
Tejashree H Y, 2025, 15:5

ISSN (Online): 2348-4098

ISSN (Print): 2395-4752

© 2025 Tejashree H Y, This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly credited.

International Journal of Science,
Engineering and Technology

An Open Access Journal

Network Intrusion Detection Using Machine

Learning: A Comparative Study of Logistic

Regression, KNN, and Random Forest
1Tejashree H Y, 2Komala R

 1Department of MCA, India

²Assistant Professor, Department of MCA, India

I. INTRODUCTION

In today’s digital age, ensuring cybersecurity has

become a critical priority for individuals, enterprises,

and governmental bodies. As networks expand in

size, complexity, and interconnectedness, they

simultaneously increase the surface area for

potential cyberattacks [1]. Cybercriminals exploit

vulnerabilities using a variety of tactics such as

Distributed Denial-of-Service (DDoS) attacks,

unauthorized access, privilege escalation, probing,

and data exfiltration [9].As a result, traditional

defenses like firewalls and antivirus software are

insufficient on their own.In today’s evolving threat

landscape, there is a critical need for smart and

adaptive systems capable of continuously

monitoring, identifying, and reacting to intrusions in

real time [4], [9].

An Intrusion Detection System (IDS) serves as a vital

tool for recognizing unauthorized or suspicious

activities by monitoring events within a network or

computing environment [5].Intrusion Detection

Systems (IDSs) are typically divided into two primary

categories: those that rely on known attack

signatures and those that detect unusual or

anomalous behavior. Signature-based IDS, such as

Snort, rely on known pattern+s or "signatures" of

attacks, making them effective against previously

seen threats.However, these systems struggle to

Abstract- Network Intrusion Detection Systems (NIDS) play a critical role in defending networks against

unauthorized access and cyber threats. This paper presents a real-time, web-enabled NIDS built using machine

learning techniques to effectively identify and categorize network-based attacks. The system is trained on the

NSL-KDD dataset, a refined alternative to earlier datasets, addressing issues like redundancy and class imbalance.

We implement and evaluate three supervised learning algorithms—Logistic Regression, K-Nearest Neighbors

(KNN), and Random Forest. The workflow includes comprehensive preprocessing, class balancing, and

hyperparameter tuning via grid search with cross-validation. Among the models tested, Random Forest achieved

the highest detection performance, showing excellent accuracy with minimal false positives. While KNN also

produced reliable results, it was comparatively slower. Logistic Regression delivered quick and interpretable

outcomes but struggled with complex intrusion patterns. This work contributes a practical, browser-accessible

NIDS platform that brings together machine learning capabilities and real- time threat detection.

Keywords - Network Intrusion Detection, Machine Learning, Anomaly Detection, Cybersecurity, Real-Time

Monitoring, Packet Analysis, Supervised Learning Based Anonymization, Big Data Privacy.

 Tejashree H Y, International Journal of Science, Engineering and Technology,

 2025, 13:5

detect zero-day threats or even slightly altered

versions of existing attacks.Furthermore, they oft en

require constant updates to their signature

database, adding to operational overhead [5].

Machine Learning (ML) techniques have emerged as

an effective and scalable alternative to overcome the

limitations of traditional signature-based intrusion

detection systems [4], [6]. By learning from historical

network activity, ML-driven IDSs can recognize novel

attack behaviors through the detection of anomalies

or deviations from typical traffic patterns [6]. These

systems are well- suited for analyzing substantial

volumes of network data, identifying relevant

patterns, and constructing predictive models that

perform reliably in real-world scenarios [7].

This study aims to design and develop a Network

Intrusion Detection System (NIDS) using supervised

machine learning techniques to detect and

categorize different types of network intrusions. The

fundamental objective is to incorporate intelligent

models into the detection process ML models into a

user-friendly, interactive web platform using the

Django framework. This platform enables users to

upload network traffic data (in CSV format) and

receive immediate feedback on whether the traffic is

malicious or benign, along with performance metrics

of the ML classifiers.

The system utilizes the NSL-KDD dataset, an

enhanced and more balanced iteration of the widely

recognized KDD Cup 99 dataset [4]. The NSL-KDD

dataset overcomes several limitations of the original

KDD dataset, including duplicate entries and uneven

class distribution, which enhances its reliability for

practical model training and assessment [4].The

dataset comprises 41 features extracted from

network traffic and encompasses various attack

types such as Denial of Service (DoS), Probe, Remote

to Local (R2L),

and User to Root (U2R), in addition to legitimate or

normal network traffic. This study utilizes three

widely recognized supervised learning methods—

Random Forest, K-Nearest Neighbors (KNN), and

Logistic Regression—were selected for

implementation and comparison in this project [6],

[7], [5].These algorithms were chosen due to their

proven capability in solving classification tasks and

their widespread use in anomaly detection research.

All three algorithms were trained and assessed based

on key performance indicators such as accuracy,

precision, recall, and F1-score to enable a thorough

comparison. Among them, the Random Forest

model delivered the highest performance, achieving

an impressive 99.79% accuracy and surpassing the

others by a notable margin [6].

Beyond model training and testing, this project

emphasizes the importance of real-time integration

and deployment. The system architecture enables

real-time or near real-time anomaly detection by

allowing users to periodically upload network traffic

logs for analysis.The system incorporates user

authentication mechanisms to restrict access and

ensure that only verified users can interact with the

platform.The backend infrastructure leverages

Python’s joblib library for fast model loading and

pandas for efficient data handling and

preprocessing.The user interface is built with HTML,

CSS, and Bootstrap, providing a clean and user-

friendly design for easy interaction.Moreover, the

system supports advanced features such as

visualizing performance metrics (like confusion

matrices), tracking prediction history, and logging

suspicious activities.Its modular architecture

supports scalability, making it adaptable for future

enhancements such as integrating deep learning

techniques like LSTM or Autoencoders [11],

implementing real-time traffic analysis tools like

Scapy, and deploying the system in containers via

Docker to enhance maintainability and portability.

In conclusion, this study offers an integrated

approach that connects machine learning

techniques with real-world applications in

cybersecurity. The proposed ML-based NIDS system

not only enhances the detection of known and

unknown attacks but also serves as a robust platform

for further academic and industrial research. By

combining intelligent analytics with real-time

usability, this system provides a step forward in the

development of modern, data-driven cybersecurity

tools tailored for dynamic network environments [6],

[4].

 Tejashree H Y, International Journal of Science, Engineering and Technology,

 2025, 13:5

II. LITERATURE REVIEW

Intrusion detection research has advanced

considerably, transitioning from fixed signature-

based methods to more adaptive and intelligent

techniques powered by machine learning. Early

systems typically employed statistical anomaly

detection or expert-defined rules.Although these

techniques offered a certain level of

effectiveness,These approaches frequently resulted

in numerous false alarms and lacked the flexibility to

effectively respond to emerging or evolving cyber

threats [2], [5].

K-Nearest Neighbors (KNN) is one of the earliest

machine learning classifiers applied in the field of

intrusion detection. Its simplicity lies in comparing

new data to nearby known instances, which makes it

well-suited for identifying intrusions that share

similarities with previously observed patterns.

However, KNN can be computationally intensive

during prediction, which can hinder its suitability for

real- time applications [6].

Random Forest is a robust ensemble learning

method that aggregates the outcomes of several

decision trees to enhance predictive accuracy. It is

particularly effective in managing complex and noisy

data, making it suitable for intrusion detection

scenarios. The model naturally performs feature

selection and is less prone to overfitting, which

contributes to its reliability in identifying threats like

Denial of Service (DoS) and probe attacks while

maintaining a low false positive rate [6], [7].

Logistic Regression, a classical statistical model,

remains popular due to its simplicity, efficiency, and

clear interpretability. It often serves as a baseline

when benchmarking more complex models in

network intrusion detection. The model’s

transparent decision boundaries help when

understanding and explaining predictions is

important [5], [7].

The introduction of the NSL-KDD dataset by

Tavallaee et al. [1] marked a milestone in IDS

research by resolving issues related to redundant

records and imbalanced classes present in the

original KDD Cup 99 dataset.This improved dataset

offers a more practical benchmark for assessing

machine learning models in real-world scenarios.

Furthermore, extensive reviews, such as the one by

Garcia- Teodoro et al. [2], provide valuable insights

into the evolution and effectiveness of intrusion

detection techniques.have highlighted the

challenges in anomaly- based IDS and

recommended hybrid approaches to combine the

strengths of signature and anomaly

detection.Expanding upon previous research, this

study develops and evaluates KNN, Random Forest,

and Logistic Regression models within a deployable

web-based intrusion detection system, aiming to

close the gap between academic research and real-

world cybersecurity implementation.

III. METHODOLOGY

To design a robust Network Intrusion Detection

System (NIDS), the project followed a systematic

methodology including data acquisition,

preprocessing, model development, evaluation, and

deployment. These steps were essential to ensure

that the system could accurately detect various types

of network attacks and generalize to real- world

scenarios [1], [3].

Dataset Description

This research utilizes the NSL-KDD dataset, an

enhanced alternative to the original KDD Cup 99

dataset, which addresses major limitations such as

data duplication and skewed class distribution. Due

to these improvements, it serves as a more reliable

standard for assessing intrusion detection systems.

The dataset includes labeled samples that reflect

both benign traffic and four key attack categories:

Denial of Service (DoS), Probe, User to Root (U2R),

and Remote to Local (R2L). Each record consists of

41 features, covering a mix of numerical, categorical,

and discrete attributes such as protocol type, service

type, connection status flags, and byte-level statistics

for source and destination [1], [4].3.2 Data

Preprocessing.

Before training, the data underwent several

preprocessing steps:

 Tejashree H Y, International Journal of Science, Engineering and Technology,

 2025, 13:5

 Data Cleaning: Although mostly clean, the

dataset was checked for missing or invalid

entries, which were handled appropriately to

avoid compromising model performance [1].

 Label Encoding: To make them compatible with

machine learning algorithms, categorical

attributes like protocol type, service, and flag

were converted into numerical format using

label encoding [3].

 Feature Scaling:Numerical attributes were scaled

 using the Min-Max normalization technique to

standardize their values within the range of 0 to

1, facilitating faster and more stable training [3].

 Attack Label Grouping: To simplify classification,

detailed attack types were mapped to their

broader categories (DoS, Probe, U2R, R2L), while

maintaining “normal” as a separate class [1].

Addressing Class Imbalance

The dataset exhibits imbalance, with fewer samples

representing rare attacks such as U2R and R2L

compared to the abundant normal traffic. To

mitigate this:

 To preserve the original class distribution within

the dataset, stratified sampling was employed

during the train-test split process [3].

 While more advanced techniques like SMOTE

(Synthetic Minority Over-sampling Technique)

were taken into account, this study opted for

traditional oversampling due to its simplicity and

ease of interpretation [8].

Model Selection and Implementation

Three supervised machine learning algorithms were

developed and tested using the scikit-learn library in

Python:

 Logistic Regression (LR): A linear, interpretable

model serving as a baseline classifier [5].

 K-Nearest Neighbors (KNN): An instance-based

method that classifies samples based on nearest

neighbors, useful for complex decision

boundaries [6].

 Random Forest (RF): An ensemble of decision

trees that combines predictions to reduce

overfitting and improve accuracy, especially

suited for high- dimensional data [7].

Hyperparameter Tuning

To optimize model performance, Grid Search

combined with 5-fold Cross-Validation was

employed, exploring parameters such as:

 For Logistic Regression: regularization strength

and solver algorithm [5].

 For KNN: number of neighbors, distance metrics,

and weighting schemes [6].

 For Random Forest: number of trees, tree depth,

and minimum samples per split [7].

Evaluation Metrics

Models were evaluated on:

 Accuracy, measuring overall correct

classification rate [3].

 Precision, reflecting correctness of positive

predictions [3].

 Recall (sensitivity), indicating ability to detect

actual attacks [3].

 F1-score, which represents the harmonic

average of precision and recall, is particularly

valuable when dealing with datasets that have

class imbalance.

 Confusion matrices, to analyze class-wise

performance and common misclassifications [3].

Random Forest demonstrated superior results across

all metrics, showing robustness and high sensitivity

to various attack types. KNN showed competitive

accuracy but slower inference, while Logistic

Regression, despite its speed and simplicity, was less

effective in capturing complex attack patterns [5], [6],

[7].

Dataset Description

The performance of a machine learning-powered

Intrusion Detection System (IDS) largely depends on

the quality and suitability of the dataset employed

for training and testing the models. In this work, the

NSL-KDD dataset is used, which is a well-established

benchmark in the domain of network intrusion

detection [1], [4].

Overview of NSL-KDD

The NSL-KDD dataset is an enhanced version of the

original KDD Cup 1999 dataset, developed to

overcome its known limitations, specifically designed

to overcome major shortcomings present in the

initial version [1]:

 Tejashree H Y, International Journal of Science, Engineering and Technology,

 2025, 13:5

 Redundancy Reduction: The initial KDD’99

dataset included a significant number of

repeated entries,which could bias the learning

process and evaluation results. NSL-KDD

removes these duplicates to provide a more

balanced training and testing environment [1].

 Balanced Class Distribution: The dataset corrects

for the uneven representation of attack types

seen in KDD’99, where some attacks were

overrepresented and others underrepresented.

This adjustment helps improve the learning

capability for less frequent but significant attack

categories [1].

By eliminating redundancies and balancing class

frequencies, NSL-KDD offers a more realistic and

reliable benchmark for intrusion detection research

[1], [4].

Classes of Network Activity

Each record in NSL-KDD is labeled either as “normal”

network traffic or as an attack, with attack instances

grouped into four main categories [1]:

 (DoS):These attacks target system resources with

the intent of exhausting them, thereby

preventing access for legitimate users. Examples

include smurf, neptune, and back attacks.

 Probe: Surveillance or reconnaissance attacks

that scan the network for vulnerabilities or open

ports. Common examples are satan and nmap.

 Remote to Local (R2L):This type of attack

involves an external attacker trying to obtain

unauthorized access to a system from a remote

location. Common examples are warezclient and

guess_passwd.

 User to Root (U2R): These attacks involve a user

with restricted local access attempting to elevate

their privileges to gain root or superuser control.

Examples include buffer_overflow and rootkit.

 This classification supports both binary

classification tasks (normal vs. attack) and

multiclass classification involving the different

attack types [1].

Feature Set

Each connection record in the dataset is described

by 41 features, which can be grouped as follows [1],

[4]:

 Basic Features:These features are extracted from

packet headers without analyzing the payload

and include attributes like duration, protocol

type, and source bytes. These features provide

general information about the connection.

 Content Features: Extracted by examining the

payload contents of packets, these features

detect suspicious activity like the number of

failed login attempts (e.g., num_failed_logins,

hot, logged_in).

 Traffic Features: Calculated using statistics over

a sliding window of connections related to the

same host or service, helping identify patterns of

frequent or unusual traffic (e.g., count, srv_count,

dst_host_count).

Features include both numeric and categorical data;

categorical features require preprocessing (e.g., label

encoding) before use in machine learning models

[3].

Dataset Partitions

The NSL-KDD dataset is divided into two main parts

for evaluation purposes [1]:

 KDDTrain+: This subset is used for training

models and contains a balanced mix of normal

traffic and various attack samples.

 KDDTest+: The test subset contains attack types

that are absent from the training data, allowing

assessment of the model’s capability to identify

previously unseen or zero-day threats.

Such partitioning reflects real-world scenarios where

IDS must effectively recognize both known and

previously unseen threats [1].

Evaluation Measures

To evaluate the performance of the proposed

machine learning-driven Network Intrusion

Detection System (NIDS),we utilized several standard

classification metrics. These metrics help assess not

only the overall effectiveness of the models but also

their capability to accurately identify and distinguish

between different types of network attacks [4][6].

 Tejashree H Y, International Journal of Science, Engineering and Technology,

 2025, 13:5

Accuracy

Accuracy refers to the proportion of total predictions

the model correctly classifies, both for normal and

attack categories. It is calculated as:

Accuracy is calculated using the formula:

Accuracy = (True Positives + True Negatives) / (True

Positives + True Negatives + False Positives + False

Negatives)

where:

TP = True Positives, TN = True Negatives, FP = False

Positives,

FN = False Negatives.. While accuracy offers an

overall view of a model’s performance, it may not be

reliable when dealing with imbalanced datasets, as

the model might favor the dominant class in its

predictions [1][2].

Precision

Precision indicates the proportion of alerts classified

as attacks that were actually threats. Within the

scope of a NIDS,it indicates how effectively the

system reduces incorrect classifications of normal

traffic as attacks, it indicates how many of the

flagged attacks were actual intrusions:

Precision = TP / (TP + FP)

High precision is crucial in real-time detection

systems to avoid false alerts that may overwhelm

security teams [4].

Recall (Sensitivity)

Recall evaluates the model's ability to detect actual

positives, i.e., how many real attacks were correctly

identified:

Recall = TP / (TP + FN)

A high recall value suggests that the model

successfully

identifies the majority of intrusion attempts,

reducing the likelihood of missing genuine threats

[4], [6].

F1-Score

The F1-score merges precision and recall into one

metric by computing their harmonic average. It is

especially effective in scenarios with imbalanced

classes:

F1-Score = 2 × (Precision × Recall) / (Precision +

Recall)

This measure is crucial when assessing how well a

model identifies less frequent attack types, as it

emphasizes minimizing both false alarms and missed

detections.

Confusion Matrix

The confusion matrix presents a detailed summary of

the model’s classification outcomes across all

categories— Normal, DoS, Probe, R2L, and U2R—

highlighting both correct predictions and instances

of misclassification for each class. It reveals how well

the classifier distinguishes between different

categories and helps pinpoint specific weaknesses.

For instance, a high number of false negatives in the

R2L class would indicate that the model struggles to

detect these subtle intrusions [3].

ROC Curve and AUC

Beyond the conventional evaluation metrics, this

study also utilized the Receiver Operating

Characteristic (ROC) curve along with the Area Under

the Curve (AUC) to assess model performance in

binary classification scenarios and its proficiency in

identifying diverse attack types. These graphical

tools help visualize the balance between true

positive and false positive rates at varying threshold

levels, where a higher AUC value signifies stronger

classification ability [5].

By utilizing these comprehensive evaluation metrics,

we were able to gain a robust understanding of the

effectiveness ofthe classification models: Logistic

Regression, K-Nearest Neighbors (KNN), and

Random Forest. This informed our final model

selection and optimization strategies for

deployment in a real-time network monitoring

environment.

IV. ARCHITECTURE EXPLANATION

 Tejashree H Y, International Journal of Science, Engineering and Technology,

 2025, 13:5

Figure 1: Architecture Design of the Proposed

Network Intrusion Detection System (NIDS)

The proposed Machine Learning-based Network

Intrusion Detection System (NIDS) is structured

using a modular and layered architecture to ensure

scalability, maintainability, and real-time

responsiveness [1][4]. The system is divided into

three main components: the frontend interface, the

backend server, and the machine learning models.

Each component is designed to perform specific

tasks while seamlessly integrating with the others to

form a cohesive and efficient pipeline.

Frontend Interface

The frontend is developed using HTML, CSS, and

Django’s template engine. It serves as the primary

interaction point for users, providing a clean and

intuitive web interface. Users can upload network

traffic files (in CSV format), which may contain

records of normal behavior or various types of

attacks. The interface also provides feedback to users

by displaying the prediction results, enabling them

to understand whether the uploaded data points are

classified as normal or potentially malicious [6]. User

experience is enhanced through the use of simple

form validation and alert messages based on

prediction outcomes.

Backend Server

 The backend is built using Django, a high-level

Python framework known for its efficiency and

structured design. When a user uploads a file via

the frontend interface, the backend is

responsible for managing several essential

operations:

 Data Validation: Ensures that the uploaded file

adheres to the expected format and contains

valid records.

 Preprocessing: Applies transformations to the

input data, including encoding of categorical

variables,

 feature scaling, and alignment with the trained

model’s feature schema [2].

 Model Invocation: Based on user input or system

default, the backend loads the relevant machine

learning model and feeds it the preprocessed

data for prediction.

 Response Generation: After prediction, the

backend packages the results and sends them to

the frontend for display. These results can

include labels (e.g., Normal, DoS, R2L) and

associated confidence scores or probabilities.

This modular backend design promotes ease of

maintenance and enables future integration with

external APIs, real-time data streams, or

authentication systems for broader applications

[3][5].

Machine Learning Models

The machine learning models—Logistic Regression,

K- Nearest Neighbors (KNN), and Random Forest—

were pre- trained on the NSL-KDD dataset, an

enhanced variant of the original KDD’99 dataset,

which eliminates redundancy and addresses inherent

class imbalance issues [1], [2]. Each model is

serialized using Joblib, a Python utility for saving

Python objects efficiently. This allows the system to

load models dynamically during runtime without

retraining.The system allows either automated or

user-defined model selection, making it possible to

perform comparative analysis of prediction

results.During inference, the selected model

processes the incoming data and classifies each

record into categories such as Normal,Denial of

Service (DoS), Probe, Remote to Local (R2L), and User

to Root (U2R) attack types.The modularity of this

setup ensures that additional models or updates to

existing models can be integrated with minimal

changes to the backend logic [6].

V. EXPERIMENTAL RESULTS AND

ANALYSIS

To assess the effectiveness of the proposed Network

Intrusion Detection System (NIDS), a series of

detailed experiments were conducted using the NSL-

KDD dataset— an established benchmark in the field

of intrusion detection [1], [4]. The system was

developed and evaluated using three different

classification algorithms: Logistic Regression (LR), K-

Nearest Neighbors (KNN), and Random Forest (RF),

allowing for a comparative performance analysis.

 Tejashree H Y, International Journal of Science, Engineering and Technology,

 2025, 13:5

Model Evaluation

Out of the three classification models, Random

Forest achieved the best results across all evaluation

criteria such as accuracy, precision, recall, and F1-

score. A summary of these results is presented in

Table 1.provides a summary of the per-class

classification metrics for selected classes, including

both frequent and minority attack types.

Table 1: Classification Report (Representative Classes)

Class Label Precision Recall F1-

Score

Normal 0.96 0.98 0.97

Neptune 0.50 0.11 0.18

Portsweep 0.99 0.99 0.99

Guess_Password 1.00 1.00 1.00

Spy 1.00 0.75 0.86

Warezclient 0.97 0.99 0.98

Smurf 0.99 1.00 1.00

These results indicate that the system is highly

reliable in detecting common attacks, with some

drop in recall on underrepresented classes such as

neptune and spy. This is expected due to inherent

class imbalance in the NSL-KDD dataset [2][4].

Metric Comparison: LR vs KNN vs RF

The effectiveness of the three models is assessed

using the following evaluation metrics:

 Accuracy: Random Forest (99.8%) outperformed

KNN (99.4%) and Logistic Regression (99.3%) in

overall classification accuracy.

 Precision: Random Forest achieved the highest

precision (0.79), indicating fewer false positives

and better correctness in positive predictions

compared to KNN (0.73) and Logistic Regression

(0.66).

 Recall: With a recall of 0.74, Random Forest again

led the models, effectively capturing more true

positives than KNN (0.69) and Logistic

Regression (0.61).

 F1-Score: Random Forest achieved the highest

F1- score (0.76), balancing precision and recall

better than KNN (0.70) and Logistic Regression

(0.63), demonstrating stronger generalization

across classes.

Figure 2: Bar chart comparing Accuracy of LR,

KNN, RF

Figure 3: Precision, Recall, and F1-Score

Comparison Chart

Figure 2 and Figure 3 illustrate that Random Forest

is the most balanced and accurate classifier across all

evaluated metrics.

VI. CONCLUSION

 Tejashree H Y, International Journal of Science, Engineering and Technology,

 2025, 13:5

This paper presents a comprehensive approach to

designing, developing, and evaluating a robust

Machine Learning- based Network Intrusion

Detection System (NIDS). Utilizing the NSL-KDD

dataset [1], the study conducts a comparative

analysis of three commonly adopted classification

techniques: Logistic Regression, K-Nearest

Neighbors (KNN), and Random Forest.

Among these, the Random Forest algorithm

consistently achieved the best results across key

evaluation criteria, including accuracy, precision,

recall, and F1-score. The results highlight the

effectiveness of ensemble learning techniques [2] in

managing the challenges posed by complex and

imbalanced intrusion detection data. Beyond

algorithmic comparison, our key contribution lies in

the practical deployment of these models within a

real- time, web-based platform developed using

Django. The system offers a complete suite of

functionalities that reflect real-world security needs,

including user input-based detection, role-based

access control, real-time packet monitoring, and

dynamic dashboards for visualizing trends. It

incorporates advanced capabilities such as anomaly

scoring [3], protocol-specific model switching, IP

geolocation mapping [4], automatic retraining,

ensemble modeling, and integration with threat

intelligence APIs. These features not only improve

detection accuracy but also enhance operational

usability, scalability, and responsiveness to modern

attack vectors.

The platform is secured through role-based

authentication, and deployment is simplified using

Docker [5], making it portable and adaptable across

environments. The inclusion of real-time alerting

mechanisms, exportable reports, and an intuitive UI

with dark mode support ensures that the system is

not only technically effective but also user-friendly

and ready for enterprise adoption.

To improve the system in the future, deep learning

architectures such as Convolutional Neural Networks

(CNNs) and Long Short-Term Memory (LSTM)

networks can be incorporated to enhance detection

capabilities [6], implementing real-time traffic

capture and stream analysis, and scaling the

deployment using cloud-native tools like Kubernetes

[7]. Further integration with SIEM tools [8] and the

addition of online learning [9] for continual

improvement will further elevate the platform’s

capabilities.

In summary, this research delivers a practical,

intelligent, and extensible solution for intrusion

detection by bridging machine learning theory with

real-world cybersecurity applications, and it sets a

strong foundation for future innovations in proactive

threat mitigation.

REFERENCES

1. Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A.

A. (2009). A detailed analysis of the KDD CUP 99

data set. 2009 IEEE Symposium on

Computational Intelligence for Security and

Defense Applications, 1–6.

2. Breiman, L. (2001). Random forests. Machine

Learning, 45(1), 5–32.

3. Chandola, V., Banerjee, A., & Kumar, V. (2009).

Anomaly detection: A survey. ACM Computing

Surveys (CSUR), 41(3), 1–58.

4. MaxMind Inc. (2024). GeoIP2 Databases.

[Online]. Available:

https://dev.maxmind.com/geoip

5. Merkel, D. (2014). Docker: Lightweight Linux

containers for consistent development and

deployment. Linux Journal, 2014(239), 2.

6. Kim, Y. (2014). Convolutional neural networks for

sentence classification. Proceedings of the 2014

Conference on Empirical Methods in Natural

Language Processing (EMNLP), 1746–1751.

7. Hightower, K., Burns, B., & Beda, J. (2019).

Kubernetes: Up and Running (2nd ed.). O'Reilly

Media.

8. Scarfone, K., & Mell, P. (2007). Guide to intrusion

detection and prevention systems (IDPS). NIST

Special Publication 800-94.

9. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., &

Bouchachia, A. (2014). A survey on concept drift

adaptation. ACM Computing Surveys (CSUR),

46(4), 1–37.

