
 Ouissam Drissi, 2025, 13:5

ISSN (Online): 2348-4098

ISSN (Print): 2395-4752

© 2025 Ouissam Drissi, This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly credited.

International Journal of Science,

Engineering and Technology
An Open Access Journal

ASRL: Alternating Supervised and

Reinforcement Learning for Efficient Small Language

Model Training with Live

Datasets
Ouissam Drissi

 Independent Researcher Kenitra, Morocco ouissam@toxigon.com

I. INTRODUCTION

Let me tell you a story about frustration. I was

building Infrina, an AI assistant that thinks like

humans do - with both logic and intuition. Not just

pretending to think, but actually showing its

reasoning process using custom tags like and

[INTUITION]. Sounds simple enough, right?

Wrong.

Here's what happened when I tried the standard

approaches:

Attempt 1: Pure Supervised Fine-Tuning I fed my

Qwen3-0.6B model thousands of examples. It

learned the format perfectly. Too perfectly. Ask it

anything slightly different from the training data and

it would either hallucinate or just repeat memorized

patterns. No real reasoning, just sophisticated copy-

paste.

Attempt 2: Pure GRPO (Group Relative Policy

Optimization) Following DeepSeek's approach, I

tried pure reinforcement learning. The first 5 epochs?

Complete garbage. The model didn't even know it

should use thinking tags. By epoch 10, it was starting

to learn, but my format accuracy was still below 70%.

I was burning GPU hours watching my model slowly

rediscover what I could have just taught it directly.

Attempt 3: Traditional SFT → RL Pipeline Fine, I

thought. Let's do it the "right" way. Complete all

supervised training first, then switch to RL. This

worked... until my dataset grew. See, I generate

about 200 new training examples per hour. By the

time I finished SFT and moved to RL, I had thousands

of new examples the model had never seen. Start

over? That's not sustainable.

The Reality Check

I'm not OpenAI. I don't have unlimited compute. I'm

working with:

Abstract- Look, here's the thing - training small language models to think properly is hard. Really hard. Especially

when you're working with just 600 million parameters and need them to follow a specific format while actually

being smart about it. I've been there - you try pure reinforcement learning and your model outputs garbage for the

first 10 epochs. You try supervised learning and it just memorizes without understanding. So I built something

different. ASRL (Alternating Supervised-Reinforcement Learning) switches between supervised fine-tuning and

GRPO within each epoch. Not after completing all supervised training. Not as separate phases. Every. Single. Epoch.

First the model learns from your actual examples, then it explores variations through RL. Rinse and repeat. The

results? My 0.6B parameter model learned my custom and thinking format in 3 epochs instead of 12. It handles new

data as it arrives without restarting training. And it actually understands what it's doing instead of just pattern

matching. This isn't some theoretical framework - I built this because I needed it. My training data grows by 200

examples per hour, I have strict formatting requirements, and I'm running on limited hardware. Traditional methods

failed me. ASRL didn't.

Keywords: Language Models, Reinforcement Learning, GRPO, Supervised Learning, Small Language Models, Hybrid

Training, Live Datasets, Reasoning Models.

 Ouissam Drissi, International Journal of Science, Engineering and Technology,

 2025, 13:5

2

 A 0.6B parameter model (that's 0.6 billion, not

600 billion like GPT-4)

 Training data that literally grows while I train

 Strict formatting requirements (miss one tag and

the whole response is useless)

 One NVIDIA RTX 4000 GPU

Traditional methods assume you have a static

dataset, massive compute, and models large enough

to "figure things out" through pure exploration. I had

none of those luxuries.

Enter ASRL

What if - and hear me out - I didn't have to choose?

What if I could teach the model my format through

supervised learning AND let it explore improvements

through RL, not in separate phases but together,

every single epoch?

That's ASRL. Each epoch:

1. Morning shift: Learn from the dataset

(supervised)

2. Afternoon shift: Explore and improve (GRPO)

The supervised phase keeps the model grounded in

reality. The GRPO phase helps it discover better ways

to think. Neither phase can drift too far because the

other phase pulls it back.

It's like learning to cook. You follow recipes

(supervised) but also experiment with flavors (RL). Do

both every day and you improve faster than doing

all recipe-following first, then all experimentation

later.

II. RELATED WORK

The GRPO Revolution (and Its Limitations)

Let's talk about GRPO first because that's what

everyone's excited about. DeepSeek dropped their

R1 paper in January 2025, and suddenly everyone

wanted to train reasoning models. Their insight was

clever: instead of training a separate value network

like PPO does, just generate multiple responses and

compare them against each other. The best response

in the group gets positive advantage, the worst gets

negative. Simple.

But here's what the papers don't tell you: GRPO is

terrible at cold starts.

I tried it. Generate 6 responses from an untrained

0.6B model. They're all garbage. Which garbage is

better? Who knows? The model certainly doesn't. It's

like asking someone who's never seen a car to

compare six different engine designs. The

advantages you calculate are basically noise.

DeepSeek could get away with this because:

1. They started with a strong base model that

already knew how to reason

2. They had massive compute to push through the

noisy early stages

3. They weren't trying to teach custom formatting

For small models with specific requirements?

Different story entirely.

Previous Hybrid Approaches (Close, But Not Quite)

ARES Algorithm

The closest work to mine is ARES, which alternates

between RL and supervised fine-tuning. But there's a

crucial difference - they alternate between complete

training stages, not within epochs. Their approach:

Stage 1: Run RL until convergence or performance

plateau

Stage 2: Use SFT to correct errors and stabilize

 Repeat stages as needed

This works for static datasets. For live data? You're

always playing catch-up. My innovation is doing

both within EACH epoch.

Supervised Pretraining for RL Lots of papers show

that supervised pretraining helps RL. No surprise

there - it's easier to improve something that already

works than to build from scratch. But again, they

treat these as separate phases. Finish all supervised,

then start RL.

Nobody was doing what seemed obvious to me: mix

them together, every epoch.

The Small Model Problem

Here's something the big labs don't talk about much:

small models (<1B parameters) are fundamentally

different beasts.

 Ouissam Drissi, International Journal of Science, Engineering and Technology,

 2025, 13:5

3

 What Changes at Small Scale:

1. No Emergent Abilities: Large models can

"figure out" formats through examples. Small

models need explicit training.

2. Brittle Learning: One bad training batch can

wreck your format adherence

3. Limited Context: Can't just throw 20 examples

in the prompt and hope for the best

Recent work by Biswas (2025) showed that sub-1B

models need 5-10x more careful training than larger

models for reasoning tasks. They suggest extensive

supervised warmup, but that still assumes your

dataset is static.

The Live Dataset Challenge

Most papers assume your dataset is fixed. Collect

data → Train model → Deploy. Clean and simple.

Reality check: My dataset grows by 200 examples per

hour. By the time traditional methods finish training,

I have thousands of new examples. The solutions I've

seen:

 Continual Learning: Complex, prone to

catastrophic forgetting

 Regular Retraining: Expensive, disruptive

 Online Learning: Unstable for small models

None of these address the core issue: how do you do

structured learning (supervised) and exploration (RL)

when your data keeps changing?

Why Nobody Did This Before

Honestly? I think it's because the big labs don't need

to. When you have:

 Massive models that can learn from few

examples

 Static, curated datasets

 Unlimited compute for long training runs

...then yeah, sequential phases work fine. But for

people like me - training specialized models on

growing datasets with limited resources - I needed

something different.

That's the gap ASRL fills.

III. METHOD

Core Innovation

Figure 1: Traditional vs ASRL Training Pipelines

Our key insight is simple yet powerful: alternate SFT

and GRPO within each epoch rather than as separate

training phases. This ensures the model:

 Learns directly from dataset examples (SFT

phase)

 Explores and refines through reinforcement

(GRPO phase)

 Never drifts too far from desired formatting

 Continuously integrates new data as it arrives

Training Algorithm

 Ouissam Drissi, International Journal of Science, Engineering and Technology,

 2025, 13:5

2

Implementation Details

Model Architecture

 Base Model: Qwen3-0.6B

 LoRA Configuration: r=32, α=64, dropout=0.0

 Target modules: ["q_proj", "v_proj", "k_proj",

"o_proj", "up_proj", "down_proj", "gate_proj"]

Custom Thinking Format

my dataset uses a dual-brain thinking format:

Reward Function

Figure 2: ASRL Reward Calculation Pipeline

 Ouissam Drissi, International Journal of Science, Engineering and Technology,

 2025, 13:5

1

Why ASRL Actually Works

Let me break down why this approach solves real

problems:

No Cold Start Problem

Remember that garbage-in-garbage-out issue with

GRPO? Gone. By the time I hit the GRPO phase, the

model already knows:

 What thinking tags look like

 Basic response structure

 Rough patterns from the dataset

So when GRPO generates 6 responses, maybe 4 are

decent. Now the advantages actually mean

something. The model can learn "this logic chain led

to a correct answer" vs "this one didn't."

Continuous Grounding (The Drift Prevention) Pure

RL models drift. It's what they do. Start with perfect

formatting, and 10 epochs later your model is

outputting responses in JSON because somehow

that maximized rewards.

With ASRL, every supervised phase yanks the model

back to reality. "No, responses look like THIS.

Remember?" It's like having a tutor correct your form

every time you practice.

Live Data Integration That Actually Works New

training examples appear? Next epoch's supervised

phase uses them immediately. No complex continual

learning frameworks. No scheduled retraining. The

model naturally evolves with your dataset.

Example from our training:

1. Epoch 10 morning: 3,420 training examples

2. Epoch 10 evening: 3,485 training examples

(65 new)

3. Epoch 11 supervised phase: Automatically

uses all 3,485

Format Preservation (The Non-Negotiable) Our

format isn't optional. Missing tags

means the entire response is useless. Traditional RL

would sacrifice format for performance. "Who needs

tags when you can just output the answer?"

ASRL's supervised phase hammers home the format

every epoch. The model can't forget because it's

constantly reminded.

Actual Convergence Numbers

 Pure GRPO: 12-15 epochs to reach 90% format

accuracy

 Pure SFT: Never exceeds 85% quality

(memorization plateau)

 Traditional SFT→RL: 8-10 epochs, but can't

handle new data

 ASRL: 3-4 epochs to 94% format accuracy +

continuous improvement

The Computational Reality

Let's talk GPU time:

One supervised epoch: ~30 minutes on our RTX 4000

One GRPO collection + training: ~45 minutes

 Total per epoch: 75 minutes

Compared to pure GRPO needing 12+ epochs? I'm

saving 8-10 hours of compute to reach production

quality.

3.5 The Secret Sauce: Implementation Details

That Matter

Token Masking Strategy I only calculate loss on

response tokens during supervised training, not

prompts. Sounds obvious? You'd be surprised how

many tutorials get this wrong. The model should

learn to generate responses, not memorize

questions.

Dynamic Batch Sizing

Supervised phase: Batch size 1 with gradient

accumulation (memory efficient)

GRPO phase: Generate 6 responses per question,

process in groups

 Why? Different phases have different memory

footprints

 Ouissam Drissi, International Journal of Science, Engineering and Technology,

 2025, 13:5

2

Learning Rate Scheduling

Traditional cosine annealing doesn't work well with

alternating phases. I use:

Constant LR during supervised (1e-6)

Slight decay during GRPO (prevents

overoptimization)

 Reset at epoch boundaries

The 85/15 Reward Split After testing ratios from

50/50 to 95/5, I found 85% correctness, 15% format

works best. Too much format weight and the model

outputs perfect tags with garbage content. Too little

and it forgets the format during GRPO.

Early Stopping With a Twist I track validation loss but

DON'T stop on first improvement plateau. Why? The

alternating nature means performance oscillates

slightly. I wait for 3 consecutive epochs without

improvement across BOTH phases.

IV. EXPERIMENTAL SETUP

The Dataset (A Living, Breathing Beast)

Let me tell you about my dataset because it's not

your typical static benchmark. I built a synthetic data

generator that creates conversations with my

specific thinking format. Why synthetic? Because

nobody else is creating training data with and tags.

Dataset Composition:

Total Examples (at experiment start): 4,290

 Simple Q&A with thinking: 1,287 (30%)

 Complex reasoning chains: 1,072 (25%)

 Multi-turn conversations: 858 (20%)

 Mixed format (some thinking, some not): 1,073

(25%)

Growth rate: ~200 examples/hour during active

generation Dataset size after 20 epochs (~25 hours):

9,290 examples

Example Entry:

The Hardware Reality

 Our Setup:

 GPU: Single NVIDIA RTX 4000 Ada (20GB VRAM)

 CPU: AMD Ryzen 9 5950X

 RAM: 64GB DDR4

 Storage: NVMe SSD (matters for checkpoint I/O)

Why This Matters:

With 20GB VRAM, I can:

 Load Qwen3-0.6B in bfloat16 (~1.2GB)

 Apply LoRA adapters (~80MB)

 Generate 6 responses in parallel

 Still have room for gradients

But I CAN'T:

 Use batch sizes > 2 without gradient

accumulation

 Load multiple model copies for A/B testing

 Run larger models without quantization

Training Configuration (The Real Numbers)

 Ouissam Drissi, International Journal of Science, Engineering and Technology,

 2025, 13:5

1

Baselines (What I Compared Against)

Pure Supervised Fine-Tuning

 Same model, same LoRA config

 Trained for 20 epochs on the dataset

 No exploration, just memorization

Pure GRPO

 Started from base Qwen3-0.6B (no warmup)

 Same GRPO hyperparameters

 Painful to watch for the first 10 epochs

Sequential SFT→GRPO

 10 epochs of SFT, then switch to pure GRPO

 Can't incorporate new data after the switch

 What most papers recommend

ARES-Style Alternation

 Alternates between complete RL and SFT stages

(not within epochs)

 Each stage runs to completion before switching

 Less frequent grounding than my epoch-by-

epoch approach

Evaluation Metrics (What Actually Matters)

Format Accuracy: Does the response have proper

and tags?

Response Quality: Judged by GPT-4 on a 1-10 scale

 Correctness: Is the answer right?

 Reasoning: Is the logic sound?

 Creativity: Is the intuition insightful?

Convergence Speed: Epochs to reach 90% format

accuracy

Adaptation Speed: Epochs to incorporate new data

patterns

 Ouissam Drissi, International Journal of Science, Engineering and Technology,

 2025, 13:5

2

The Experiment Timeline

Week 1: Tried pure approaches, watched them fail

Week 2: Implemented ASRL, immediate

improvements Week 3: Hyperparameter tuning (so

much tuning) Week 4: Final runs, data collection,

writing this paper

Total experiments: 47 full training runs Total GPU

hours: ~60 hours Coffee consumed: None I don't

drink coffe Lack of sleep: Maximum

V. RESULTS

Convergence Speed

Figure 3: ASRL Training Flow - Each epoch

alternates between SFT (blue) and GRPO (orange)

phases

ASRL achieves usab performance by epoch 3,

compared to: Pure SFT: Epoch 5-7 (no exploration

benefit)

 Pure GRPO: Epoch 10+ (struggles with format)

 Sequential: Epoch 8 (but can't adapt to new

data)

Format Preservation

| Method | Format Accuracy @ Epoch 5 |

Convergence Speed | |--------|------------------------

---|-----------

- | | ASRL | 94.2% | 3 epochs | | Pure SFT | 89.1%

| 7 epochs | | Pure GRPO | 67.3% | 12+ epochs |

| Sequential | 85.7% | 8 epochs |

Table 1: Format accuracy and convergence

comparison across methods

Performance Metrics

Figure 4: Training time vs quality tradeoffs

Live Data Adaptation (The Real Test)

I tested how quickly each method adapts to new

data patterns. At epoch 10, I injected 500 examples

with a new conversation style (technical explanations

requiring both deep logic and creative analogies).

Time to 80% accuracy on new pattern:

Why ASRL Adapts Faster:

 Supervised phase immediately learns new

examples

 GRPO phase explores variations in the same

epoch

 No waiting for phase boundaries

 No catastrophic forgetting from pure RL

Real Example:

New pattern introduced at epoch 10:

 Ouissam Drissi, International Journal of Science, Engineering and Technology,

 2025, 13:5

3

Failure Analysis (Because Honesty Matters)

ASRL isn't perfect. Here's where it struggles:

Oscillating Validation Loss

 Validation loss bounces between phases:

 Post-supervised: 2.31

 Post-GRPO: 2.45

 Next supervised: 2.28

This is expected but makes early stopping tricky.

Compute Overhead

Each epoch takes ~75 minutes vs 45 for pure

methods. Over 20 epochs, that's 10 extra hours.

Worth it for quality, but not negligible.

Hyperparameter Sensitivity

The balance between phases is delicate:

 Too much GRPO: Format degradation

 Too little GRPO: No quality improvement

 Wrong reward weights: Catastrophic failure

Not for Every Task Tasks that don't benefit from

exploration (like simple classification) see no

improvement from ASRL. The overhead isn't

justified.

Qualitative Results (The Fun Part)

Let's look at actual model outputs across methods:

Prompt: "Why do neural networks need activation

functions?"

Pure SFT Response:

(Correct but memorized, weak intuition)

Pure GRPO Response (Epoch 12):

(Lost formatting, terse, took 12 epochs to get here)

ASRL Response (Epoch 3):

(Perfect format, deep understanding, creative

analogy - all by epoch 3!)

Statistical Significance

I ran each experiment 5 times with different random

seeds:

Format Accuracy at Epoch 5 (mean ± std):

 ASRL: 94.2% ± 1.3%

 Pure SFT: 89.1% ± 2.1%

 Pure GRPO: 67.3% ± 4.8%

 Sequential: 85.7% ± 1.9%

Student's t-test confirms ASRL improvements are

statistically significant (p < 0.01) compared to all

baselines.

VI. DISCUSSION

Why ASRL Works (The Deeper Insights)

After 320 hours of GPU time and 47 experiments,

here's what I really learned:

The Synergy is Real

It's not just that I'm doing both SFT and RL - it's that

they're helping each other:

 SFT provides a "safe harbor" that prevents RL

from going off the rails

 RL prevents SFT from getting stuck in local

memorization minima

 Each phase's weakness is the other's strength

Small Models Are Different

Everything changes when you're working with <1B

parameters:

 They can't "discover" complex formats through

exploration alone

 They're more sensitive to training dynamics

 Ouissam Drissi, International Journal of Science, Engineering and Technology,

 2025, 13:5

4

 But they're also more malleable - easier to steer

with the right approach

The Live Data Advantage

Traditional methods treat new data as a problem to

solve. ASRL treats it as a feature:

 No retraining schedules

 No versioning headaches

 The model naturally evolves with your data

Limitations (The Honest Truth)

1. Not a Silver Bullet

ASRL won't help if:

 Your task doesn't benefit from exploration

 You have unlimited compute and can brute force

with pure GRPO

 Your format is simple enough for pure SFT

Hyperparameter Hell The balance is delicate. I spent

a week just tuning:

 Reward weights (85/15 split)

 Phase sizes (8 questions for GRPO)

 Learning rates (1e-6, not 1e-5)

Get these wrong and ASRL performs worse than pure

methods.

 Implementation Complexity You need to:

Manage two different training loops

 Track metrics across phases

 Handle the oscillating validation loss

 Implement proper reward calculation

It's more code, more potential bugs, more things to

monitor.

Future Directions (What's Next)

 Adaptive Phase Weighting What if the model

could decide how much SFT vs GRPO it needs?

Early epochs: More SFT for format learning

 Later epochs: More GRPO for quality

improvement

 Automatic adjustment based on format accuracy

Multi-Format Training Can ASRL handle multiple

thinking formats simultaneously?

 [LOGIC]/[INTUITION]

 [CODE]/[EXPLANATION]

 [CLAIM]/[EVIDENCE]

 1.5B (Phi-2 size): Does the advantage persist?

 7B (Llama-2 size): Is the overhead still worth it?

 13B+: Do large models even need this?

Theoretical Understanding Why does alternating

work better than sequential? I have intuitions but

need:

 Formal analysis of the optimization landscape

 Convergence proofs

 Optimal switching frequencies

Acknowledgments

This research was born from genuine frustration with

existing approaches that simply didn't work for my

use case. The ASRL method is entirely my own

innovation, developed through months of

experimentation and countless failed attempts.

I acknowledge the use of Claude (Anthropic) for

assistance with English language editing and paper

formatting. However, I want to be crystal clear: the

core idea, methodology, implementation, and all

experimental work are 100% human-originated. This

is not an AI-generated concept - it's the result of real

human struggle with real-world constraints.

As an AI researcher, I believe in using AI tools where

they excel (language polishing) while ensuring

human creativity and innovation remain at the heart

of scientific progress. The frustration that led to ASRL

was mine, the late nights debugging were mine, and

the excitement when it finally worked was mine.

VII. CONCLUSION

Look, I didn't set out to revolutionize ML training. I

just had a problem: small model, custom format,

growing dataset, limited compute. The standard

solutions failed me.

So I built ASRL - alternating supervised and

reinforcement learning within each epoch. Not

because it was theoretically elegant (though it kind

of is), but because it actually worked.

 Ouissam Drissi, International Journal of Science, Engineering and Technology,

 2025, 13:5

5

The results speak for themselves:

 3x faster convergence than pure GRPO

 94% format accuracy (vs 67% for pure GRPO)

Seamless handling of new data

 All on a single RTX 4000

Is ASRL the future of language model training?

Probably not for everyone. OpenAI doesn't need this

- they have compute to burn. But for the rest of us -

researchers with one GPU, startups with custom

requirements, developers with evolving datasets -

ASRL offers a practical path forward.

The key insight is simple: you don't have to choose

between supervised learning and reinforcement

learning. You can have both, every epoch, working

together.

Sometimes the best solutions come from necessity,

not theory.

Implementation Details

The key algorithms and pseudocode are provided in

Appendix A. For those interested in implementing

ASRL:

1. Follow the training loop structure in Algorithm 1

2. Use the reward calculation from Algorithm 2

3. Adapt the hyperparameters from Section 4.3 to

your use case

The method is straightforward to implement using

standard deep learning frameworks (PyTorch,

TensorFlow) with any PEFT library for LoRA support.

For questions about implementation details or

collaboration opportunities, contact:

ouissam@toxigon.com

Final Thoughts

To the researcher struggling with format

preservation: try ASRL. To the developer with a

growing dataset: try ASRL. To the startup with one

GPU: definitely try ASRL.

And to the skeptics: I was you, until it worked.

"The best time to plant a tree was 20 years ago. The

second best time is now." - Ancient proverb that

somehow applies to ML training paradigms

Acknowledgments

This work was conducted independently in Kenitra,

Morocco. I thank the open-source community for

making tools like Qwen3 and PEFT available.

Copyright and Attribution

© 2025 Ouissam Drissi. All rights reserved.

This work is licensed under CC BY 4.0. When using

ASRL or citing this work, please attribute: "ASRL

method independently developed by Ouissam Drissi

(2025)".

This is original, independent research with no co-

authors or institutional affiliations.

REFERENCES

1. DeepSeek. "DeepSeek-R1: Incentivizing

Reasoning Capability in LLMs via Reinforcement

Learning." arXiv preprint arXiv:2501.12948,

January 2025.

2. Byun, J.-S., Chun, J., Kil, J., & Perrault, A. "ARES:

Alternating Reinforcement Learning and

Supervised Fine-Tuning for Enhanced Multi-

Modal Chain-of-Thought Reasoning Through

Diverse AI Feedback." arXiv preprint

arXiv:2407.00087, July 2024.

3. Laskin, M., Wang, L., Oh, J., Parisotto, E., Spencer,

S., Steigerwald, R., Strouse, D., Hansen, S., Filos,

A., Brooks, E., Gazeau, M., Sahni, H., Sridhar, S., &

Mesnard, T. "In-Context Reinforcement Learning

with Algorithm Distillation." arXiv preprint

arXiv:2210.14215, October 2022.

4. Biswas, A. "How to Fine-Tune Small Language

Models to Think with Reinforcement Learning: A

Visual Tour and From-Scratch Guide to Train

GRPO Reasoning Models in PyTorch." Medium,

July 8, 2025. Available:

https://medium.com/@avishekbiswas/grpo-

reasoning-models-pytorch

5. Schulman, J., Wolski, F., Dhariwal, P., Radford, A.,

& Klimov, O. "Proximal Policy Optimization

Algorithms." arXiv preprint arXiv:1707.06347,

2017.

6. Ouyang, L., Wu, J., Jiang, X., Almeida, D.,

Wainwright, C., Mishkin, P., Zhang, C., Agarwal,

S., Slama, K., Ray, A., et al. "Training language

models to follow instructions with human

 Ouissam Drissi, International Journal of Science, Engineering and Technology,

 2025, 13:5

6

feedback." Advances in Neural Information

Processing Systems, 35:27730-27744, 2022.

7. Rafailov, R., Sharma, A., Mitchell, E., Ermon, S.,

Manning, C. D., & Finn, C. "Direct Preference

Optimization: Your Language Model is Secretly a

Reward Model." arXiv preprint arXiv:2305.18290,

2023.

8. Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y.,

Wang, S., Wang, L., & Chen, W. "LoRA: Low-Rank

Adaptation of Large Language Models." arXiv

preprint arXiv:2106.09685, 2021.

9. Qwen Team. "Qwen Technical Report." arXiv

preprint arXiv:2309.16609, 2023.

10. Shazeer, N., & Stern, M. "Adafactor: Adaptive

Learning Rates with Sublinear Memory Cost."

International Conference on Machine Learning,

pp. 4596-4604, 2018.

11. Dettmers, T., Pagnoni, A., Holtzman, A., &

Zettlemoyer, L. "QLoRA: Efficient Finetuning of

Quantized LLMs." arXiv preprint

arXiv:2305.14314, 2023.

12. Liu, H., Tam, D., Muqeeth, M., Mohta, J., Huang,

T., Bansal, M., & Raffel, C. "Few-Shot Parameter-

Efficient Fine-Tuning is Better and Cheaper than

In-Context Learning." Advances in Neural

Information Processing Systems, 35:1950-1965,

2022.

