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I. INTRODUCTION 
 

Let me tell you a story about frustration. I was 

building Infrina, an AI assistant that thinks like 

humans do - with both logic and intuition. Not just 

pretending to think, but actually showing its 

reasoning process using custom tags like and 

[INTUITION]. Sounds simple enough, right?  

Wrong. 

 

Here's what happened when I tried the standard 

approaches: 

 

Attempt 1: Pure Supervised Fine-Tuning I fed my 

Qwen3-0.6B model thousands of examples. It 

learned the format perfectly. Too perfectly. Ask it 

anything slightly different from the training data and 

it would either hallucinate or just repeat memorized 

patterns. No real reasoning, just sophisticated copy-

paste. 

Attempt 2: Pure GRPO (Group Relative Policy 

Optimization) Following DeepSeek's approach, I 

tried pure reinforcement learning. The first 5 epochs? 

Complete garbage. The model didn't even know it 

should use thinking tags. By epoch 10, it was starting 

to learn, but my format accuracy was still below 70%. 

I was burning GPU hours watching my model slowly 

rediscover what I could have just taught it directly. 

 

Attempt 3: Traditional SFT → RL Pipeline Fine, I 

thought. Let's do it the "right" way. Complete all 

supervised training first, then switch to RL. This 

worked... until my dataset grew. See, I generate 

about 200 new training examples per hour. By the 

time I finished SFT and moved to RL, I had thousands 

of new examples the model had never seen. Start 

over? That's not sustainable. 

 

The Reality Check 

 

I'm not OpenAI. I don't have unlimited compute. I'm 

working with: 
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 A 0.6B parameter model (that's 0.6 billion, not 

600 billion like GPT-4) 

 Training data that literally grows while I train 

 Strict formatting requirements (miss one tag and 

the whole response is useless) 

 One NVIDIA RTX 4000 GPU 

 

Traditional methods assume you have a static 

dataset, massive compute, and models large enough 

to "figure things out" through pure exploration. I had 

none of those luxuries. 

 

Enter ASRL 

What if - and hear me out - I didn't have to choose? 

What if I could teach the model my format through 

supervised learning AND let it explore improvements 

through RL, not in separate phases but together, 

every single epoch? 

 

That's ASRL. Each epoch: 

1. Morning shift: Learn from the dataset 

(supervised) 

2. Afternoon shift: Explore and improve (GRPO) 

 

The supervised phase keeps the model grounded in 

reality. The GRPO phase helps it discover better ways 

to think. Neither phase can drift too far because the 

other phase pulls it back. 

It's like learning to cook. You follow recipes 

(supervised) but also experiment with flavors (RL). Do 

both every day and you improve faster than doing 

all recipe-following first, then all experimentation 

later. 

 

II. RELATED WORK 
 

The GRPO Revolution (and Its Limitations) 

Let's talk about GRPO first because that's what 

everyone's excited about. DeepSeek dropped their 

R1 paper in January 2025, and suddenly everyone 

wanted to train reasoning models. Their insight was 

clever: instead of training a separate value network 

like PPO does, just generate multiple responses and 

compare them against each other. The best response 

in the group gets positive advantage, the worst gets 

negative. Simple. 

But here's what the papers don't tell you: GRPO is 

terrible at cold starts. 

I tried it. Generate 6 responses from an untrained 

0.6B model. They're all garbage. Which garbage is 

better? Who knows? The model certainly doesn't. It's 

like asking someone who's never seen a car to 

compare six different engine designs. The 

advantages you calculate are basically noise. 

 

DeepSeek could get away with this because: 

1. They started with a strong base model that 

already knew how to reason 

2. They had massive compute to push through the 

noisy early stages 

3. They weren't trying to teach custom formatting 

For small models with specific requirements? 

Different story entirely. 

 

Previous Hybrid Approaches (Close, But Not Quite) 

ARES Algorithm 

 

The closest work to mine is ARES, which alternates 

between RL and supervised fine-tuning. But there's a 

crucial difference - they alternate between complete 

training stages, not within epochs. Their approach: 

 

Stage 1: Run RL until convergence or performance 

plateau 

 

Stage 2: Use SFT to correct errors and stabilize 

 

 Repeat stages as needed 

This works for static datasets. For live data? You're 

always playing catch-up. My innovation is doing 

both within EACH epoch. 

Supervised Pretraining for RL Lots of papers show 

that supervised pretraining helps RL. No surprise 

there - it's easier to improve something that already 

works than to build from scratch. But again, they 

treat these as separate phases. Finish all supervised, 

then start RL. 

Nobody was doing what seemed obvious to me: mix 

them together, every epoch. 

 

The Small Model Problem 

Here's something the big labs don't talk about much: 

small models (<1B parameters) are fundamentally 

different beasts. 
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 What Changes at Small Scale: 

 

1. No Emergent Abilities: Large models can 

"figure out" formats through examples. Small 

models need explicit training. 

2. Brittle Learning: One bad training batch can 

wreck your format adherence 

3. Limited Context: Can't just throw 20 examples 

in the prompt and hope for the best 

 

Recent work by Biswas (2025) showed that sub-1B 

models need 5-10x more careful training than larger 

models for reasoning tasks. They suggest extensive 

supervised warmup, but that still assumes your 

dataset is static. 

  

The Live Dataset Challenge 

Most papers assume your dataset is fixed. Collect 

data → Train model → Deploy. Clean and simple. 

 

Reality check: My dataset grows by 200 examples per 

hour. By the time traditional methods finish training, 

I have thousands of new examples. The solutions I've 

seen: 

 Continual Learning: Complex, prone to 

catastrophic forgetting 

 Regular Retraining: Expensive, disruptive 

 Online Learning: Unstable for small models 

None of these address the core issue: how do you do 

structured learning (supervised) and exploration (RL) 

when your data keeps changing? 

 

Why Nobody Did This Before 

Honestly? I think it's because the big labs don't need 

to. When you have:    

 Massive models that can learn from few 

examples 

 Static, curated datasets 

 Unlimited compute for long training runs 

 

...then yeah, sequential phases work fine. But for 

people like me - training specialized models on 

growing datasets with limited resources - I needed 

something different. 

That's the gap ASRL fills. 

 

III. METHOD 
 

Core Innovation 

 
 

Figure 1: Traditional vs ASRL Training Pipelines 

 

Our key insight is simple yet powerful: alternate SFT 

and GRPO within each epoch rather than as separate 

training phases. This ensures the model: 

 Learns directly from dataset examples (SFT 

phase) 

 Explores and refines through reinforcement 

(GRPO phase) 

 Never drifts too far from desired formatting 

 Continuously integrates new data as it arrives 

 

Training Algorithm 
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Implementation Details 

 

Model Architecture 

 Base Model: Qwen3-0.6B 

 LoRA Configuration: r=32, α=64, dropout=0.0 

 Target modules: ["q_proj", "v_proj", "k_proj", 

"o_proj", "up_proj", "down_proj", "gate_proj"] 

 

Custom Thinking Format 

my dataset uses a dual-brain thinking format: 

 

 
 

 

 

Reward Function 

 

 
 

Figure 2: ASRL Reward Calculation Pipeline 
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Why ASRL Actually Works 

Let me break down why this approach solves real 

problems: 

No Cold Start Problem 

  

Remember that garbage-in-garbage-out issue with 

GRPO? Gone. By the time I hit the GRPO phase, the 

model already knows: 

 What thinking tags look like 

 Basic response structure 

 Rough patterns from the dataset 

 

So when GRPO generates 6 responses, maybe 4 are 

decent. Now the advantages actually mean 

something. The model can learn "this logic chain led 

to a correct answer" vs "this one didn't." 

 

Continuous Grounding (The Drift Prevention) Pure 

RL models drift. It's what they do. Start with perfect 

formatting, and 10 epochs later your model is 

outputting responses in JSON because somehow 

that maximized rewards. 

With ASRL, every supervised phase yanks the model 

back to reality. "No, responses look like THIS. 

Remember?" It's like having a tutor correct your form 

every time you practice. 

 

Live Data Integration That Actually Works New 

training examples appear? Next epoch's supervised 

phase uses them immediately. No complex continual 

learning frameworks. No scheduled retraining. The 

model naturally evolves with your dataset. 

Example from our training: 

1. Epoch 10 morning: 3,420 training examples 

 

2. Epoch 10 evening: 3,485 training examples 

(65 new) 

 

3. Epoch 11 supervised phase: Automatically 

uses all 3,485 

 

Format Preservation (The Non-Negotiable) Our 

format isn't optional. Missing tags 

means the entire response is useless. Traditional RL 

would sacrifice format for performance. "Who needs 

tags when you can just output the answer?" 

ASRL's supervised phase hammers home the format 

every epoch. The model can't forget because it's 

constantly reminded. 

 

Actual Convergence Numbers 

 

 Pure GRPO: 12-15 epochs to reach 90% format 

accuracy 

 Pure SFT: Never exceeds 85% quality 

(memorization plateau) 

 Traditional SFT→RL: 8-10 epochs, but can't 

handle new data 

 

  ASRL: 3-4 epochs to 94% format accuracy + 

continuous improvement 

 

The Computational Reality 

 

Let's talk GPU time: 

One supervised epoch: ~30 minutes on our RTX 4000 

 

One GRPO collection + training: ~45 minutes 

 

  Total per epoch: 75 minutes 

 

Compared to pure GRPO needing 12+ epochs? I'm 

saving 8-10 hours of compute to reach production 

quality. 

 

3.5 The Secret Sauce: Implementation Details 

That Matter 

Token Masking Strategy I only calculate loss on 

response tokens during supervised training, not 

prompts. Sounds obvious? You'd be surprised how 

many tutorials get this wrong. The model should 

learn to generate responses, not memorize 

questions. 

Dynamic Batch Sizing 

 

Supervised phase: Batch size 1 with gradient 

accumulation (memory efficient) 

 

GRPO phase: Generate 6 responses per question, 

process in groups 

 

  Why? Different phases have different memory 

footprints 
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Learning Rate Scheduling 

 

Traditional cosine annealing doesn't work well with 

alternating phases. I use: 

 

Constant LR during supervised (1e-6) 

 

Slight decay during GRPO (prevents 

overoptimization) 

 

  Reset at epoch boundaries 

 

The 85/15 Reward Split After testing ratios from 

50/50 to 95/5, I found 85% correctness, 15% format 

works best. Too much format weight and the model 

outputs perfect tags with garbage content. Too little 

and it forgets the format during GRPO. 

  

Early Stopping With a Twist I track validation loss but 

DON'T stop on first improvement plateau. Why? The 

alternating nature means performance oscillates 

slightly. I wait for 3 consecutive epochs without 

improvement across BOTH phases. 

 

IV. EXPERIMENTAL SETUP 
 

The Dataset (A Living, Breathing Beast) 

Let me tell you about my dataset because it's not 

your typical static benchmark. I built a synthetic data 

generator that creates conversations with my 

specific thinking format. Why synthetic? Because 

nobody else is creating training data with and tags. 

 

Dataset Composition: 

 

Total Examples (at experiment start): 4,290 

 

 Simple Q&A with thinking: 1,287 (30%) 

 

 Complex reasoning chains: 1,072 (25%) 

 Multi-turn conversations: 858 (20%) 

 

 Mixed format (some thinking, some not): 1,073 

(25%) 

 

Growth rate: ~200 examples/hour during active 

generation Dataset size after 20 epochs (~25 hours): 

9,290 examples 

Example Entry: 

 

 
 

The Hardware Reality 

 Our Setup: 

  

 GPU: Single NVIDIA RTX 4000 Ada (20GB VRAM) 

 CPU: AMD Ryzen 9 5950X 

 RAM: 64GB DDR4 

 Storage: NVMe SSD (matters for checkpoint I/O) 

 

Why This Matters: 

With 20GB VRAM, I can: 

 

 Load Qwen3-0.6B in bfloat16 (~1.2GB) 

 

 Apply LoRA adapters (~80MB) 

 Generate 6 responses in parallel 

 Still have room for gradients 

 

But I CAN'T: 

 Use batch sizes > 2 without gradient 

accumulation 

 Load multiple model copies for A/B testing 

 Run larger models without quantization 

 

Training Configuration (The Real Numbers) 
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Baselines (What I Compared Against) 

Pure Supervised Fine-Tuning 

 Same model, same LoRA config 

 Trained for 20 epochs on the dataset 

 No exploration, just memorization 

 

Pure GRPO 

 

 Started from base Qwen3-0.6B (no warmup) 

 Same GRPO hyperparameters 

 Painful to watch for the first 10 epochs 

 

Sequential SFT→GRPO 

 10 epochs of SFT, then switch to pure GRPO 

 Can't incorporate new data after the switch 

 What most papers recommend 

 

 

ARES-Style Alternation 

 Alternates between complete RL and SFT stages 

(not within epochs) 

 Each stage runs to completion before switching 

 Less frequent grounding than my epoch-by-

epoch approach 

 

Evaluation Metrics (What Actually Matters) 

 

Format Accuracy: Does the response have proper 

and tags?  

 

 
Response Quality: Judged by GPT-4 on a 1-10 scale 

 

 Correctness: Is the answer right? 

 Reasoning: Is the logic sound? 

 Creativity: Is the intuition insightful? 

 

Convergence Speed: Epochs to reach 90% format 

accuracy 

 

Adaptation Speed: Epochs to incorporate new data 

patterns 
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The Experiment Timeline 

Week 1: Tried pure approaches, watched them fail 

Week 2: Implemented ASRL, immediate 

improvements Week 3: Hyperparameter tuning (so 

much tuning) Week 4: Final runs, data collection, 

writing this paper 

Total experiments: 47 full training runs Total GPU 

hours: ~60 hours Coffee consumed: None I don't 

drink coffe Lack of sleep: Maximum 

 

V. RESULTS 
 

Convergence Speed 

 

 
 

Figure 3: ASRL Training Flow - Each epoch 

alternates between SFT (blue) and GRPO (orange) 

phases 

 

ASRL achieves usab performance by epoch 3, 

compared to:   Pure SFT: Epoch 5-7 (no exploration 

benefit) 

 Pure GRPO: Epoch 10+ (struggles with format) 

 

 Sequential: Epoch 8 (but can't adapt to new 

data) 

 

Format Preservation 

| Method | Format Accuracy @ Epoch 5 | 

Convergence Speed | |--------|------------------------

---|----------- 

- | | ASRL | 94.2% | 3 epochs | | Pure SFT | 89.1% 

| 7 epochs | | Pure GRPO | 67.3% | 12+ epochs | 

| Sequential | 85.7% | 8 epochs | 

 

Table 1: Format accuracy and convergence 

comparison across methods 

 

Performance Metrics 

 

 
Figure 4: Training time vs quality tradeoffs 

 

Live Data Adaptation (The Real Test) 

I tested how quickly each method adapts to new 

data patterns. At epoch 10, I injected 500 examples 

with a new conversation style (technical explanations 

requiring both deep logic and creative analogies). 

Time to 80% accuracy on new pattern: 

  

 
  

Why ASRL Adapts Faster: 

 

 Supervised phase immediately learns new 

examples 

 

 GRPO phase explores variations in the same 

epoch 

 No waiting for phase boundaries 

 No catastrophic forgetting from pure RL 

 

Real Example: 

 

New pattern introduced at epoch 10: 
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Failure Analysis (Because Honesty Matters) 

ASRL isn't perfect. Here's where it struggles: 

 

Oscillating Validation Loss 

 

 Validation loss bounces between phases: 

 Post-supervised: 2.31 

 Post-GRPO: 2.45 

 Next supervised: 2.28 

 

This is expected but makes early stopping tricky. 

 

Compute Overhead 

Each epoch takes ~75 minutes vs 45 for pure 

methods. Over 20 epochs, that's 10 extra hours. 

Worth it for quality, but not negligible. 

 

Hyperparameter Sensitivity 

The balance between phases is delicate: 

 

 Too much GRPO: Format degradation 

 Too little GRPO: No quality improvement 

 Wrong reward weights: Catastrophic failure 

 

Not for Every Task Tasks that don't benefit from 

exploration (like simple classification) see no 

improvement from ASRL. The overhead isn't 

justified. 

 

Qualitative Results (The Fun Part) 

Let's look at actual model outputs across methods: 

 

Prompt: "Why do neural networks need activation 

functions?" 

 

Pure SFT Response: 

 

 
(Correct but memorized, weak intuition) 

 

Pure GRPO Response (Epoch 12): 

(Lost formatting, terse, took 12 epochs to get here) 

 

 

 

ASRL Response (Epoch 3): 

(Perfect format, deep understanding, creative 

analogy - all by epoch 3!) 

 
 

Statistical Significance 

I ran each experiment 5 times with different random 

seeds: 

 

Format Accuracy at Epoch 5 (mean ± std): 

 

 ASRL: 94.2% ± 1.3% 

 Pure SFT: 89.1% ± 2.1% 

 Pure GRPO: 67.3% ± 4.8% 

 Sequential: 85.7% ± 1.9% 

 

Student's t-test confirms ASRL improvements are 

statistically significant (p < 0.01) compared to all 

baselines. 

 

VI. DISCUSSION 

 
Why ASRL Works (The Deeper Insights) 

After 320 hours of GPU time and 47 experiments, 

here's what I really learned: 

 

The Synergy is Real 

 

It's not just that I'm doing both SFT and RL - it's that 

they're helping each other: 

 

 SFT provides a "safe harbor" that prevents RL 

from going off the rails 

 RL prevents SFT from getting stuck in local 

memorization minima 

 Each phase's weakness is the other's strength 

 

Small Models Are Different 

Everything changes when you're working with <1B 

parameters: 

 

 They can't "discover" complex formats through 

exploration alone 

 They're more sensitive to training dynamics 
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 But they're also more malleable - easier to steer 

with the right approach 

 

The Live Data Advantage 

 

Traditional methods treat new data as a problem to 

solve. ASRL treats it as a feature: 

 

 No retraining schedules 

 No versioning headaches 

 The model naturally evolves with your data 

 

Limitations (The Honest Truth) 

1. Not a Silver Bullet 

 

ASRL won't help if: 

 Your task doesn't benefit from exploration 

 You have unlimited compute and can brute force 

with pure GRPO 

 Your format is simple enough for pure SFT 

 

Hyperparameter Hell The balance is delicate. I spent 

a week just tuning:  

 Reward weights (85/15 split) 

 Phase sizes (8 questions for GRPO) 

 Learning rates (1e-6, not 1e-5) 

 

Get these wrong and ASRL performs worse than pure 

methods. 

 

 Implementation Complexity You need to:   

Manage two different training loops 

 Track metrics across phases 

 Handle the oscillating validation loss 

 Implement proper reward calculation 

It's more code, more potential bugs, more things to 

monitor. 

 

Future Directions (What's Next) 

 Adaptive Phase Weighting What if the model 

could decide how much SFT vs GRPO it needs?   

Early epochs: More SFT for format learning 

 Later epochs: More GRPO for quality 

improvement 

  Automatic adjustment based on format accuracy 

 

Multi-Format Training Can ASRL handle multiple 

thinking formats simultaneously?   

 [LOGIC]/[INTUITION] 

 [CODE]/[EXPLANATION] 

 [CLAIM]/[EVIDENCE] 

 

 1.5B (Phi-2 size): Does the advantage persist? 

 

 7B (Llama-2 size): Is the overhead still worth it? 

 

 13B+: Do large models even need this? 

 

Theoretical Understanding Why does alternating 

work better than sequential? I have intuitions but 

need: 

 Formal analysis of the optimization landscape 

 Convergence proofs 

 Optimal switching frequencies 
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VII. CONCLUSION 

 
Look, I didn't set out to revolutionize ML training. I 

just had a problem: small model, custom format, 

growing dataset, limited compute. The standard 

solutions failed me. 

So I built ASRL - alternating supervised and 

reinforcement learning within each epoch. Not 

because it was theoretically elegant (though it kind 

of is), but because it actually worked. 
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The results speak for themselves: 

 3x faster convergence than pure GRPO 

 94% format accuracy (vs 67% for pure GRPO) 

Seamless handling of new data 

 All on a single RTX 4000 

 

Is ASRL the future of language model training? 

Probably not for everyone. OpenAI doesn't need this 

- they have compute to burn. But for the rest of us - 

researchers with one GPU, startups with custom 

requirements, developers with evolving datasets - 

ASRL offers a practical path forward. 

 

The key insight is simple: you don't have to choose 

between supervised learning and reinforcement 

learning. You can have both, every epoch, working 

together. 

  

Sometimes the best solutions come from necessity, 

not theory. 

 

Implementation Details 

The key algorithms and pseudocode are provided in 

Appendix A. For those interested in implementing 

ASRL: 

1. Follow the training loop structure in Algorithm 1 

2. Use the reward calculation from Algorithm 2 

3. Adapt the hyperparameters from Section 4.3 to 

your use case 

 

The method is straightforward to implement using 

standard deep learning frameworks (PyTorch, 

TensorFlow) with any PEFT library for LoRA support. 

For questions about implementation details or 

collaboration opportunities, contact: 

ouissam@toxigon.com 

 

Final Thoughts 

To the researcher struggling with format 

preservation: try ASRL. To the developer with a 

growing dataset: try ASRL. To the startup with one 

GPU: definitely try ASRL. 

And to the skeptics: I was you, until it worked. 

"The best time to plant a tree was 20 years ago. The 

second best time is now." - Ancient proverb that 

somehow applies to ML training paradigms 
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