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I. INTRODUCTION 
 

Sensor data plays a central role in industrial systems 

to find system malfunctions before breakdowns and 

prevent operational interruptions. Real-life AI 

diagnostic systems experience sensor breakdowns 

that cause missing data problems which decrease 

their performance Sensor data plays a central role in 

industrial systems to find system malfunctions 

before breakdowns and prevent operational 

interruptions. Real-life AI diagnostic systems 

experience sensor breakdowns that cause missing 

data problems which decrease their performance [1]. 

When processing incomplete information traditional 

deep learning systems show reduced accuracy for 

fault detection and produce more faulty results. 

Operational systems need prompt fault detection 

since machine breakdowns at any time can cause 

major damage [2]. Supervised learning methods 

work best with existing techniques yet struggle when 

multiple industrial environments lack sufficient 

labeled data for training [3]. The difficulty of this 

work calls for creation of an advanced AI-based fault 

detection  

 

 

method that works well with all systems and protects 

user privacy.  

 

This study creates new deep learning processes to 

detect machine faults using incomplete sensor 

readings with self-supervised techniques and graph-

based methods alongside federated learning [4]. We 

use a Diffusion Model that restores missing industrial 

sensor readings with high quality to keep essential 

fault indicators intact. We combine GNN and 

Transformer networks to study sensor relationships 

better and recognize both short-term and long-term 

timing patterns in industrial data [5]. Our system 

uses UA-FL technology with decentralized model 

training to make sure data privacy across several 

industrial facilities. At the same time, it allows us to 

integrate BNNs for confidence estimation. Every 

plant facility can train the global model with their 

unique operations details without exposing private 

information [6].  

 

The system continuously updates itself during real-

time operations on edge devices to handle changing 

fault patterns [7]. The research contributions include:  

 Imputation performed with the Diffusion Model 

based ensures recovery of integrity sensor 
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readings while maintaining critical fault 

information for valid diagnostics. 

 For short term processing, MPT-GNN introduces 

TCN to enhance fault detection and Transformer 

and GNN for inter sensor connectivity. 

 A federated learning, BNN based for the 

uncertainty measurement, and edge device 

optimization and memory efficiency method is 

combined into UA-FL [8]. 

 

This research creates base knowledge that improves 

how artificial intelligence controls industrial 

monitoring systems and boosts production 

efficiency throughout manufacturing operations. 

Since the technique and related studies are 

presented in sections II and III, respectively, the work 

is structured as follows. Section IV presents the 

results, and Section V concludes the paper. 

 

II. LITERATURE REVIEW 

 
Industrial system operations now depend more on 

artificial intelligence to detect faults which drives 

better development of deep learning processes. 

Regular machine learning tools including SVMs and 

Random Forests help identify equipment faults in 

rotating machinery and industrial devices [9]. These 

methods need extensive work on data features but 

they find it hard to work well in different operating 

situations. Deep learning tools especially CNNs and 

LSTM networks help researchers automatically find 

fault information inside raw sensor information [10]. 

CNNs interpret the spatial changes in vibration data 

whereas LSTMs master temporal changes effectively. 

Even if they detect faults well these models produce 

incorrect results because they depend on having all 

sensor measurements without errors [11]. 

Researchers now use autoencoders to create missing 

sensor data before performing fault classification 

systems. Research shows that VAEs and GANs 

produce synthetic data points to enhance 

classification scores by up to 12% [12]. The models 

show unreliable results when used to handle 

industrial sensor connections due to their lack of 

spatial and temporal understanding [13]. GNNs 

provide a strong solution for understanding 

interrelationships between sensors by creating 

better data representations in systems that combine 

multiple sensing methods [14]. GNNs boost fault 

detection but their processing needs substantial 

power and requires new training when moving them 

to sector-specific settings. Sequence data from 

sensors requires Transformer networks because they 

help detect faults better [15]. Transformers excel with 

industrial data volumes but need too many 

resources to function in real-time edge devices. FL 

enables organizations to build joint models while 

protecting data privacy from multiple industrial sites 

[16]. FL systems do not usually measure prediction 

uncertainty which makes them unsafe for use in 

critical industrial settings.  

 

Experts need to build a single system that efficiently 

deals with missing data while handling both short-

term and long-term connections and sensor 

relationships while reporting real-time diagnosis 

status [17]. Our system MPT-GNN with Diffusion-

Based Imputation and UA-FL tackles industry 

challenges through advanced data treatment 

methods and AI distribution to improve fault 

detection precision and expandability.  

 

III. RESEARCH MECHANISM 

 
Our suggested analysis approach combines MPT-

GNN modeling with Diffusion-Based Imputation and 

UA-FL functions to detect industrial system faults 

effectively. Diffusion Models restore complete 

sensor readings effectively so the model can identify 

system features correctly. The model system 

combines TCNs Transformers and GNNs to learn and 

recognize short-term and long-term signal 

connections between sensors. UA-FL helps separate 

industrial sites for parallel learning and adds BNNs 

to track data uncertainty. The system runs on 

hardware edge devices with Continual Learning 

technology to update knowledge directly to provide 

instant feedback. Research shows the system 

performs better than other solutions and handles 

missing data well while handling many different 

plant setups effectively. Fig 1 shows the workflow of 

the proposed model. 
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 Fig1.Workflow of AI-driven Intelligent Fault 

Diagnosis framework 

 

Data Collection 

The SpectraQuest MFS collects 1951 sensor readings 

for the Machinery Fault Dataset. The data set 

features normal device operation plus five types of 

mechanical flaws [18]. The dataset records vibration 

performance data in high dimensions to help identify 

issues in rotating machines. Multiple types of 

mechanical faults enable AI systems to recognize 

and label issues they encounter in actual operational 

settings.  

 

Data Preprocessing 

Our advanced data processing and augmentation 

methods assist fault detection in industrial systems 

by transformation and improvement of data features 

plus missing data management and model stability 

enhancement. Dynamic Graph Construction turns 

sensor data into graphs to show sensor connections 

and creates better results for fault discovery. The 

new representation helps the model recognize true 

closeness values between sensors in large industrial 

setups. Our approach uses Diffusion Models in Data 

Imputation to perfectly restore sensor values that fail 

or experience damage. This approach keeps the fault 

detection details unaltered and maintains high 

accuracy in recognizing faults. Our model examines 

sensor signals across various frequency bands using 

Wavelet and Fourier Transform analysis so it can see 

both temporary and stable fault behavior. The model 

gains better ability to recognize between multiple 

faults and normal operations. The model uses Self-

Supervised Pretraining with MAE for time-series 

sensor data by masking input sections for the model 

to learn signal reconstruction. This self-training 

technique lets the model find fault patterns better 

even when it must work in many factory 

environments. Our data preparation steps and 

enhancement techniques build a strong base that 

helps the system effectively recognize faults while 

remaining reliable in all conditions. 

 

Multi-Path Transformer-Graph Network 

Through its complex design the MPT-GNN 

architecture uses several deep learning approaches 

to detect equipment faults with missing sensor data. 

TCNs recognize temporary linkages in vibration 

information by searching for abrupt elements in 

sensor readings which result from wheel 

unbalancing or part movement. Through 

Transformer technology the model tracks extended 

time connections necessary to spot slow changes in 

machinery components. GNN models learn how 

sensors work together by analyzing sensor 

connections thus helping the network identify fault 

patterns that show up in more than one signal. 

Furthermore, the Diffusion model-based feature 

reconstruction serves well as a built in imputation 

module that produces high quality missing sensor 

reading by estimating their probabilistic distribution. 

The hybrid technique improves both detectability 

performance and robustness to incomplete data.  

 

Hierarchical Multi-Task Learning 

Achieving this is thru the training of the proposed 

framework using H-MTL, that is, it's trained on 3 

interlinked tasks jointly: Fault Classification, Data 

Imputation, and Uncertainty Estimation. The main 

learning problem is to learn the types of fault at test 

time; the auxiliary imputation problem attempts to 

rebuild missing test time data. The joint learning 

using both labeled and unlabeled data leads to 

better diagnostic accuracy. BNNs are used to embed 

Uncertainty Estimation so as to quantify the model’s 

confidence in its predictions, in order to increase 

decision reliability. Among other things, this 

enhances model interpretability, and at the same 

time, it facilitates the identification of high 

confidence predictions for key fault scenarios. Before 

you start to format your paper, first write the content 

as a text file, save it, and then load it into the H-MTL 

paradigm.  
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Uncertainty-Aware Federated Learning 

We implement UA-FL to enable a scalable and 

privacy preserving fault diagnosis system that 

enables multiple industrial sites to learn a shared AI 

model based on without directly sharing raw sensor 

data. By locally fine tuning the global model, 

Personalized Federated Learning makes sure that for 

each industrial facility their model is personalized to 

the unique machinery and operating conditions 

unison benefiting from collective learning while 

preserving the industry's privacy. By alleviating the 

need for deploying AI in discrete environments with 

specific sensor configurations to achieve acceptable 

deployment performance, this prevents 

performance degradation when deploying AI across 

very different environments with different sensor 

configurations and fault patterns. Uncertainty 

Calibration is incorporated to increase the decision's 

reliability using BNNs to get confidence for each 

prediction. For industrial systems, this is important 

since uncertain predictions might be indicative of 

sensor faults or other flying unknown failure modes. 

The model quantifies uncertainty, triggering a 

‘trigger block’, or alerting for human intervention, or 

requesting more data before making high risk fault 

classifications.  

 

Results and Discussion 

The fault classification accuracy of 98.7% of the 

proposed MPT-GNN with Diffusion Based 

Imputation and UA-FL is higher than the existing 

deep learning models. Preserving fault patterns by 

reducing the imputation error even with missing 

data. Reliable predictions are necessary for high-risk 

industrial applications and uncertainty calibration 

provides such capability. It is shown to have low 

latency and computational efficiency and is therefore 

able to deploy real time Edge AI. Ablation studies 

show us that each of the ablation study components: 

imputation; GNNs; and hierarchical learning 

provides performance gains, yet are robust and able 

to adapt to industrial environments.  

 

 

Evaluation Metrics 

Fault Detection: Accuracy, F1-score and AUROC are 

used to characterize the ability of our model in 

classifying different machinery faults. However, 

accuracy doesn’t tell anything about correct 

classifications and may deceive in imbalanced 

datasets. Considering the presence of rare faults, F1 

score, the harmonic mean of precision and recall, is 

most important for an evaluation of performance. 

AUROC is a model’s ability to differentiate fault from 

normal states at various decisions boundaries  hence 

guaranteeing robustness in real world deployment 

with varying threshold values.  

AUROC=∫_(-∞)^∞▒〖TPR(t)dFPR(t)〗            

Imputation: To evaluate the data imputation quality 

based on RMSE and MAE for handling incomplete 

data. Since larger imputation errors are penalized 

more heavily, RMSE is useful to detect significant 

imprecision with respect to true sensor readings. 

Instead, at the other hand, MAE provides an overall 

average error measure which is more interpretable 

to understand the performance of missing sensor 

values reconstruction. This results in low RMSE and 

low MAE values, i.e., high fidelity imputation so that 

the model will be able to fill in the missing data with 

high accuracy for accurate fault detection. 

MAE=1/n ∑_(i=1)^n▒|(y_i-(y_i ) ̂ )^2 |                       

Expected Calibration Error: To measure the 

uncertainty estimation quality by ECE to ensure the 

quality of reliable decision making. It is about how 

much the predicted confidence of the model 

matches the actual correctness. An ideal model 

would produce high confidence for right 

classification and low confidence for uncertain case. 

Lower ECE values hence imply that the uncertainty 

estimates in the system are better calibrated, 

allowing it to issue alerts when predictions are 

insufficiently determined or when more data is 

needed for fault diagnosis. 

ECE=∑_(m=1)^M▒|B_m |/n |acc(B_m )-conf(B_m )|

      

Efficiency: Since latency and computational 

overhead are important performance indicators in 

any real time fault detection application in industrial 

domain, fault detection itself must be done in real 

time. The latency measures the time it takes for the 

model to process sensor data and output a fault 

diagnosis, within operating constraints so there is 

enough time within the beginning of the operation. 

The resource efficiency of the model is evaluated on 

the computational overhead of the model, in 

particular computing resource limited devices like 
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edge. Therefore, one can optimize these metrics so 

that the model can be deployed in real world 

industrial settings without unnecessary delay or 

heavy computation overheads. 

Latency=(Total Inference Time)/(Number of 

Samples)  

           

Comparison with State-of-the-Art Models 

Finally, we benchmark our proposed MPT-GNN and 

UA-FL framework on fault diagnosis and incomplete 

data handling against existing state of the art models 

in order to validate its effectiveness. Trained using 

these traditional deep learning methods, such as 

CNNs, LSTMs or autoencoders, typically exhibits 

both difficulties in capturing short/long term 

dependencies and in managing the data gracefully. 

Improvements have been shown by graph-based 

model such as GCNs or self-attention based 

architecture such as Transformers, but they seldom 

combine multi resolution feature extraction, 

uncertainty calibration and hierarchical multi task 

learning as a single framework. Then, we compare 

models using the prominent evaluation metrics, F1 

score, AUROC, imputation error and achieve a higher 

fault classification accuracy, robustness and 

deployment feasibility value. Fig 2 shows each 

model's performance across different metrics is 

visualized, allowing for an intuitive comparison of 

trade-offs between accuracy, AUROC, latency, and 

computational cost. 

 

 

Fig. 2. Performance Comparison 

 

Impact of Missing Data Handling 

Missing data is a critical challenge in industrial fault 

diagnosis, since sensor failures, communication 

disruptions, environmental interference can result in 

missing data. Traditional machine learning models 

would throw away the incomplete data or impute 

incomplete data using something like mean or a 

simple interpolation, but the true fault patterns in 

the system are overlooked. By using the Diffusion 

Model based Imputation to reconstruct missing 

sensor values conditioned on the temporal and 

spatial dependencies, we propose an approach. 

Diffusion models produce high fidelity missing 

values while retaining feature related characteristics, 

and so preserve as much information as possible and 

make better diagnosis.  

 

We find that our method entails massive reductions 

in RMSE to 0.042 and MAE to 0.027 over traditional 

and deep learning-based imputation methods on 

the Machinery Fault Dataset, as attested by our 

extensive evaluation on the established Machinery 

Fault Dataset. We performed experiments under 

different conditions of missing data, and simulated 

sensor failures of up to 40%. We find that our model 

outperforms baseline models in terms of 

preservation of fault classification accuracy under 

the most severe data incompleteness. Additionally, 

BNNs provide that the system also provides 

uncertainty aware predictions which in turn help 

quantify the confidence in the decisions in industrial 

operations.  

 

These results indicate that our proposed approach 

does not only reduce the adverse effects of missing 

data but also improves the reliability and trust in AI 

driven fault diagnosis systems. Table 1 shows the 

significant impact of missing data on fault diagnosis. 

 

 

 

Table I. Impact of Missing Data On Fault Diagnosis 
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Missing 

Data (%) 

Baseline 

Accuracy 

(No 

Imputation) 

(%) 

Diffusion 

Imputation 

+ CNN (%) 

Proposed 

MPT-

GNN 

(Ours) 

(%) 

Accuracy 

Improvement 

(%) 

10% 88.5 93.2 95.2 +6.7 

20% 82.7 90.5 93.8 +11.1 

30% 74.9 87.3 91.4 +16.5 

40% 63.5 84.8 89.1 +25.6 

 

Real-Time Feasibility 

Real time feasibility is important for industrial AI 

applications as real time fault detection must be in 

milliseconds to prevent costly failure and downtime. 

By designing our framework for inference with low 

latency, we balance optimized neural architectures 

and efficient computation strategies.  

 

The MPT-GNN jointly use TCNs that have the ability 

to extract feature quickly in a nearby encoding space, 

Transformers that learn long dependencies among 

consecutive snapshots, and GNNs to capture the 

inter-sensor relations. Such a hybrid structure 

enables optimal computational efficiency, lowering 

inference time at the cost of no loss in accuracy. In 

the end-to-end latency, our model is capable of 

achieving latency of 12ms which is good for real time 

industrial deployment. We then deploy Edge AI 

using KD and EWC, which ease the model space by 

reducing complexity without loss of performance. 

We demonstrate experimental results which show 

that the lightweight Edge AI variant achieves 97.2% 

accuracy with a 40% reduction in computational 

overhead and can be deployed on resource 

constrained industrial devices. Under the best of 

circumstances, deep learning models are expensive 

in GPU power and slow to deploy in real world 

manufacturing environments as they are designed 

for batch mode fault detection and adaptive 

maintenance, rather than real time.  

 

Ablation Studies 

Next, we perform ablation studies to analyze 

individual contributions by pruning away important 

components, e.g. Diffusion based Imputation, GNNs 

and H-MTL. We measure the contribution of every 

component using differences of performance of the 

model trained with varying configurations. Loss of 

classification accuracy is obtained when GNNs are 

removed, as it degrades the representation of the 

inter sensor relationship. With H-MTL, the model can 

estimate uncertainty and impute sensibly for reliable 

predictions. Based on these studies, they justify the 

inclusion of the modules into our final framework, 

from the empirical evidence of how each module 

correlates with the overall performance of the 

system. Fig 3 shows how different model variants 

impact Fault Diagnosis Accuracy, RMSE, and 

Uncertainty Estimation. 

 

 
Fig. 3. Ablation Study 

 

IV. CONCLUION AND FUTURE SCOPES 

 
The proposed framework tackles most of the 

problems encountered in a fault diagnosis industrial 

environment with incomplete sensor data. It 

combines Diffusion Model based Imputation with 
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MPTGNN together with UAFL, attaining fault 

detection accuracy up to 98.7%, keeping the 

reliability of the diagnosis high and also keeping real 

time readiness while minimizing the effect of the 

missing data. Moreover, this system provides the 

convenience of scalability and privacy preserving just 

as needed for different industrial applications. 

Positioned as an important advancement of 

industrial AI technologies, the combination of short 

and long term processing, inter sensor connectivity 

and  uncertainty measurement put the framework at 

the forefront of industrial AI.  

 

This study intends to integrate XAI techniques to 

help industrial operators get deeper insights into 

how fault predictions work in the future work. 

Additionally, real time adaptive learning will be 

investigated for continuous model updates to 

ensure the system adaptation to the industry 

changing conditions. In a way, these advancements 

will take these technologies to the next level by 

helping to build trust, transparency, and predictive 

maintenance capabilities, which will further 

strengthen the use of AI as the key of next 

generation intelligent fault diagnosis systems in 

industrial automation.  
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