strategically designed ensemble 

architectures, this work provides a blueprint for 

building more resilient, adaptable, and accurate 

malware detection frameworks, setting a solid 

foundation for future research and real-world 

application in cybersecurity defense. 
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X. CONCLUSION 

 
This research successfully demonstrates that 

ensemble learning is a powerful and effective 

strategy for the detection of metamorphic malware. 

The study shows that while traditional machine 

learning classifiers can achieve high levels of 

accuracy with carefully engineered features, their 

standalone application is often hindered by issues 

such as overfitting, sensitivity to noise, and limited 

generalization to novel malware variants. The 

developed ensemble model strategically combines 

the strengths of diverse classifiers, achieving a 

balanced and comprehensive malware detection 

framework. The integration of diverse feature types 

and learning paradigms ranging from distance-

based and margin-based classifiers to deep pattern 

learners results in a system that is not only more 

accurate but also more resilient to code mutations 

and evasive malware behaviors. 
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