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I. INTRODUCTION 
 

Context and Motivation 

Construction is responsible for about 32% of global 

natural resource extraction and over 35% of 

greenhouse gas emissions, largely due to cement 

production in concrete.(W. Michael et & al. 2016). 

Innovations in green concrete, including recycled 

aggregates and industrial by-products, are central to 

meeting international sustainability targets.( S. John, 

G. 2023) Recent LCA studies worldwide underscore 

the pressing need to evaluate not just cradle-to-gate 

(production) impacts but full lifecycle impacts, 

including building use and end-of-life scenarios. 

 

Research Problem 

Traditional assessments focus mainly on the 

production phase, while broader environmental 

categories (acidification, toxicity, resource use) and 

social aspects (human health, circular economy) are 

frequently omitted. 

 

Objectives 

Quantify and compare structural, environmental, and 

cost performance of traditional and SCM-based 

concrete via LCA and LCCA. Place the results in 

context with international benchmarking studies. 

Guide the adoption of green concrete mixtures for 

sustainable practices 

Paper Contributions 

This study combines a rigorous experimental 

program with comprehensive LCA/LCCA digital 

modeling, covering multiple impact categories. The 

findings are contextualized against recent global 

research, and practical recommendations for 

industry are provided. 

 

II. BACKGROUND AND LITERATURE 

REVIEW 
 

Life Cycle Assessment (LCA) in Civil Engineering 

LCA has become the preferred scientific method to 

holistically analyze construction material 

environmental impacts. Modern LCA methodology 

follows ISO 14040/44 and includes four essential 

stages: goal and scope definition; inventory analysis 

(LCI);  (Panahandeh.2021). impact assessment 

(LCIA);( . Del, M. N 2017) and interpretation. Global 

reviews show that attributional LCA (examining the 

actual environmental footprint) is particularly 

suitable for concrete studies, whereas consequential 

LCA is used for policy-based decisions. 

 

Green Concrete: SCMs and Circular Economy 

Green concrete leverages not only SCMs (GGBS, fly 

ash, recycled aggregate) but also promotes the 

circular economy by repurposing waste and 

reducing landfill disposal. (B. Baitollah, 2023) Peer-
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reviewed comparative LCAs demonstrate that 

replacing natural aggregates and clinker can lower 

global warming potential (GWP) by up to 35%.( N. 

Bairagi 2019).  

 

Recent International LCA Findings 

A growing body of evidence supports LCA for 

optimizing green mix designs: (Knoeri et al.2023)  

demonstrated 30% lower environmental impact in 

recycled concrete mixes compared to conventional 

concrete. A 35% reduction in environmental impact 

from transporting RCA versus NCA. (Yazdanbakhsh 

et al.2023). Life cycle impact assessments 

increasingly include toxicity, human health, and 

land-use effects ( J. Turk, Z. Cotič 2015).  

 

Integration of LCA and LCCA 

Lifecycle cost assessment (LCCA) is critical to 

practical adoption, showing that green concretes can 

match or lower the total cost of ownership.( J. Turk, 

Z. Cotič 2015).  

 

III. MATERIALS AND METHODOLOGY 
 

Experimental Design and Data Collection 

 Concrete Mixes and Testing 

Following IS codes, three M30-grade mix types were 

studied: 

Traditional OPC (control) 

GGBS-based (partial OPC replacement) 

Fly Ash-based (partial OPC replacement) 

All mixes were cast in 150 mm cubes, cured, and 

tested for compressive strength at 7, 14, and 28 days, 

in accordance with IS 516. 

 

Materials 

           Table I details all input materials. 

Material Description 

OPC 53 IS 12269 

Sand Zone II, river 

Aggregate 20 mm granite 

GGBS IS 12089 

Fly Ash IS 3812, Class F 

Water Potable 

 

Mix Proportions 

   Table II summarizes composition by mass. 

Mix OPC GGBS/Fly 

Ash 

Fine 

Agg. 

Coarse 

Agg. 

Traditional 350 – 750 1200 

GGBS 210 140 750 1200 

Fly Ash 245 105 750 1200 

 

 LCA and LCCA Modeling 

 LCA Framework 

Functional Unit: 1 m³ of concrete 

System Boundary: Cradle-to-gate (raw extraction 

through batching) 

LCA Model: SimaPro v9, using Ecoinvent datasets 

and IMPACT 2002+ for mid-/end-point indicators 

 

LCI capture all energy and material flows with special 

attention to SCM production, transport, and mixing.( 

S. G. Al-Ghamdi,2017).  

 

Environmental Indicators 

The study assesses multiple categories per popular 

international convention: 

Global Warming Potential (GWP) 

Acidification Potential 

Resource Depletion (mineral and energy) 

Human Health and Toxicity (where data is available) 

 

Life Cycle Cost Model 

The LCCA includes all direct input costs (raw, 

transport, processing) and operational/maintenance 

costs associated with durability. All parameters were 

confirmed with market surveys and supplier data 

(Table III). 

 

IV. RESULTS 
 

Mechanical Properties 

All mixes achieved M30 standards. OPC mixes 

provided the highest early strength (average 33–34 

MPa at 28 days), while GGBS and FA mixes reached 

adequate strengths (30–32 MPa), with slower early-

age development. Enhanced durability was noted for 

mixes with SCMs, consistent with international 

findings. 

 

Environmental Impact Assessment 

LCA Results Overview 
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Table III LCA Result Overview 

Mix GWP 

(kgCO₂-

eq/m³) 

Acidification Resource 

Depletion 

Traditional 330 High High 

GGBS-

based 

230 Moderate Low 

Fly Ash 240 Moderate Low 

SCM-based mixes reduced GWP by nearly 30%—a 

result mirrored in global meta-analyses. Acidification 

and resource depletion also improved, confirming 

broader sustainability benefits. 

 

Detailed Environmental Indicators 

Where data permits, results can be further 

disaggregated: 

Toxicity Potential (kg 1,4-DCB-Eq): Lower for SCM 

mixes 

Land Use, PM2.5: Both improved in green concrete 

scenarios 

 

Life Cycle Cost Results 

Table IV Life Cycle Cost Result 

Component OPC 

(₹/m³

) 

GGBS 

(₹/m³) 

Fly Ash 

(₹/m³) 

% 

Saving

s 

(SCMs

) 

Raw 4000 3500 3400 12–

15% 

Cement/SC

M 

2500/

0 

1800/80

0 

1700/70

0 

+SCM 

cost, –

overall 

Energy 600 500 480 15–

20% 

Maintenanc

e 

3000 2000 2100 30–

35% 

Total 13000 11150 10980 15–

18% 

 

Consistent with Abbas et al., local/by-product SCM 

use lowered lifecycle costs despite higher 

procurement or transport per unit. 

 

Comparison with Recent Literature 

Peer-reviewed work shows analogous reductions in 

both CO₂ and lifecycle costs as reported here, 

especially with partial OPC replacement by GGBS or 

fly ash. Specific additions (recycled powders, slags, 

RCP) further enhance these environmental outcomes 

in recent studies. 

 

V. DISCUSSION 
 

Environmental and Mechanical Trade-offs 

While OPC mixes reach strength targets fastest, their 

environmental impact is highest. SCM mixes not only 

meet structural needs but also realize substantial 

eco-benefits (lower GWP, toxicity, acidification, and 

land use), as highlighted in other international LCA 

studies. Proper curing controls any modest lag in 

early strength. 

 

Human Health and Resource Sustainability 

Lower toxic emissions (e.g., PM2.5, 1,4-DCB) improve 

indoor/outdoor air quality and overall occupational 

safety. SCMs also reduce pressure on finite mineral 

resources—a critical global issue. 

 

Industrial Adoption Challenges 

Widespread adoption faces challenges: data 

uncertainty in LCA models, local variations in SCM 

availability, technical guidelines, and quality control. 

International benchmarking, such as the LEED v4 

credit system, further motivates material innovation 

and LCA-integrated design. 

 

Recommendations and Future Research 

Expand LCA scope to cradle-to-grave for more 

comprehensive impact coverage 

Validate durability benefits in long-term field studies 

Develop open LCA inventory databases relevant to 

emerging economies 

Encourage policy and benchmarking based on total 

lifecycle sustainability 

 

VI. CONCLUSION 
 

This study substantiates that green concrete mixes 

using SCMs deliver substantial mechanical, 

environmental, and economic advantages. A 30% 

reduction in carbon emissions and 15–18% cost 

savings were evident, in alignment with the latest 

worldwide research. Comprehensive LCAs using 

industry-standard tools should be mandated for 

sustainable project delivery and material 

certification. 
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