
Tejashree H Y, 2025, 15:5 

ISSN (Online): 2348-4098 

ISSN (Print): 2395-4752 

 

 

 

© 2025 Tejashree H Y, This is an Open Access article distributed under the terms of the Creative Commons Attribution License 

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided 

the original work is properly credited. 

International Journal of Science, 
Engineering and Technology 

An Open Access Journal 

Network Intrusion Detection Using Machine 

Learning: A Comparative Study of Logistic 

Regression, KNN, and Random Forest 
1Tejashree H Y, 2Komala R 

 1Department of MCA, India  

²Assistant Professor, Department of MCA, India 

 

I. INTRODUCTION 
 

In today’s digital age, ensuring cybersecurity has 

become a critical priority for individuals, enterprises, 

and governmental bodies. As networks expand in 

size, complexity, and interconnectedness, they 

simultaneously increase the surface area for 

potential cyberattacks [1]. Cybercriminals exploit 

vulnerabilities using a variety of tactics such as 

Distributed Denial-of-Service (DDoS) attacks, 

unauthorized access, privilege escalation, probing, 

and data exfiltration [9].As a result, traditional 

defenses like firewalls and antivirus software are 

insufficient on their own.In today’s evolving threat 

landscape, there is a critical need for smart and  

 

adaptive systems capable of continuously 

monitoring, identifying, and reacting to intrusions in 

real time [4], [9]. 

  

An Intrusion Detection System (IDS) serves as a vital 

tool for recognizing unauthorized or suspicious 

activities by monitoring events within a network or 

computing environment [5].Intrusion Detection 

Systems (IDSs) are typically divided into two primary 

categories: those that rely on known attack 

signatures and those that detect unusual or 

anomalous behavior. Signature-based IDS, such as 

Snort, rely on known pattern+s or "signatures" of 

attacks, making them effective against previously 

seen threats.However, these systems struggle to 
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detect zero-day threats or even slightly altered 

versions of existing attacks.Furthermore, they oft en 

require constant updates to their signature 

database, adding to operational overhead [5]. 

 

Machine Learning (ML) techniques have emerged as 

an effective and scalable alternative to overcome the 

limitations of traditional signature-based intrusion 

detection systems [4], [6]. By learning from historical 

network activity, ML-driven IDSs can recognize novel 

attack behaviors through the detection of anomalies 

or deviations from typical traffic patterns [6]. These 

systems are well- suited for analyzing substantial 

volumes of network data, identifying relevant 

patterns, and constructing predictive models that 

perform reliably in real-world scenarios [7]. 

 

This study aims to design and develop a Network 

Intrusion Detection System (NIDS) using supervised 

machine learning techniques to detect and 

categorize different types of network intrusions. The 

fundamental objective is to incorporate intelligent 

models into the detection process ML models into a 

user-friendly, interactive web platform using the 

Django framework. This platform enables users to 

upload network traffic data (in CSV format) and 

receive immediate feedback on whether the traffic is 

malicious or benign, along with performance metrics 

of the ML classifiers. 

 

The system utilizes the NSL-KDD dataset, an 

enhanced and more balanced iteration of the widely 

recognized KDD Cup 99 dataset [4]. The NSL-KDD 

dataset overcomes several limitations of the original 

KDD dataset, including duplicate entries and uneven 

class distribution, which enhances its reliability for 

practical model training and assessment [4].The 

dataset comprises 41 features extracted from 

network traffic and encompasses various attack 

types such as Denial of Service (DoS), Probe, Remote 

to Local (R2L), 

  

and User to Root (U2R), in addition to legitimate or 

normal network traffic. This study utilizes three 

widely recognized supervised learning methods—

Random Forest, K-Nearest Neighbors (KNN), and 

Logistic Regression—were selected for 

implementation and comparison in this project [6], 

[7], [5].These algorithms were chosen due to their 

proven capability in solving classification tasks and 

their widespread use in anomaly detection research. 

All three algorithms were trained and assessed based 

on key performance indicators such as accuracy, 

precision, recall, and F1-score to enable a thorough 

comparison. Among them, the Random Forest 

model delivered the highest performance, achieving 

an impressive 99.79% accuracy and surpassing the 

others by a notable margin [6]. 

 

Beyond model training and testing, this project 

emphasizes the importance of real-time integration 

and deployment. The system architecture enables 

real-time or near real-time anomaly detection by 

allowing users to periodically upload network traffic 

logs for analysis.The system incorporates user 

authentication mechanisms to restrict access and 

ensure that only verified users can interact with the 

platform.The backend infrastructure leverages 

Python’s joblib library for fast model loading and 

pandas for efficient data handling and 

preprocessing.The user interface is built with HTML, 

CSS, and Bootstrap, providing a clean and user-

friendly design for easy interaction.Moreover, the 

system supports advanced features such as 

visualizing performance metrics (like confusion 

matrices), tracking prediction history, and logging 

suspicious activities.Its modular architecture 

supports scalability, making it adaptable for future 

enhancements such as integrating deep learning 

techniques like LSTM or Autoencoders [11], 

implementing real-time traffic analysis tools like 

Scapy, and deploying the system in containers via 

Docker to enhance maintainability and portability. 

 

In conclusion, this study offers an integrated 

approach that connects machine learning 

techniques with real-world applications in 

cybersecurity. The proposed ML-based NIDS system 

not only enhances the detection of known and 

unknown attacks but also serves as a robust platform 

for further academic and industrial research. By 

combining intelligent analytics with real-time 

usability, this system provides a step forward in the 

development of modern, data-driven cybersecurity 

tools tailored for dynamic network environments [6], 

[4]. 
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II. LITERATURE REVIEW 

 
Intrusion detection research has advanced 

considerably, transitioning from fixed signature-

based methods to more adaptive and intelligent 

techniques powered by machine learning. Early 

systems typically employed statistical anomaly 

detection or expert-defined rules.Although these 

techniques offered a certain level of 

effectiveness,These approaches frequently resulted 

in numerous false alarms and lacked the flexibility to 

effectively respond to emerging or evolving cyber 

threats [2], [5]. 

 

K-Nearest Neighbors (KNN) is one of the earliest 

machine learning classifiers applied in the field of 

intrusion detection. Its simplicity lies in comparing 

new data to nearby known instances, which makes it 

well-suited for identifying intrusions that share 

similarities with previously observed patterns. 

However, KNN can be computationally intensive 

during prediction, which can hinder its suitability for 

real- time applications [6]. 

 

Random Forest is a robust ensemble learning 

method that aggregates the outcomes of several 

decision trees to enhance predictive accuracy. It is 

particularly effective in managing complex and noisy 

data, making it suitable for intrusion detection 

scenarios. The model naturally performs feature 

selection and is less prone to overfitting, which 

contributes to its reliability in identifying threats like 

Denial of Service (DoS) and probe attacks while 

maintaining a low false positive rate [6], [7]. 

 

Logistic Regression, a classical statistical model, 

remains popular due to its simplicity, efficiency, and 

clear interpretability. It often serves as a baseline 

when benchmarking more complex models in 

network intrusion detection. The model’s 

transparent decision boundaries help when 

understanding and explaining predictions is 

important [5], [7]. 

 

The introduction of the NSL-KDD dataset by 

Tavallaee et al. [1] marked a milestone in IDS 

research by resolving issues related to redundant 

records and imbalanced classes present in the 

original KDD Cup 99 dataset.This improved dataset 

offers a more practical benchmark for assessing 

machine learning models in real-world scenarios. 

Furthermore, extensive reviews, such as the one by 

Garcia- Teodoro et al. [2], provide valuable insights 

into the evolution and effectiveness of intrusion 

detection techniques.have highlighted the 

challenges in anomaly- based IDS and 

recommended hybrid approaches to combine the 

strengths of signature and anomaly 

detection.Expanding upon previous research, this 

study develops and evaluates KNN, Random Forest, 

and Logistic Regression models within a deployable 

web-based intrusion detection system, aiming to 

close the gap between academic research and real-

world cybersecurity implementation. 

 

III. METHODOLOGY 
 

To design a robust Network Intrusion Detection 

System (NIDS), the project followed a systematic 

methodology including data acquisition, 

preprocessing, model development, evaluation, and 

deployment. These steps were essential to ensure 

that the system could accurately detect various types 

of network attacks and generalize to real- world 

scenarios [1], [3]. 

 

Dataset Description 

This research utilizes the NSL-KDD dataset, an 

enhanced alternative to the original KDD Cup 99 

dataset, which addresses major limitations such as 

data duplication and skewed class distribution. Due 

to these improvements, it serves as a more reliable 

standard for assessing intrusion detection systems. 

The dataset includes labeled samples that reflect 

both benign traffic and four key attack categories: 

Denial of Service (DoS), Probe, User to Root (U2R), 

and Remote to Local (R2L). Each record consists of 

41 features, covering a mix of numerical, categorical, 

and discrete attributes such as protocol type, service 

type, connection status flags, and byte-level statistics 

for source and destination [1], [4].3.2 Data 

Preprocessing. 

 

Before training, the data underwent several 

preprocessing steps: 
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 Data Cleaning: Although mostly clean, the 

dataset was checked for missing or invalid 

entries, which were handled appropriately to 

avoid compromising model performance [1]. 

 Label Encoding: To make them compatible with 

machine learning algorithms, categorical 

attributes like protocol type, service, and flag 

were converted into numerical format using 

label encoding [3]. 

 Feature Scaling:Numerical attributes were scaled 

 using the Min-Max normalization technique to 

standardize their values within the range of 0 to 

1, facilitating faster and more stable training [3]. 

 Attack Label Grouping: To simplify classification, 

detailed attack types were mapped to their 

broader categories (DoS, Probe, U2R, R2L), while 

maintaining “normal” as a separate class [1]. 

  

Addressing Class Imbalance 

The dataset exhibits imbalance, with fewer samples 

representing rare attacks such as U2R and R2L 

compared to the abundant normal traffic. To 

mitigate this: 

 To preserve the original class distribution within 

the dataset, stratified sampling was employed 

during the train-test split process [3]. 

 While more advanced techniques like SMOTE 

(Synthetic Minority Over-sampling Technique) 

were taken into account, this study opted for 

traditional oversampling due to its simplicity and 

ease of interpretation [8]. 

 

Model Selection and Implementation 

Three supervised machine learning algorithms were 

developed and tested using the scikit-learn library in 

Python: 

 Logistic Regression (LR): A linear, interpretable 

model serving as a baseline classifier [5]. 

 K-Nearest Neighbors (KNN): An instance-based 

method that classifies samples based on nearest 

neighbors, useful for complex decision 

boundaries [6]. 

 Random Forest (RF): An ensemble of decision 

trees that combines predictions to reduce 

overfitting and improve accuracy, especially 

suited for high- dimensional data [7]. 

 

Hyperparameter Tuning 

To optimize model performance, Grid Search 

combined with 5-fold Cross-Validation was 

employed, exploring parameters such as: 

 For Logistic Regression: regularization strength 

and solver algorithm [5]. 

 For KNN: number of neighbors, distance metrics, 

and weighting schemes [6]. 

 For Random Forest: number of trees, tree depth, 

and minimum samples per split [7]. 

 

Evaluation Metrics 

Models were evaluated on: 

 Accuracy, measuring overall correct 

classification rate [3]. 

 Precision, reflecting correctness of positive 

predictions [3]. 

 Recall (sensitivity), indicating ability to detect 

actual attacks [3]. 

 F1-score, which represents the harmonic 

average of precision and recall, is particularly 

valuable when dealing with datasets that have 

class imbalance. 

 Confusion matrices, to analyze class-wise 

performance and common misclassifications [3]. 

 

Random Forest demonstrated superior results across 

all metrics, showing robustness and high sensitivity 

to various attack types. KNN showed competitive 

accuracy but slower inference, while Logistic 

Regression, despite its speed and simplicity, was less 

effective in capturing complex attack patterns [5], [6], 

[7]. 

 

Dataset Description 

The performance of a machine learning-powered 

Intrusion Detection System (IDS) largely depends on 

the quality and suitability of the dataset employed 

for training and testing the models. In this work, the 

NSL-KDD dataset is used, which is a well-established 

benchmark in the domain of network intrusion 

detection [1], [4]. 

Overview of NSL-KDD 

The NSL-KDD dataset is an enhanced version of the 

original KDD Cup 1999 dataset, developed to 

overcome its known limitations, specifically designed 

to overcome major shortcomings present in the 

initial version [1]: 
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 Redundancy Reduction: The initial KDD’99 

dataset included a significant number of 

repeated entries,which could bias the learning 

process and evaluation results. NSL-KDD 

removes these duplicates to provide a more 

balanced training and testing environment [1]. 

 Balanced Class Distribution: The dataset corrects 

for the uneven representation of attack types 

seen in KDD’99, where some attacks were 

overrepresented and others underrepresented. 

This adjustment helps improve the learning 

capability for less frequent but significant attack 

categories [1]. 

 

By eliminating redundancies and balancing class 

frequencies, NSL-KDD offers a more realistic and 

reliable benchmark for intrusion detection research 

[1], [4]. 

 

Classes of Network Activity 

Each record in NSL-KDD is labeled either as “normal” 

network traffic or as an attack, with attack instances 

grouped into four main categories [1]: 

  

 (DoS):These attacks target system resources with 

the intent of exhausting them, thereby 

preventing access for legitimate users. Examples 

include smurf, neptune, and back attacks. 

 Probe: Surveillance or reconnaissance attacks 

that scan the network for vulnerabilities or open 

ports. Common examples are satan and nmap. 

 Remote to Local (R2L):This type of attack 

involves an external attacker trying to obtain 

unauthorized access to a system from a remote 

location. Common examples are warezclient and 

guess_passwd. 

 User to Root (U2R): These attacks involve a user 

with restricted local access attempting to elevate 

their privileges to gain root or superuser control. 

Examples include buffer_overflow and rootkit. 

 This classification supports both binary 

classification tasks (normal vs. attack) and 

multiclass classification involving the different 

attack types [1]. 

 

Feature Set 

Each connection record in the dataset is described 

by 41 features, which can be grouped as follows [1], 

[4]: 

 Basic Features:These features are extracted from 

packet headers without analyzing the payload 

and include attributes like duration, protocol 

type, and source bytes. These features provide 

general information about the connection. 

 Content Features: Extracted by examining the 

payload contents of packets, these features 

detect suspicious activity like the number of 

failed login attempts (e.g., num_failed_logins, 

hot, logged_in). 

 Traffic Features: Calculated using statistics over 

a sliding window of connections related to the 

same host or service, helping identify patterns of 

frequent or unusual traffic (e.g., count, srv_count, 

dst_host_count). 

 

Features include both numeric and categorical data; 

categorical features require preprocessing (e.g., label 

encoding) before use in machine learning models 

[3]. 

 

Dataset Partitions 

The NSL-KDD dataset is divided into two main parts 

for evaluation purposes [1]: 

 KDDTrain+: This subset is used for training 

models and contains a balanced mix of normal 

traffic and various attack samples. 

 KDDTest+: The test subset contains attack types 

that are absent from the training data, allowing 

assessment of the model’s capability to identify 

previously unseen or zero-day threats. 

 

Such partitioning reflects real-world scenarios where 

IDS must effectively recognize both known and 

previously unseen threats [1]. 

 

Evaluation Measures 

To evaluate the performance of the proposed 

machine learning-driven Network Intrusion 

Detection System (NIDS),we utilized several standard 

classification metrics. These metrics help assess not 

only the overall effectiveness of the models but also 

their capability to accurately identify and distinguish 

between different types of network attacks [4][6]. 
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Accuracy 

Accuracy refers to the proportion of total predictions 

the model correctly classifies, both for normal and 

attack categories. It is calculated as: 

Accuracy is calculated using the formula: 

Accuracy = (True Positives + True Negatives) / (True 

Positives + True Negatives + False Positives + False 

Negatives) 

where: 

TP = True Positives, TN = True Negatives, FP = False 

Positives, 

FN = False Negatives.. While accuracy offers an 

overall view of a model’s performance, it may not be 

reliable when dealing with imbalanced datasets, as 

the model might favor the dominant class in its 

predictions [1][2]. 

 

Precision 

Precision indicates the proportion of alerts classified 

as attacks that were actually threats. Within the 

scope of a NIDS,it indicates how effectively the 

system reduces incorrect classifications of normal 

traffic as attacks, it indicates how many of the 

flagged attacks were actual intrusions: 

Precision = TP / (TP + FP) 

High precision is crucial in real-time detection 

systems to avoid false alerts that may overwhelm 

security teams [4]. 

 

Recall (Sensitivity) 

Recall evaluates the model's ability to detect actual 

positives, i.e., how many real attacks were correctly 

identified: 

Recall = TP / (TP + FN) 

A high recall value suggests that the model 

successfully 

  

identifies the majority of intrusion attempts, 

reducing the likelihood of missing genuine threats 

[4], [6]. 

 

F1-Score 

The F1-score merges precision and recall into one 

metric by computing their harmonic average. It is 

especially effective in scenarios with imbalanced 

classes: 

F1-Score = 2 × (Precision × Recall) / (Precision + 

Recall) 

This measure is crucial when assessing how well a 

model identifies less frequent attack types, as it 

emphasizes minimizing both false alarms and missed 

detections. 

 

Confusion Matrix 

The confusion matrix presents a detailed summary of 

the model’s classification outcomes across all 

categories— Normal, DoS, Probe, R2L, and U2R—

highlighting both correct predictions and instances 

of misclassification for each class. It reveals how well 

the classifier distinguishes between different 

categories and helps pinpoint specific weaknesses. 

For instance, a high number of false negatives in the 

R2L class would indicate that the model struggles to 

detect these subtle intrusions [3]. 

 

ROC Curve and AUC 

Beyond the conventional evaluation metrics, this 

study also utilized the Receiver Operating 

Characteristic (ROC) curve along with the Area Under 

the Curve (AUC) to assess model performance in 

binary classification scenarios and its proficiency in 

identifying diverse attack types. These graphical 

tools help visualize the balance between true 

positive and false positive rates at varying threshold 

levels, where a higher AUC value signifies stronger 

classification ability [5]. 

 

By utilizing these comprehensive evaluation metrics, 

we were able to gain a robust understanding of the 

effectiveness ofthe classification models: Logistic 

Regression, K-Nearest Neighbors (KNN), and 

Random Forest. This informed our final model 

selection and optimization strategies for 

deployment in a real-time network monitoring 

environment. 

IV. ARCHITECTURE EXPLANATION 
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Figure 1: Architecture Design of the Proposed 

Network Intrusion Detection System (NIDS) 

 

The proposed Machine Learning-based Network 

Intrusion Detection System (NIDS) is structured 

using a modular and layered architecture to ensure 

scalability, maintainability, and real-time 

responsiveness [1][4]. The system is divided into 

three main components: the frontend interface, the 

backend server, and the machine learning models. 

Each component is designed to perform specific 

tasks while seamlessly integrating with the others to 

form a cohesive and efficient pipeline. 

 

Frontend Interface 

The frontend is developed using HTML, CSS, and 

Django’s template engine. It serves as the primary 

interaction point for users, providing a clean and 

intuitive web interface. Users can upload network 

traffic files (in CSV format), which may contain 

records of normal behavior or various types of 

attacks. The interface also provides feedback to users 

by displaying the prediction results, enabling them 

to understand whether the uploaded data points are 

classified as normal or potentially malicious [6]. User 

experience is enhanced through the use of simple 

form validation and alert messages based on 

prediction outcomes. 

 

Backend Server 

 The backend is built using Django, a high-level 

Python framework known for its efficiency and 

structured design. When a user uploads a file via 

the frontend interface, the backend is 

responsible for managing several essential 

operations: 

 Data Validation: Ensures that the uploaded file 

adheres to the expected format and contains 

valid records. 

 Preprocessing: Applies transformations to the 

input data, including encoding of categorical 

variables, 

 feature scaling, and alignment with the trained 

model’s feature schema [2]. 

 Model Invocation: Based on user input or system 

default, the backend loads the relevant machine 

learning model and feeds it the preprocessed 

data for prediction. 

 Response Generation: After prediction, the 

backend packages the results and sends them to 

the frontend for display. These results can 

include labels (e.g., Normal, DoS, R2L) and 

associated confidence scores or probabilities. 

 

This modular backend design promotes ease of 

maintenance and enables future integration with 

external APIs, real-time data streams, or 

authentication systems for broader applications 

[3][5]. 

 

Machine Learning Models 

The machine learning models—Logistic Regression, 

K- Nearest Neighbors (KNN), and Random Forest—

were pre- trained on the NSL-KDD dataset, an 

enhanced variant of the original KDD’99 dataset, 

which eliminates redundancy and addresses inherent 

class imbalance issues [1], [2]. Each model is 

serialized using Joblib, a Python utility for saving 

Python objects efficiently. This allows the system to 

load models dynamically during runtime without 

retraining.The system allows either automated or 

user-defined model selection, making it possible to 

perform comparative analysis of prediction 

results.During inference, the selected model 

processes the incoming data and classifies each 

record into categories such as Normal,Denial of 

Service (DoS), Probe, Remote to Local (R2L), and User 

to Root (U2R) attack types.The modularity of this 

setup ensures that additional models or updates to 

existing models can be integrated with minimal 

changes to the backend logic [6]. 

 

 

 

V. EXPERIMENTAL RESULTS AND 

ANALYSIS 
 

To assess the effectiveness of the proposed Network 

Intrusion Detection System (NIDS), a series of 

detailed experiments were conducted using the NSL-

KDD dataset— an established benchmark in the field 

of intrusion detection [1], [4]. The system was 

developed and evaluated using three different 

classification algorithms: Logistic Regression (LR), K-

Nearest Neighbors (KNN), and Random Forest (RF), 

allowing for a comparative performance analysis. 
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Model Evaluation 

Out of the three classification models, Random 

Forest achieved the best results across all evaluation 

criteria such as accuracy, precision, recall, and F1-

score. A summary of these results is presented in 

Table 1.provides a summary of the per-class 

classification metrics for selected classes, including 

both frequent and minority attack types. 

 

Table 1: Classification Report (Representative Classes) 

Class Label Precision Recall F1-

Score 

Normal 0.96 0.98 0.97 

Neptune 0.50 0.11 0.18 

Portsweep 0.99 0.99 0.99 

Guess_Password 1.00 1.00 1.00 

Spy 1.00 0.75 0.86 

Warezclient 0.97 0.99 0.98 

Smurf 0.99 1.00 1.00 

These results indicate that the system is highly 

reliable in detecting common attacks, with some 

drop in recall on underrepresented classes such as 

neptune and spy. This is expected due to inherent 

class imbalance in the NSL-KDD dataset [2][4]. 

 

Metric Comparison: LR vs KNN vs RF 

The effectiveness of the three models is assessed 

using the following evaluation metrics: 

 

 Accuracy: Random Forest (99.8%) outperformed 

KNN (99.4%) and Logistic Regression (99.3%) in 

overall classification accuracy. 

 Precision: Random Forest achieved the highest 

precision (0.79), indicating fewer false positives 

and better correctness in positive predictions 

compared to KNN (0.73) and Logistic Regression 

(0.66). 

 Recall: With a recall of 0.74, Random Forest again 

led the models, effectively capturing more true 

positives than KNN (0.69) and Logistic 

Regression (0.61). 

 F1-Score: Random Forest achieved the highest 

F1- score (0.76), balancing precision and recall 

better than KNN (0.70) and Logistic Regression 

(0.63), demonstrating stronger generalization 

across classes. 

 

 
Figure 2: Bar chart comparing Accuracy of LR, 

KNN, RF 

 

 
Figure 3: Precision, Recall, and F1-Score 

Comparison Chart 

 

Figure 2 and Figure 3 illustrate that Random Forest 

is the most balanced and accurate classifier across all 

evaluated metrics. 

 

VI. CONCLUSION 
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This paper presents a comprehensive approach to 

designing, developing, and evaluating a robust 

Machine Learning- based Network Intrusion 

Detection System (NIDS). Utilizing the NSL-KDD 

dataset [1], the study conducts a comparative 

analysis of three commonly adopted classification 

techniques: Logistic Regression, K-Nearest 

Neighbors (KNN), and Random Forest.  

 

Among these, the Random Forest algorithm 

consistently achieved the best results across key 

evaluation criteria, including accuracy, precision, 

recall, and F1-score. The results highlight the 

effectiveness of ensemble learning techniques [2] in 

managing the challenges posed by complex and 

imbalanced intrusion detection data. Beyond 

algorithmic comparison, our key contribution lies in 

the practical deployment of these models within a 

real- time, web-based platform developed using 

Django. The system offers a complete suite of 

functionalities that reflect real-world security needs, 

including user input-based detection, role-based 

access control, real-time packet monitoring, and 

dynamic dashboards for visualizing trends. It 

incorporates advanced capabilities such as anomaly 

scoring [3], protocol-specific model switching, IP 

geolocation mapping [4], automatic retraining, 

ensemble modeling, and integration with threat 

intelligence APIs. These features not only improve 

detection accuracy but also enhance operational 

usability, scalability, and responsiveness to modern 

attack vectors. 

The platform is secured through role-based 

authentication, and deployment is simplified using 

Docker [5], making it portable and adaptable across 

environments. The inclusion of real-time alerting 

mechanisms, exportable reports, and an intuitive UI 

with dark mode support ensures that the system is 

not only technically effective but also user-friendly 

and ready for enterprise adoption. 

 

To improve the system in the future, deep learning 

architectures such as Convolutional Neural Networks 

(CNNs) and Long Short-Term Memory (LSTM) 

networks can be incorporated to enhance detection 

capabilities [6], implementing real-time traffic 

capture and stream analysis, and scaling the 

deployment using cloud-native tools like Kubernetes 

[7]. Further integration with SIEM tools [8] and the 

addition of online learning [9] for continual 

improvement will further elevate the platform’s 

capabilities. 

 

In summary, this research delivers a practical, 

intelligent, and extensible solution for intrusion 

detection by bridging machine learning theory with 

real-world cybersecurity applications, and it sets a 

strong foundation for future innovations in proactive 

threat mitigation. 
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