
 Md. Abdul Momin, 2025, 13:5

ISSN (Online): 2348-4098

ISSN (Print): 2395-4752

© 2025 Md. Abdul Momin, This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided

the original work is properly credited.

International Journal of Science,
Engineering and Technology

An Open Access Journal

Zero Trust Security Model for Microservices:

Principles, Benefits, and Challenges
1Md. Abdul Momin, 2Md. Ezharul Islam

Department of Computer Science Engineering, Jahangirnagar University. Dhaka Bangladesh

I. INTRODUCTION

Microservices architecture is one of the fastest-

growing styles in modern computing. First

introduced by Martin Fowler and James Lewis, it has

become a standard for building large-scale

applications [1]. A microservice is a small,

independent process that communicates through

messaging, and a full system is built as a collection

of such services [2]. Moving from monolithic to

microservices offers benefits but also increases the

attack surface, making security more complex.

Traditional perimeter-based security assumed that

internal networks were safe and relied on firewalls,

IDS, and IPS. Once inside, users or attackers could

move freely, which made systems vulnerable [3]. This

model becomes ineffective in today’s distributed

systems with cloud, APIs, and remote access.

Attackers can exploit the blurred boundaries and

lateral movement within networks. Maintaining

perimeter defenses is also costly and limited [4]. Zero

Trust fixes these problems by following the

rule “never trust, always verify.” It uses continuous

authentication, gives only the least access needed,

and splits systems into smaller parts to keep

microservices safe.

Zero Trust Architecture(ZTA) Overview

 The Zero Trust (ZT) model is a critical evolution in

cybersecurity, founded on the premise that no entity,

inside or outside the network perimeter, should be

inherently trusted. So it always verifies who or what

is trying to connect, no matter where they are.

Access to resources is granted only after strict and

continuous authentication and authorization,

ensuring security at every step [5]. Zero Trust

Architecture (ZTA) is a cybersecurity model that

assumes no implicit trust, treating both internal and

external environments as equally untrusted. It

continuously verifies access requests, granting

permissions based on identity and security posture.

Actually, Zero Trust Architecture (ZTA) follows a set

of principles. These principles apply across the

enterprise, including users, devices, applications, and

Abstract- Microservices are widely used to build modern applications, but their distributed design brings serious

security risks that traditional perimeter-based models cannot handle. Once attackers bypass the perimeter, they

can move across services unchecked. Zero Trust Architecture (ZTA) addresses this problem with its “never trust,

always verify” principle. It secures microservices through continuous authentication, least-privilege access, micro-

segmentation, and encrypted communication. This paper examines the core principles of ZTA, its primary benefits,

such as enhanced security, regulatory compliance, resilience, and scalable security, and the challenges of adoption,

including complex policy management, performance overhead, integration with legacy systems, skill shortages,

and a lack of standardization. To overcome these barriers, best practices like Zero Trust Architecture, enabling

tools, automated policy management, and unified governance are discussed. The paper also highlights the role of

AI and ML in making ZTA smarter through adaptive authentication and real-time threat detection. Overall, ZTA

offers a flexible and powerful approach for protecting microservices in cloud-native environments.

Keywords - Zero Trust, Microservices, Continuous Verification, Least-Privilege Access, Micro-Segmentation, Secure

Communication.

 Md. Abdul Momin, International Journal of Science, Engineering and Technology,

 2025, 13:5

data. This model also emphasizes strict access

controls and least-privileged permissions. Unlike

traditional models that allow broad access once

inside, ZTA minimizes lateral movement, securing

internal and external access by verifying each

request to reduce risk, even in compromised

environments [5].

Objective

The core philosophy of Zero Trust architecture,

"Never Trust, Always Verify." The design of Zero

Trust Architectures (ZTA) for microservices is guided

by foundational security principles such as least

privilege, complete mediation, and defense in depth

[6].

The objective of ZTA is to protect distributed systems

against evolving threats by applying the principle of

“never trust, always verify.” This requires strict access

controls, continuous authentication, and fine-

grained authorization for every request, regardless

of its source [7]. For microservices, ZTA aims to

provide scalable, flexible, and secure environments

that safeguard sensitive data and minimize insider

and external threats [8][9]. This study examines Zero

Trust Architecture (ZTA) by analyzing its core

principles, business advantages, and implementation

challenges. The discussion is structured around three

key aspects:

 The foundational security principles guiding ZTA

design,

 The operational and strategic benefits it offers

organizations, and

 The critical barriers enterprises face during

deployment.

Core Principles of ZTA for Microservice

In microservice architecture, distributed services

require constant interaction, and Zero Trust provides

an advanced and proactive security framework. ZTA

implements continuous authentication, least

privileged access, micro-segmentation, and secure

communication. It mitigates risks and prevents

lateral movement. Above mentioned principle helps

mitigate threats.

Figure 1: Zero Trust in Microservice: Conceptual

Diagram

As shown in Figure 1, Zero Trust Architecture (ZTA)

secures microservices. Users and devices are first

checked using Identity and Access Management

(IAM). Tools like a service mesh or API gateway then

control requests. Each microservice works in its own

separate area to stop attackers from moving around.

Continuous monitoring and logging show what is

happening in real time. They help find unusual

activity. They also make sure rules and policies are

followed in the system.

Continuous Verification

Each time a user tries to access, it must be checked

again, even if they logged in before. This ensures that

permissions remain valid only when necessary [4]. All

resources are continuously monitored for abnormal

and suspicious behavior. Systems should verify the

authenticity of users by verifying

authentication/authorization based on various data,

like user identity, location-associated service, and

data access category. Implementing multifactor

authentication (MFA), conducting device health

checks, and imposing an application whitelisting

verification system can be enhanced. Through these

measures, the legitimacy of the user, the security

posture of the device, and the integrity of the

application can be assessed.

Least Privileged Access

To reduce the risk of unauthorized activity, the user

and connected device grant the minimum access

level [5]. This principle ensures that a user can only

access data and applications/services they are

explicitly authorized to use. By integrating fine-

grained access controls with mechanisms like Just-

in-time (JIT) and just-enough-access (JEA), Zero Trust

architecture implements this principle. This principle

also limits the access duration based on actual need.

An organization can significantly reduce the risk of

 Md. Abdul Momin, International Journal of Science, Engineering and Technology,

 2025, 13:5

data exposure or damage caused by an insider-

compromised user by implementing the bare

minimum access.

Micro-Segmentation

Networks are divided into smaller, isolated

segments, each with its own set of access policies.

This limits lateral movement by attackers who

manage to breach one segment [5]. Zero Trust

architecture works on both inside and outside an

organization’s network perimeter, from where the

security breaches and threats can originate. The

primary goals are to minimize the impact of a breach

on the overall system. To achieve this micro micro-

segmentation of sensitive resources is an effective

strategy. Other strategies like deploying end-to-end

encryption to protect data in transit, continuously

monitoring user and device behavior, establishing

robust incident response, and system recovery.

Secure Communication

All service-to-service communication must be

encrypted and authenticated when integrating a

Zero Trust architecture in the Microservice system.

No request is trusted by default, even if it originates

from the intranet. To ensure that this TLS or Mutual

TLS (mTLS) can be applied. Tools like Istio or Linkerd

can be deployed to restrict unauthorized access and

secure communication in the system. All

communication must be secured, regardless of

network location. Internal messages must also be

encrypted to prevent monitoring and data leakage.

NIST guidelines define an encryption standard to

ensure a baseline for secure communication. This

also defines some key elements of zero trust, like

secure access to a communication channel. These

elements also include session authentication,

timeouts, anomaly detection, continuous

monitoring, etc. [15].

Continuous Monitoring

Continuous monitoring, or ConMon for a dynamic

microservice environment, is essential in ZTA. It

includes real-time surveillance of network traffic,

service-to-service communication, and user and

device behavior when threats occur. IDS can be used

for this purpose. Continuous monitoring comprises

gathering and examining logs, metrics, and

operational data to ensure policy improvement and

quick response. Define security requirements (e.g.,

FedRAMP/NIST), establish a monitoring framework,

implement data collection, analyze and report

findings, respond to incidents, and update security

measures accordingly. These six steps are

maintained by ConMon. In this way, ZTA responds

with the "never trust, always verify" principle.

Benefits of ZTA in Microservices

Zero Trust makes microservices more secure by

following the rule “never trust, always verify.” It

checks every request with continuous authentication

and authorization to stop unauthorized access. This

stops hackers from moving inside your network. It

also protects you from employees or outside apps

that might cause harm. This makes microservice

applications stronger and safer in modern

environments. As shown in Table 1, Zero Trust makes

microservices more secure by following the rule

"never trust, always verify."

Table-1: Comparison of security and operational aspects before and after ZTA in microservices.

Aspect Before ZTA (Traditional

Security)

After ZTA (With ZTA)

Trust Model Implicit trust within the network

perimeter

"Never trust, always verify" for

every access [10]

 Md. Abdul Momin, International Journal of Science, Engineering and Technology,

 2025, 13:5

Lateral Movement Risk High—attackers can move

freely once inside

Strongly reduced via micro-

segmentation [11]

Access Control Coarse-grained, perimeter-

based

Fine-grained, identity-based,

least privilege [11]

Threat Detection Reactive, limited visibility Proactive, continuous

monitoring, anomaly detection

[11]

Micro-segmentation Limited or absent Extensive, isolated services [11]

Insider Threats Higher probability

Reduced through strict

authentication [10]

Implementation Complexity Lower, but less adaptive Higher requires new tools and

processes [10]

Compliance & Visibility Often fragmented Improved auditability and

compliance [10]

 Md. Abdul Momin, International Journal of Science, Engineering and Technology,

 2025, 13:5

Performance Impact Minimal

Potential latency due to added

checks [10]

Enhanced Security

Zero Trust Architecture (ZTA) enhances security in

microservices by reducing attack surfaces,

preventing lateral movement, and protecting APIs. It

continuously verifies every user, device, and service,

applies least-privilege access, and segments

networks to contain breaches [14]. All

communications are encrypted, and real-time

monitoring detects threats quickly, limiting exposure

and stopping attackers from moving within the

system [13]. For APIs, ZTA enforces strict identity

checks, dynamic policies, and anomaly monitoring,

ensuring secure and controlled access [15]. Zero

Trust Architecture makes cloud security strong and

flexible. It helps systems handle problems and grow

safely.

Regulatory Compliance

Zero Trust Architecture (ZTA) in microservices helps

organizations follow rules by using strict access

controls, checking users all the time, and applying

flexible policies [16]. It uses micro-segmentation and

service mesh integration to isolate services, limit

lateral movement, and contain breaches [7]. Real-

time monitoring and automated compliance

reporting make audits easier and improve response

to incidents [15]. ZTA supports industry regulations

like HIPAA in healthcare, PCI DSS in finance, and

aligns with frameworks like NIST and ISO 20000 in IT

services [26]. By creating detailed, tamper-resistant

audit trails, Zero Trust strengthens security,

compliance, and operational trust in microservice

environments [7].

Improved Resilience

Zero Trust is a security model that assumes no user

or service—inside or outside the network—should

be trusted by default. In microservices architectures,

adopting Zero Trust significantly improves resilience

by mitigating insider threats major risk in distributed

systems. Zero Trust makes microservices much safer

by constantly checking every user and service while

only giving them the access they really need, which

helps prevent insider damage [7]. It breaks the

network into small segments, so even if someone

gets in, they can’t move around easily or access other

parts [18]. Continuous monitoring and smart threat

detection, sometimes powered by AI, spot unusual

activity quickly and allow fast responses [19]. Access

rules automatically adjust based on what’s

happening, keeping the system secure without

slowing down work [10]. Altogether, Zero Trust with

adaptive security makes microservices more resilient,

easier to monitor, and better at meeting compliance

requirements [13].

Operational Observability

Zero Trust with centralized monitoring makes

microservices much safer and easier to manage. It

constantly checks who can access what, limits

privileges, and isolates services, so attackers can’t

move around freely [18]. Real-time monitoring helps

spot unusual activity or threats quickly, letting teams

respond faster [12]. Automatic access rules and clear

logs help keep things following the rules and make

it easy to see what happens [13]. Overall, this

approach not only boosts security but also improves

visibility, speeds up incident response, and supports

the flexibility of modern cloud-native systems.

Scalability for Distributed Environment

 Md. Abdul Momin, International Journal of Science, Engineering and Technology,

 2025, 13:5

Zero Trust Architecture (ZTA) provides a security

framework that scales organically with microservices.

Its foundation of fine-grained access control and

dynamic policy enforcement ensures that security

remains robust and consistent, even as systems

expand across distributed cloud environments. It

improves scalability, security, and resilience by

enforcing strict access, continuous checks, and

dynamic policies, making it highly compatible with

distributed architectures. It supports elastic scaling

with Kubernetes without losing security [12]. Fine-

grained access control ensures least-privilege use

and micro-segmentation, reducing risks as systems

grow [18]. For multi-cloud and container setups,

Zero Trust uses service mesh, mTLS, and API

gateways to secure communication [11]. It also

boosts resilience, compliance, and threat detection

through real-time monitoring and adaptive policies

[13]. In DevOps, Zero Trust allows automated and

consistent security across deployments [21]. Policy-

driven security simplifies management [14], while

service meshes provide runtime trust checks [12].

Identity governance and conditional access adapt to

real-time risks [14].

Overall, Zero Trust offers a scalable, automation-

friendly security model for modern microservices.

The key benefits and challenges, summarized in

Figure 2.

Figure 2: Benefits and Challenges of ZTA in

Microservices

Implementation Challenges

Despite these significant benefits, outlined in Figure

2, the adoption of ZTA presents several key

challenges. While Zero Trust Architecture (ZTA)

strengthens security in microservices, its adoption

brings several difficulties. Issues such as complex

policy management, performance overhead, legacy

system integration, skill gaps, and lack of standard

tools make implementation hard [10][12][22].

Understanding these challenges is important to plan

effective strategies and avoid slowing development

while ensuring strong security.

Complexity in Policy Management

Adopting Zero Trust Architecture (ZTA) in

microservices adds major complexity in policy

management. Policies must be fine-grained and

adaptable, creating many rules to manage [12].

Ensuring consistent enforcement across distributed

teams is difficult [22]. ZTA also needs continuous

authentication and authorization, requiring real-time

engines and monitoring [15]. Without proper tools

for automation and auditing, policy management

can slow development and cause misconfigurations

[10]. Overall, ZTA in microservices demands detailed

policies, strong coordination, real-time checks, and

robust tooling to stay secure without losing agility.

Performance Overhead

Zero Trust Architecture (ZTA) improves security in

microservices but adds performance and operational

challenges. Frequent checks cause higher latency

[10]. Implementing Zero Trust can introduce

substantial performance overhead. The additional

load from encrypting all traffic, verifying every

identity, and enforcing segmentation taxes the CPU,

memory, and network, potentially reducing the

application's ability to scale efficiently [23].

Simulation tools help predict these impacts [23].

Integration is complex and may slow development

[10]. Costs, vendor lock-in, and training needs make

adoption harder [22]. Overall, ZTA secures

microservices but requires planning, simulation, and

skilled teams to balance security with performance.

Legacy System Integration

Adopting Zero Trust Architecture (ZTA) in

microservices with legacy systems is difficult. Legacy

systems and Zero Trust are often fundamentally at

odds. Their common traits—hardcoded credentials,

obsolete protocols, and a lack of modern APIs make

them incompatible with a model built on dynamic

trust and continuous authentication, making ZTA

features like identity checks and micro-

segmentation hard to apply [24]. Adding ZTA to

microservices also increases complexity, as legacy

 Md. Abdul Momin, International Journal of Science, Engineering and Technology,

 2025, 13:5

systems were not built for dynamic access controls

or continuous verification [25]. Organizations face

high costs, productivity loss, and staff training needs,

along with resistance to change [4][26]. ZTA can also

cause latency and user friction due to constant

checks. A phased migration with middleware and

strong change management is needed to make ZTA

work effectively.

Skill Gaps and Expertise

Adopting Zero Trust Architecture (ZTA) in

microservices is hard because of skill gaps and a lack

of expertise. ZTA needs knowledge of continuous

checks, micro-segmentation, and dynamic policies,

but many teams lack this experience. There is also a

shortage of professionals skilled in ZTA, automation,

and secure microservices, especially in legacy or new

cloud-native setups. Teams must move from

perimeter security to "never trust, always verify,"

which requires ongoing training and culture change.

ZTA can also slow agile work due to added security

processes. Training, tool support, and step-by-step

adoption help reduce these challenges [22].

Tooling and Standardization

Adopting Zero Trust Architecture (ZTA) in

microservices improves security but faces challenges

with tools and standards. Integrating service meshes,

API gateways, and identity systems is complex and

can disrupt workflows. Existing tools like Istio, mTLS,

and JWT help but are not complete solutions, often

needing extra setup and expertise, which adds

workload and slows performance [12]. Another issue

is the lack of common standards—organizations rely

on different vendor solutions, causing

interoperability problems and policy inconsistency.

Since ZTA best practices are still evolving, adoption

is slower. Better tools, clear frameworks, and shared

standards are needed for secure and scalable ZTA in

microservices [22].

Best Practices

While Zero Trust Architecture (ZTA) suggests a full-

scale security approach for distributed services like

microservices, it faces tremendous challenges to

implement, requiring careful planning to balance

protection with operational efficiency. By applying

established strategies like tools, governance

frameworks, organizations can alleviate challenges.

Below are key best practices to guide successful

deployment:

Adopt Zero Trust-enabling Tools

Zero Trust tools are vital for modern cybersecurity,

as today’s distributed systems face complex threats.

Zero Trust does not allow implicit trust for users,

devices, or network traffic, instead requiring strict

and continuous verification. Research highlights

different technologies that improve Zero Trust

across industries. Service mesh technologies help

microservices and cloud-native apps by securing

communication, traffic, and monitoring with

frameworks like Istio, Linkerd, and Consul, though

they still face challenges of complexity and adoption

[27]. Identity and Access Management (IAM) is the

core of Zero Trust, enforcing continuous

authentication, least privilege, and dynamic controls

to reduce insider risks [28], providing unified

governance across multi-clouds [29], and applying

micro-segmentation to limit breach impact [44].

Secrets management is also key, treating passwords,

API keys, and certificates as immutable objects [30],

requiring constant verification for access, and

avoiding single trusted third parties through

cryptography and distributed consensus [31].

Together, these tools strengthen security by making

every access request verified, controlled, and

adaptive to evolving threats.

Invest in Training and Cultural Shift

The principle of "never trust, always verify" requires

a cultural and procedural shift for development,

operations, and security teams, moving them away

from traditional perimeter-based habits. They must

check everything, no matter where it comes from.

This approach helps keep systems safer and more

reliable. Comprehensive training programs are

essential to build skills in core ZTA principles like

least privilege, micro-segmentation, and Policy-as-

Code [32]. Training should also cover the

architectural benefits of tools like the Open Policy

Agent (OPA), which separates policy decisions from

enforcement for more scalable and vendor-neutral

designs [33]. Effective training utilizes real-world

simulations to teach system design and scalability

 Md. Abdul Momin, International Journal of Science, Engineering and Technology,

 2025, 13:5

[39], while team-based learning improves

collaboration, communication, and problem-solving

[40]. Ultimately, this investment in human capital

creates the foundation for scalable and sustainable

Zero Trust in microservices [9].

Leverage AI and Automation

Artificial Intelligence (AI) and Machine Learning (ML)

make ZTA stronger with adaptive and predictive

features. AI monitoring uses models like LSTM and

Isolation Forests to detect anomalies in real time,

giving better accuracy and fewer false alerts [42].

This helps in automatic threat detection, quick

response, and stronger compliance, though issues

like AI bias need good control [34]. AI also improves

identity checks by using behavioral analytics. It

studies login habits and device use to create risk

scores and dynamic permissions, which can stop

insider threats [43]. This facilitates dynamic policy

enforcement, where access decisions are no longer

static but adapt in real-time based on continuous

risk assessment [19].

Implement Centralized Policy Management

A cornerstone of ZTA is the consistent enforcement

of security policy across all microservices. Policy

standardization ensures uniform access rules,

preventing security gaps and reducing risk [44].

Centralized policy management is the best way to do

this. It uses IAM, MFA, analytics, and service mesh to

apply real-time, context-aware policies everywhere

[45]. The main challenges are keeping consistency,

avoiding policy drift, and working with DevOps

pipelines and old systems [33]. To reduce these

issues, service meshes, mTLS, automation,

monitoring, and audits are used. The workflow

usually starts with setting context-aware rules. The

service mesh then enforces mTLS and fine-grained

access, while automated CI/CD pipelines and AI

engines generate and refine policies. Continuous

monitoring and IAM/MFA systems work in concert to

secure both human users and service interactions.

Prioritize Open Standards and Vendor-neutrality

To avoid vendor lock-in, a neutral design is key. This

keeps security strong across hybrid and multi-cloud

environments. Using open standards helps. OAuth2

handles authorization, mTLS secures service-to-

service communication, and eBPF boosts networking

and security monitoring [41]. This approach,

combined with centralized, automated policy

management, reduces errors and improves

operational agility [14]. The most effective ZTA

designs strategically mix automation, open-source

tools, and collaboration.

Standardize Governance

Unified Frameworks are important for applying Zero

Trust in microservices. They ensure security in

distributed systems through continuous verification,

fine-grained access control, and unified policy

enforcement. Centralized identity governance uses

tools like Azure AD to provide consistent

enforcement and auditing [14]. Integrated security

tools such as Microsoft Defender and Azure Monitor

help with monitoring, threat detection, and

compliance [14]. Model-based and automated

support standardizes Zero Trust, improves team

communication, and simplifies auditing [22]. With

unified frameworks and automated tools,

organizations can balance strong security with

agility.

Audit Trail Governance in Zero Trust replaces

perimeter-based security with continuous

verification, least-privilege access, and tamper-proof

audit logs. Blockchain or similar technologies can

create immutable audit trails for transparency and

non-repudiation [36]. Automated logging records all

actions and data changes to support compliance.

Blockchain-based audit trails also enable secure and

transparent tracking for audits and investigations.

Together, these practices provide a robust and

compliant security framework for microservices in

modern distributed systems.

Optimize Performance

While an incremental rollout of Zero Trust is a

recommended best practice, it must be carefully

managed to avoid performance issues. Best practices

include continuous verification, fine-grained access

control, and dynamic trust evaluation. Service mesh

with sidecar proxies supports Zero Trust with little

code change, though it may increase resource use

 Md. Abdul Momin, International Journal of Science, Engineering and Technology,

 2025, 13:5

[9]. Lightweight, stateless trust mechanisms such as

zero-knowledge proofs help keep response times

fast and scalable [37]. Adaptive load balancing

ensures smooth performance during rollout [38].

Model-based tools streamline development and

make rollout efficient. Together, these practices

provide strong security with minimal performance

overhead. Hardware Acceleration can further

improve Zero Trust in microservices by balancing

security with efficiency. Offloading common

operations like I/O, logging, and compression to

specialized hardware reduces CPU load. FPGA and

NIC-based acceleration speed up networking and

RPC stacks, lowering CPU usage and improving

performance. Programmable FPGA data paths also

enable flexible, low-latency request handling.

Combining runtime Zero Trust with hardware

acceleration ensures secure, scalable, and high-

performance microservice deployments.

Future Direction

Zero Trust Architecture (ZTA) in microservices is now

guided by AI/ML-driven policies and standard

frameworks like NIST to handle modern cyber

threats. ZTA follows the rule of "never trust, always

verify," which means every access request must go

through continuous authentication, strict access

control, and dynamic checks. AI and ML make ZTA

stronger by adding adaptive authentication, real-

time anomaly detection, and automatic policy

enforcement for distributed microservices. These

systems analyze user behavior, device trust, and

context to detect threats early, manage identities,

and ensure least-privilege access while meeting

regulations such as GDPR and HIPAA. AI-powered

ZTA also supports continuous governance,

automates entitlement reviews, and gives smart

dashboards for compliance and risk monitoring. In

cloud and microservices, it helps stop insider threats,

lateral movement, and even risks in AI models

through micro-segmentation and ongoing

monitoring. NIST-led standardization creates a solid

base for policy development and interoperability,

making ZTA reliable and adaptable. By using AI/ML-

enabled ZTA, organizations gain faster threat

response, fewer errors, and stronger protection,

making it a key part of modern microservice security.

II. CONCLUSION

Zero Trust Architecture (ZTA) is very important for

securing microservices because it moves away from

the old perimeter-based security model and ensures

that no user or system is trusted by default. In

microservices, where services are distributed and

constantly changing, ZTA applies continuous

authentication, least-privilege access, and micro-

segmentation so that every interaction is verified and

authorized. This reduces risks like insider threats,

unauthorized access, and attackers moving between

services, which is critical in sensitive areas such as

health records and industrial systems. Advanced ZTA

uses tools like service mesh, container network

interfaces, and intent-based access control to

provide strong security with little performance

impact, as seen in cloud-native 5G systems. Research

shows that ZTA’s main principles—continuous

verification, dynamic access control, and detailed

segmentation—are necessary to face modern

threats, though challenges remain with older

systems. Overall, ZT gives a flexible and strong

framework that improves the security of

microservices by enforcing strict and context-aware

controls at every step.

REFERENCES

1. K. Brown and B. Woolf, "Implementation

patterns for microservices architectures," in Proc.

23rd Conf. Pattern Lang. Programs, 2016, pp. 1–

35.

2. N. Alshuqayran, N. Ali, and R. Evans, "A

systematic mapping study in microservice

architecture," in 2016 IEEE 9th Int. Conf. Service-

Oriented Comput. Appl. (SOCA), 2016, pp. 44–

51.

3. S. Teerakanok, T. Uehara, and A. Inomata,

"Migrating to zero trust architecture: Reviews

and challenges,” Secur. Commun. Netw., vol.

2021, p. 9947347, 2021.

4. O. I. Uzougbo and A. O. Augustine, "A Review of

Authentication and Authorization Mechanisms

in Zero Trust Architecture: Evolution and

Efficiency," unpublished.

 Md. Abdul Momin, International Journal of Science, Engineering and Technology,

 2025, 13:5

5. V. Stafford, "Zero trust architecture,” NIST Spec.

Publ., vol. 800, no. 207, pp. 800–207, 2020.

6. E. B. Fernandez and A. Brazhuk, "A critical

analysis of Zero Trust Architecture (ZTA),”

Comput. Stand. Interfaces, vol. 89, p. 103832,

2024.

7. M. Samonte, J. Aparize, J. Geronimo, and C.

Oriño, "Implementing Zero Trust Security in

Microservice Architecture of Electronic Health

Record," in 2024 4th Int. Conf. Comput. Syst.

(ICCS), 2024, pp. 98–105.

8. R. Alboqmi and R. Gamble, "Enhancing

Microservice Security Through Vulnerability-

Driven Trust in the Service Mesh Architecture,”

Sensors, vol. 25, no. 3, 2025.

9. M. Tsai, S. Lee, and S. Shieh, "Strategy for

Implementing of Zero Trust Architecture,” IEEE

Trans. Rel., vol. 73, pp. 93–100, 2024.

10. H. Yerramsetty, "Zero Trust Architecture in Cloud

Computing: A Paradigm Shift in Platform

Engineering Security,” Int. J. Multidiscip. Res.,

2024.

11. R. Dindigala and S. Dandyala, "Integrating Zero

Trust Architecture with Service Mesh for

Enhanced Cloud Security in DevOps Workflows,”

Int. J. Comput. Inf. Syst., vol. 5, no. 4, 2024.

12. J. Viswanathan, D. Kumar, and S. Kumar, "Zero

Trust Security for Web Applications in

Microservice-Based Environments," in 2024 First

Int. Conf. Data, Comput. Commun. (ICDCC),

2024, pp. 488–494.

13. S. Bondhala, "Modern Defense Paradigms: Zero

Trust Architecture, Network Segmentation, and

Micro-Segmentation," Int. J. Sci. Res. Comput.

Sci. Eng. Inf. Technol., 2025.

14. D. Yaganti, "Securing .Net Microservices

Through Conditional Access and Zero Trust

Principles using Azure AD and OAUTH2," Int. J.

Adv. Res. Sci. Commun. Technol., 2023.

15. R. Gupta, "Beyond the perimeter: Zero-trust

architecture as a framework for cloud API

security," World J. Adv. Res. Rev., vol. 26, no. 1,

2025.

16. O. Okunlola, J. Olaoye, O. Samuel, A. Okunlola,

and O. Alao, "Zero Trust Security Models in

Cloud Environments: Compliance Implications,"

Int. J. Future Eng. Innov, 2025.

17. Y. Ge and Q. Zhu, "Zero Trust for Cyber

Resilience," arXiv:2312.02882, 2023.

18. H. Joshi, "Emerging Technologies Driving Zero

Trust Maturity Across Industries," IEEE Open J.

Comput. Soc., vol. 6, pp. 25–36, 2025.

19. A. Alnaim, "Adaptive Zero Trust Policy

Management Framework in 5G Networks,"

Mathematics, vol. 13, no. 9, 2025.

20. M. Stanojevic, D. Čapko, I. Lendák, S. Stoja, and

B. Jelacic, "Fighting Insider Threats, with Zero-

Trust in Microservice-based, Smart Grid OT

Systems," Acta Polytech. Hung. vol. 20, nº 6,

2023.

21. R. Alboqmi and R. Gamble, "Enhancing

Microservice Security Through Vulnerability-

Driven Trust in the Service Mesh Architecture,”

Sensors, vol. 25, no. 3, 2025.

22. D. Baldwin, M. Henkel, and E. Perjons,

"Introducing model-based tool support for

applying zero-trust security for microservices at

a bank," in Proc, 2024, pp. 180–188.

23. N. Boltz, L. Schmid, B. Taghavi, C. Gerking, and R.

Heinrich, "Modeling and Analyzing Zero Trust

Architectures Regarding Performance and

Security," in 2024, pp. 253–269.

24. V. Kumar and N. Mudavatu, "Zero Trust Security

Architecture for Legacy Systems," Int. J. Sci. Res.

Comput. Sci. Eng. Inf. Technol., 2025.

25. S. Sekar, "Integrating software defined perimeter

and zero trust in platform engineering: A security

framework for modern infrastructure," World J.

Adv. Eng. Technol. Sci., vol. 15, no. 2, 2025.

26. P. Phiayura and S. Teerakanok, "A

Comprehensive Framework for Migrating to

Zero Trust Architecture," IEEE Access, vol. 11, pp.

19487–19511, 2023.

27. R. Jain and B. Farkiani, "Service Mesh:

Architectures, Applications, and

Implementations," arXiv:2405.13333 2024.

28. V. Prajapati, "Role of Identity and Access

Management in Zero Trust Architecture for

Cloud Security: Challenges and Solutions," Int. J.

Adv. Res. Sci. Commun. Technol. 2025.

29. H. Sivaraman, "Zero Trust Identity and Access

Management (IAM) in Multi-Cloud

Environments," ESP J. Eng. Technol. Adv. vol. 3,

no. 6, 2023.

 Md. Abdul Momin, International Journal of Science, Engineering and Technology,

 2025, 13:5

30. R. Mahimalur, "Immutable Secrets Management:

A Zero-Trust Approach to Sensitive Data in

Containers," Int. Res. J. Mod. Eng. Technol. Sci.

2025.

31. S. Tian, T. Shen, B. Gong, F. Bai, and C. Zhang,

"VSSB-Raft: A Secure and Efficient Zero Trust

Consensus Algorithm for Blockchain," ACM

Trans. Sens. Netw. vol.20, pp. 1–22, 2023.

32. S. Pallewatta and M. Babar, "Towards Secure

Management of Edge-Cloud IoT Microservices

using Policy as Code," arXiv:2406.18813, 2024.

33. Z. Niu, Y. Zhu, and L. Dong, "The Runtime Model

Checking Method for Zero Trust Security Policy,"

in Proc 7th Int. Conf. Cyber Secur. Inf. Eng. 2022.

34. S. Kommera, "Enhancing Zero Trust Architecture

with AI-Driven Threat Intelligence in Cloud

Environments," Int. J. Sci. Res. Comput. Sci. Eng.

Inf. Technol. 2025.

35. M. Shah and H. Shah, "AI-driven adaptive

authentication for zero trust security

architectures," Int. J. Sci. Res. Arch. vol. 14, no. 3,

2025.

36. D. Nyang, D. Mohaisen, A. Ahmad, M. Saad, and

M. Ghamdi, "BlockTrail: A Service for Secure and

Transparent Blockchain-Driven Audit Trails, "IEEE

Syst. J, vol. 16, pp. 1367–1378, 2022.

37. S. Talapuru, S. Zaman, A. Pokharel, V. Quach, and

R. Dantu, "ZCube: A Zero-Trust, Zero-

Knowledge, and Zero-Memory Platform for

Privacy and yet Secured Access," in 2024 IEEE 6th

Int. Conf. Trust, Privacy Secur. Intell. Syst. Appl.

(TPS-ISA) 2024, pp. 166–175.

38. K. Che and S. Sheng, "Cloud Native Network

Security Architecture Strategy under Zero Trust

Scenario," in 2023 IEEE 7th Inf. Technol.

Mechatronics Eng. Conf. (ITOEC) vol. 7, 2023, pp.

867–871.

39. M. Kawai, Y. Masuda, Y. Taenaka, Y. Kadobayashi,

and T. Sasada, "Factor Analysis of Learning

Motivation Difference on Cybersecurity Training

with Zero Trust Architecture," IEEE Access, vol.

11, pp. 141358–141374, 2023.

40. C. Koh, L. Jiang, and Y. Lau, "Teaching Software

Development for Real-World Problems Using a

Microservice-Based Collaborative Problem-

Solving Approach," in 2024 IEEE/ACM 46th Int.

Conf. Softw. Eng.: Softw. Eng. Educ. Train. (ICSE-

SEET) 2024, pp. 22–33.

41. S. Mukherjee, Z. Zaheer, J. Merwe, and H. Chang,

"eZTrust: Network-Independent Zero-Trust

Perimeterization for Microservices," in Proc.

2019 ACM Symp. SDN Res., 2019.

42. A. Ebrahimzadeh, R. Glitho, J. Eker, R. Mini, and

M. Raeiszadeh, "Asynchronous Real-Time

Federated Learning for Anomaly Detection in

Microservice Cloud Applications," IEEE Trans.

Mach. Learn. Commun. Netw. vol. 3, pp. 176–

194, 2025.

43. S. Ahmadi, "Autonomous Identity-Based Threat

Segmentation in Zero Trust Architectures,"

arXiv:2501.06281, 2025.

44. S. Oladosu, C. Ike, O. Amoo, A. Afolabi, P.

Adepoju, and A. Ige, "Redefining zero trust

architecture in cloud networks: A conceptual

shift towards granular, dynamic access control

and policy enforcement," Magna Sci. Adv. Res.

Rev., vol. 2, no. 1, 2021.

45. C. Katsis, N. Ringo, D. Thomsen, F. Cicala, and E.

Bertino, "NEUTRON: A Graph-based Pipeline for

Zero-trust Network Architectures," in Proc.

Twelfth ACM Conf. Data Appl. Secur. Privacy

2022

