Javid Ahmad Bhat, 2025, 13:5 ISSN (Online): 2348-4098 ISSN (Print): 2395-4752

An Open Access Journal

Challenges and Bottlenecks in Integrating AI to Teach 21st-Century Skills in Primary, Middle & Secondary Education in Rural Schools of District Bandipora

Javid Ahmad Bhat

PM Shri MS Gulshanabad Hajin

Abstract- The integration of Artificial Intelligence (AI) into teaching 21st-century skills—critical thinking, creativity, communication, collaboration, and digital literacy—presents transformative opportunities for learning. Yet rural regions such as District Bandipora in Jammu & Kashmir face acute barriers that limit adoption and impact. This study examines infrastructural, pedagogical, socio-cultural, administrative, and equity-related challenges to integrating Al-driven pedagogy in primary, middle & secondary schools across Bandipora. Drawing on district-level facts (approximately 850 schools; only 60 ICT labs and about 120 schools with any computer facility), direct observations, stakeholder interviews, and a review of relevant literature, the paper maps the main bottlenecks: lack of computers and technological facilities in schools and homes; non-availability of reliable internet; scarcity of well-trained teachers in Al and digital pedagogy; limited manpower and administrative bottlenecks; disproportionate and irregular parent-teacher meetings (PTMs); and low parental interest in technology-enabled learning. The majority of students lack mobile devices or internet access at home, which exacerbates inequities and weakens the continuity of learning beyond school. We propose a phased, equity-focused strategy combining low-bandwidth and offline AI tools, intensive teacher professional development, infrastructure and maintenance planning, community engagement to boost parental interest, and governance reforms to address procurement, data protection, and human resource constraints. The paper concludes with a prioritized action plan for district-level implementation and an agenda for evaluation and future research..

Keywords- Artificial Intelligence, 21st-century skills, rural education, Bandipora, digital divide, ICT infrastructure, teacher training, parental involvement, administrative bottlenecks.

I. INTRODUCTION

demands skills The 21st century beyond critical foundational literacy and numeracy: thinking, creativity, collaboration, communication, and digital literacy. Artificial Intelligence (AI) technologies—adaptive learning systems, intelligent tutoring, automated formative assessment, and collaborative learning platforms—have the potential to support teaching and learning of these competencies. However, the promise of AI depends on enabling conditions: devices, connectivity, teacher capacity, culturally relevant content, and supportive governance. In rural contexts such as District Bandipora, Jammu & Kashmir, these enabling conditions are frequently absent.

Bandipora encompasses roughly 850 primary and middle schools serving diverse rural communities. Local data indicate only 60 schools have fullyequipped ICT labs and about 120 schools report having any computer facilities at all — a stark indicator of technological scarcity. Beyond schoollevel deficits, most students neither own mobile phones nor have internet access at home, making any reliance on out-of-school digital learning unsustainable. Compounding these constraints are shortages of trained teachers in Al and digital pedagogy, infrastructural gaps internet), manpower shortages, and administrative bottlenecks that slow procurement, deployment, and maintenance. Parental engagement—measured through the frequency and balance of parentteacher meetings (PTMs) and general interest in

© 2025 Javid Ahmad Bhat. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited.

technology-enabled learning—remains weak or uneven.

This paper investigates how these interlocking constraints impede the integration of AI for teaching 21st-century skills in Bandipora's primary and middle schools. The objectives are to (1) diagnose the key infrastructural, pedagogical, and institutional bottlenecks; (2) examine how inequities (school- and household-level) shape opportunities for AI-supported learning; and (3) recommend pragmatic, prioritized interventions for district-level stakeholders, including policymakers, school leaders, teacher educators, NGOs, and technology providers.

II. LITERATURE REVIEW

Research on technology integration in low-resource and rural educational settings highlight recurring themes that are also visible in Bandipora:

- Digital Infrastructure and Access: Studies from diverse low-resource settings show that lack of devices, unstable electricity, and poor internet connectivity are primary barriers to deploying digital learning tools, let alone cloud-based Al services. Offline-first and low-bandwidth solutions have been recommended where connectivity is unreliable.
- Teacher Capacity and Beliefs: Successful Edutech adoption depends on teacher knowledge, confidence, and pedagogical orientation. Where teachers lack training or are comfortable with didactic approaches, technology tends to be used for rote practice rather than higherorder instruction that fosters 21st-century skills.
- Localisation and Equity: Language, culture, and contextual relevance matter. Al models and Edu-tech developed for urban, English-medium classrooms often fail to engage multilingual rural learners; this raises concerns about both effectiveness and equity.
- Governance, Maintenance, and Sustainability:

 Procurement, device maintenance, dedicated funding for upkeep, and accountability frameworks are critical for sustained use. Many pilot projects fail to scale because long-term

maintenance and human-resource plans are absent.

- Parental and Community Engagement: Family support and home access to devices amplify the impact of school-based technology. When households lack devices or parents are disengaged, students' opportunities for continuous learning are reduced.
- The Bandipora case resonates with these themes but also foregrounds acute scale-andintensity problems (e.g., only 60/850 schools with ICT labs), which require adapted strategies tailored to district realities.

III. METHODOLOGY

This paper synthesizes district facts provided by local stakeholders with a mixed-methods approach suitable for a diagnostic study. The methods used include:

- Document analysis: Review of district education office (DEO) reports, school inventories (where available), and policy documents to verify counts of ICT labs and computers.
- Semi-structured interviews: Conversations with district education officers, Head of the Institutions from a purposive sample of 12 schools (including those with ICT labs, those with limited computers, and those with no facilities), 18 teachers, and 8 community stakeholders (parents and local NGO staff) to capture perspectives on constraints and readiness.
- Classroom observations: Short observations in six schools to assess current pedagogical practices, availability of devices, and classroom management related to technology use.
- Stakeholder workshops: Two workshops with teachers and school leaders to triangulate findings and co-develop feasible interventions.

IV. FINDINGS

The findings below synthesize the evidence from district-level facts and field engagement.

Extent of Technological Facilities

- District schools: ≈ 850 primary and middle schools across Bandipora.
- ICT labs: Only 60 schools have dedicated ICT labs, often with limited functional computers.
- Schools with any computer facility: Approximately 120 schools.
- Implication: The overwhelming majority of schools lack basic ICT infrastructure, meaning Al solutions that requires computers, tablets, or smartphones are infeasible at scale without major investment.

Home Access and Continuity of Learning

- Most students do not have mobile phones or internet access at home, severely limiting the feasibility of blended or hybrid models that assume out-of-school digital practice.
- Where students have intermittent household access, it tends to be shared and constrained.

Teacher Training and Human Resources

- There is a lack of well-trained teachers in Al, machine learning concepts, and digital pedagogies suitable for developing 21stcentury skills.
- Many teachers expressed willingness to learn but require sustained, practice-oriented professional development and in-school coaching.
- Shortages of manpower: Schools often function with minimal administrative and technical support; there is no onsite technical staff for device maintenance in most schools.

Infrastructure and Internet Availability

- Internet connectivity is absent or unreliable in many villages; where present, it is often lowbandwidth and expensive.
- Electrical supply is intermittent in some locations, affecting the operation of computing devices.

Administrative and Institutional Bottlenecks

- Procurement processes are slow and bureaucratic; decisions on purchasing devices or software are delayed by lengthy approvals and unclear budgets.
- Maintenance plans and budgets are typically absent, leading to rapid deterioration of devices.
- Data governance and clarity on student data privacy are lacking at the district level.
- Parent–Teacher Meetings and Parental Interest
- PTMs are often irregular, poorly attended, or disproportionately organized (i.e., skewed to certain schools/parents), which undermines sustained community engagement in education projects.
- General parental interest in technology-enabled learning is low in many communities due to limited digital literacy, economic constraints, or skepticism about relevance.

V. DISCUSSION

Integrating AI in Bandipora's schools requires more than technology deployment—it demands an ecosystem approach. The absence of adequate infrastructure, trained personnel, and supportive policy frameworks collectively hampers implementation. Without addressing these foundational issues, introducing AI tools risks deepening existing inequalities rather than bridging them.

Teachers require continuous professional development programs focused on digital literacy, basic Al concepts, and classroom application strategies. Infrastructure must be improved gradually, prioritizing schools with partial readiness. For areas with poor connectivity, low-bandwidth or offline Al tools should be adopted. Finally, awareness campaigns and community engagement initiatives can enhance parental participation and trust in digital education.

Recommendations

 Infrastructure Investment: Establish ICT labs in all schools in a phased manner with reliable power and internet connections.

- Teacher Capacity Building: Conduct district- 4.
 level training workshops on AI tools, digital pedagogy, and 21st-century skill integration.
- Offline Al Solutions: Promote lightweight, 5. locally adapted Al tools that can function with limited or no internet.
- Administrative Reforms: Streamline procurement, maintenance, and accountability processes to reduce bureaucratic delays.
- Community Awareness: Conduct digital literacy drives and improve parental involvement through regular PTMs.
- Policy Support: Include AI literacy in the teacher training curriculum and align local policy frameworks with NEP 2020 goals.

VI. CONCLUSION

Al can significantly enhance 21st-century learning outcomes, but its integration in rural Bandipora faces major challenges related to infrastructure, manpower, training, and socioeconomic barriers. With only a small fraction of schools having ICT facilities and most students lacking digital access at home, equitable Al implementation remains a distant goal. However, through targeted investment, teacher and development, strong community engagement, AI can gradually become a tool of inclusion rather than exclusion. The success of this transition will depend on collective efforts policymakers, by educators, and local communities.

REFERENCES

- 1. Mokoena, O. P., & Seeletse, S. M. (2025). "Al in Rural Classrooms: Challenges and Perspectives from South African Educators". International Journal of Current Educational Studies.
- Focuses on rural educators' views, infrastructure constraints, digital literacy, and cultural/language mis-fit of AI tools in underresourced schools.
- 3. Xie, T. (n.d.). "The Impact and Challenges of Artificial Intelligence on the Quality of Rural Compulsory Education Teaching". Journal of Education, Humanities and Social Sciences.

- 4. Explores the role of Al in rural compulsory education (including teaching quality, equity issues, resource gaps).
- Mustafa, F., Nguyen, H. T. M., & Gao, X. (2024). "The Challenges and Solutions of Technology Integration in Rural Schools: A Systematic Literature Review". International Journal of Educational Research, 126.
- 6. Ithough broader than just AI, this gives a strong foundation about rural technology integration, digital divide, multilevel challenge frameworks.
- 7. Artikel "The Al-driven classroom: A review of 21st century curriculum trends". (2024). PROSPECTS: Quarterly Review of Comparative Education, 54, 645–660.
- 8. Studies how AI is being integrated (or should be integrated) into curricula with focus on 21st-century skills like critical thinking, real-world problem-solving.
- 9. Article "Artificial Intelligence and Data Literacy in Rural Schools' Teaching Practices: Knowledge, Use, and Challenges". (2024). Education Sciences, 15(3), 352
- Focuses specifically on AI, data-literacy, and challenges in rural school teaching practices, emphasising structural inequalities, teacher readiness.
- 11. Maski, K., & Tripathi, S. (2025). "A Study on the Development of 21st Century Skills among Girls at Kanya Shiksha Parisar's in Madhya Pradesh, India". Asian Journal of Education and Social Studies, 51(6), 152-161.
- 12. Although not strictly on AI, this is highly relevant for 21st-century skills in a rural/underserved context in India.
- 13. Amrita Vishwa Vidyapeetham project: "Empowering Rural Children with 21st Century Skills" (2020). Department of Science & Technology, India.
- 14. Amrita Vishwa Vidyapeetham
- 15. Provides a practical project example of developing 21st-century skills in rural India; useful for background/context setting.