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Abstract- Microplastic pollution poses a growing threat to freshwater habitats, impacting aquatic life and ecological
balance. Conventional removal methods are often tended to be expensive and ineffective, prompting interest in
environment friendly and sustainable alternatives. This review highlights the potential of aquatic macrophytes as
natural biofilters for microplastic remediation. It covered the sources and characteristics of microplastics influencing
their interaction with plants, and the primary removal mechanisms, including physical entrapment, surface
adsorption, and root-mediated retention. It emphasizes the role that rhizosphere and biofilm microbial communities
play in aggregation and degradation processes. Aspects that impact removal efficiency are being examined,
including plant morphology, microplastic properties, and water factors. The ecological implications and potential
risks of microplastic-macrophyte interactions are also considered. Finally, significant research gaps are identified,
highlighting the need for long-term, field-based, and integrative studies. Overall, macrophytes offer a promising,
sustainable approach for mitigating microplastic contamination in freshwater environments.
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al,2021; Huang et al,2023). Macrophytes are
l. INTRODUCTION important bioindicators and pollutant
bioaccumulators (Polechonska & Klink,2023; Petrov
et al.,2023), serving as temporary reservoirs that can
extend MP duration and facilitate trophic transfer.
Additionally, MPs are highly resilient in aquatic
conditions, degrading slowly (Yuan et al,2020;
Debroy et al,2022), and their breakdown can
generate nanoplastics, which may pose further
ecological risks (Koelmans et al.,.2015; Jaiswal et al,
2025). Microplastics in water interact with different
co-contaminants (antibiotics, PAHs, heavy metals,
and  pathogens) and  microplastic—pollutant
complexes via multiple physicochemical
mechanisms. (Goutam et al.,2022; Singh et al.,2025).
These complexes can be readily absorbed by plant
roots, resulting in bioaccumulation and potential
transfer through the food chain, as illustrated in
Figure 1. Finally, these particles do not remain in the
environment; they affect living organisms. Aquatic
and terrestrial species, such as fish, mollusks,

evidence of biomagnification of MPs along the food plankton, insects, and birds, consume them, allowing

chain remains limited (Carbery et al.,2018; Miller et plastlc.s to enter s?veral trophic Ie'vels and link
al,2020) aquatic and terrestrial food webs (Srivastava et al.,

2025).

The environmental problem of plastic pollution has
expanded widely, since microplastics have been
found in both freshwater and marine habitats
(Courtene-Jones et al., 2020; Russell and Webster,
2021; Bertoldi et al., 2021). Recent estimates suggest
that marine environments harbor 12.5-125 trillion
MPs (Lindeque et al, 2020), while freshwater
ecosystems act as critical channel for their transfer
into oceans (Lebreton et al., 2017; Li et al., 2018). MPs
obtained from a wide range of sources, including the
fragmentation  of terrestrial  plastic  debris,
agricultural plastics, urban dust, treated wastewater,
and landfill leachates (Galafassi et al, 2022).
Wastewater treatment plants are particularly
significant contributors, releasing millions of
synthetic fibers and microbeads daily into aquatic
systems (Alvim et al., 2020; Turan et al., 2021; Enfrin
et al, 2022). Despite their widespread distribution,

Primary producers in transitional waters, such as
seagrasses and macroalgae, are frequently neglect in
studies of microplastic pollution, even though they
can accumulate significant amounts of MPs (Sfriso et

Aquatic macrophytes including floating species
(Eichhornia crassipes, Lemna minor, Pistia stratiotes)
and emergent species (Typha latifolia, Phragmites
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australis) provide a sustainable method, low-cost,
and eco-friendly strategy for in situ removal of MPs
(Selvaraj & Velvizhi,2021; Sayanthan et al.2024).
Numerous research has reported MP adhesion on
species such as Lemna minor, Sphagnum palustre,
Fucus vesiculosus, and Spirodela polyrhiza (Kal¢ikova
et al., 2020; Rozman et al.,2022; Sawangproh,2024)
emphasizing their potential as natural biofilters. The
adsorption, aggregation, and sedimentation of MPs
are improved by the combination of large root
systems, submerged surfaces, and biofilm formation;
this significantly lowers MPs' mobility, bioavailability,
and downstream transfer to marine habitats (Debroy
et al.2022; Qin et al.2024). Furthermore, aquatic
macrophytes can mitigate the negative effect of MPs
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on the environment by stabilizing sediments,
promoting microbial colonization, and offering
additional pathways for particle removal (Li et
al,2024; Gao et al,2024).

This review aims to synthesize current knowledge on
the role of aquatic macrophytes in microplastic
remediation, focusing the mechanisms, species-
specific efficiencies, and ecological effect of their
phytoremediation  potential. By highlighting
knowledge gaps and recent developments, it
provides a comprehensive framework for the using
macrophytes as natural filters to reduce MP pollution
in freshwater ecosystems.
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Fig.1 Interaction of microplastic with co-pollutants in water and their potential uptake by aquatic
macrophytes through root absorption mechanisms
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Il. SOURCES OF MICROPLASTICS IN
FRESHWATER ECOSYSTEMS

Plastics are commonly classified based on their size
into macroplastics (>25 mm), mesoplastics (5-25
mm), microplastics (1 pm=5 mm), and nanoplastics
(1-100 nm) (Sharma et al, 2023; Chaudhary et
al.,2024). Additionally, some researchers subdivide
microplastics into large microplastics (1-5 mm) and
small microplastics (1 um—-1 mm) to better capture
their environmental behavior and ecological impacts
(Kim et al., 2020).

Some researchers also classify microplastics based
on their origin like primary microplastics and
secondary microplastics (Zhang and Liu, 2018;
Sharma et al. 2023; Song et al. 2024). Primary
microplastics are intentionally manufactured small
plastic particles, such as microbeads in personal care

[ Primary Sources ]

Industrial wastages,
personal care

products, textile fibres

Aquatic Ecosystem

products, synthetic fibers from textiles, and pre-
production pellets used in industrial processes.
These particles often enter aquatic environments
directly through wastewater effluents, industrial
discharges, or stormwater runoff (Alvim et al., 2020;
Turan et al, 2021). In contrast, secondary
microplastics are formed through the fragmentation
and degradation of larger plastic items which
includes packaging materials, plastic bottles,
agricultural films, and fishing gear. Physical,
chemical, and biological weathering processes break
down these macroplastics into smaller particles,
which are subsequently transported into freshwater
ecosystems via surface runoff, rivers, or wastewater
streams (Enfrin et al, 2020; Galafassi et al., 2022).
Figure 2 illustrates the major sources of microplastics
in aquatic environments, including wastewater
effluents, industrial discharges, urban runoff, and
degradation of larger plastic debris.

[ Secondary Sources J

Plastic debris
fragmentation, tire and
road wear, paint

degradation
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Fig.2 Sources of microplastics in aquatic environment

l1l. PHYSICAL AND CHEMICAL
PROPERTIES INFLUENCING
INTERACTION WITH PLANTS

The behavior of MPs in freshwater, including their
adhesion to macrophytes, is largely determined by

their size, shape, density, surface charge, and
chemical composition:

Size and shape: MPs range from 1 pm to 5 mm and
include fragments, fibers, films, and spheres. Fibers
and films with large surface areas are more likely to
entangle with plant roots and submerged surfaces
(Kal"cikova G, 2020; Mcllwraith et al.,2024).
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Density: High-density MPs tend to sink, while low-
density particles float, affecting their availability to
different plant species in the water column (Kumar
et al.2021).

Surface chemistry: Hydrophobicity, functional
groups, and surface roughness influence MP
aggregation, biofilm formation, and adhesion to
plant surfaces (Gao et al.,2025).

Additives and polymer type: Plasticizers, stabilizers,
and different polymer compositions (e.g.,
polyethylene, polypropylene, polystyrene) might
alter interactions with aquatic species and impact the
potential of bioaccumulation (Li et al.,2024).

IV. ROLE OF AQUATIC MACROPHYTES
AS NATURAL FILTERS

The increasing prevalence of MPs in freshwater and
marine environments is growing interest in
developing various effective strategies to limit their
environmental release and accumulation (Ogunola
et al,2018; Tang et al,2023). Out of all these,
phytoremediation has emerged as a simple, cost-
effective, and environmentally sustainable ways for
the in-situ removal of MPs from aquatic systems.
Several studies have demonstrated the adhesion
potential of aquatic macrophytes toward MPs
(Wentzell,2025); however, the interactions between
MPs and macrophytes have not been systematically
explored yet (Mao et al.,2023). Understanding these
interactions is critical for evaluating the ecological
role of macrophytes for the mitigation of
microplastic pollution and for optimizing their
application in water remediation strategies (Gao et
al. 2024).

Aquatic macrophytes contribute significantly in the
mitigation of MPs through a combination of physical
entrapment and adsorption mechanisms (Mateos-
Cardenas et al,2021; Rozman et al,2022). The
structural complexity and physiological traits of
these plants allow them to act as natural filters which
can effectively trap MPs from the water column.
Dense arrangements of roots, stems, and leaves
create physical barriers that reduce MP mobility,
while surface properties such as surface roughness,

hydrophobicity and the presence of biofilms
enhance aggregation and adhesion of particles
(Cheng et al.,2023; Moyal et al,2023). All these
mechanisms collectively promote the retention of
MPs and confine their downstream transport in
freshwater ecosystems.

The efficiency capturing the MPs varies on various
factors like macrophyte species, root architecture,
and surface area. Species having extensive root
systems and larger leaf surface areas provide more
sites for the attachment of MPs (Senavirathna et
al.2022). For example, Hydrilla verticillata and
Mayaca fluviatilis have been reported to retain
significant amounts of MPs in which leaf
morphology and cellulose content playing important
roles (Wang et al,2024). Additionally, the type of
macrophyte like submerged, emergent, or floating
are strongly influences its filtration capacity.
Submerged species, owing to their extensive root
networks and full exposure to the water column, are
often the most effective at entrapping suspended
MPs (Kane & Clare,2019; Chen et al.,2024).

Overall, aquatic macrophytes offer a potential and
sustainable biological approach to reduce the
persistence and mobility of microplastics in
freshwater environments. By understanding species-
specific interactions and optimizing plant selection,
phytoremediation can become a practical strategy
for controlling MP contamination in situ.

V. BIOFILM AND RHIZOSPHERE
INTERACTIONS

Aquatic macrophytes not only provide physical
surfaces for microplastic (MP) entrapment but also
host complex microbial communities on their roots
and leaves, forming biofilms that play a pivotal role
in MP dynamics.

Role of Microbial
Aggregation

Biofilms on macrophyte surfaces consist of bacteria,
fungus, algae, and other microbes embedded in
extracellular polymeric substances (EPS) (Liu et
al.,2020; Chen et al.,2022). These microbial matrices
improve surface stickiness, which promotes MP

Communities in Particle
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aggregation and adherence. Aggregated MPs are
more likely to settle, reducing their mobility in the
water column and facilitating their removal from the
aquatic environment. Biofilm-mediated aggregation
also affects the size, density, and surface properties
of MPs, influencing their interactions with aquatic
plants and other species (Jia et al.,2024).

Role in Degradation

Certain microbes in these biofilms have shown the
ability to partially breakdown plastic polymers.
Bacterial species capable of producing enzymes such
as esterases, hydrolases, or laccases can break down
polymers, inducing fragmentation or surface
modification of MPs (Pathak,2017). While natural
conditions limit MP mineralization, microbial activity
can increase biofilm-mediated fragmentation,
surface oxidation, and reduce MP persistence in
aquatic  systems. Certain bacteria (e.g.
Pseudomonas, Bacillus) and fungi (e.g., Aspergillus,
Penicillium) produce enzymes such as esterases,
hydrolases, and laccases that can partially
breakdown plastic polymers, change their surface
properties, and  increase  biofilm-mediated
aggregation (Yang et al.,2020; Kal¢ikova et al., 2023;
Sun et al.,2023).

Rhizosphere Interactions

The rhizosphere, the zone around plant roots, is
particularly active in MP dynamics. Root exudates
provide nutrients that promote microbial growth
and biofilm formation, which enhances MP adhesion
and aggregation (Wang et al,2024). These
interactions form a synergistic system in which
aquatic macrophytes and their associated microbial
communities  restrict MP  mobility, improve
sedimentation, and potentially contribute to
polymer degradation (Dovidat et al., 2020; Wang et
al.2025).

Overall, biofilm and rhizosphere interactions
highlight ~ the  biological = component  of
phytoremediation, demonstrating that microbial
communities associated with macrophytes are
essential partners in the aggregation, retention, and
partial degradation of microplastics in freshwater
ecosystems. Table 1 summarizes the key microbial
taxa in biofilms and the rhizosphere that are involved

in microplastic aggregation and degradation.
Bacteria such as Pseudomonas, Bacillus, and
Rhodococcus, along with fungal species like

Aspergillus and Penicillium, contribute to biofilm
formation, particle aggregation, and enzymatic
degradation of microplastics, thereby influencing
their fate and transport in aquatic ecosystems.

Table 1. Key microbial taxa in biofilms and rhizosphere involved in microplastic aggregation and
degradation

[Microbial Group |[Mechanism || Effect ||References |
Bacteria (e.g.,||Enzyme-mediated degradation||Partial  polymer  breakdown, Srngkga aI.,202:;
Pseudomonas, Bacillus) ||(esterases, hydrolases) surface modification al. 2025
Fungi (e.g., Aspergillus,||Surface oxidation, biofilm||Fragmentation and aggregation Wu et al. 2023
Penicillium) formation of MPs N

.. ||EPS  production, biofilm||/Aggregation and sedimentation|Debroy et al.,2022;
Algae & Cyanobacteria matrix formation of MPs Rosati et al.,2024

. . Root exudate-stimulated||[Enhanced MP adhesion and .

Rhizosphere microbes biofilm growth localized degradation Dovidat et al., 2020

VI. FACTORS AFFECTING REMOVAL
EFFICIENCY

The efficiency of microplastic (MP) removal by
aquatic macrophytes is influenced by a complex
interplay of water quality parameters, microplastic

characteristics, and plant-specific traits. Figure 3
illustrates the interaction of these various factors
influencing  microplastic removal by aquatic
macrophytes.

Water Parameters

pH and temperature: These factors affect the surface
charge of both microplastics and plant tissues,
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influencing adsorption and aggregation behavior
(Senavirathna et al.2022).

Turbidity and suspended solids: High turbidity can
limit light penetration, reducing plant growth and
surface contact with MPs.

Dissolved organic matter (DOM): DOM can either
enhance or inhibit MP adsorption by altering the
hydrophobicity of the surrounding medium (Fan et
al.,2024).

Hydrodynamic conditions: Water flow rate and
turbulence determine the contact time between MPs
and plant surfaces.

Microplastic Properties

Size and shape: Smaller MPs (<100 pm) tend to be
more easily trapped within biofilms and root mats,
while fibers and fragments show different deposition
patterns.

Polymer type and density: Low-density plastics (e.g.,
PE, PP) remain suspended and interact with floating
plants, whereas high-density types (e.g., PVC) settle
near submerged roots.

Surface roughness and aging: Weathered MPs have
more functional groups and greater affinity for
biofilm attachment.
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Fig.3 Factors influencing removal efficiency of
Microplastic by Aquatic Macrophytes

Plant Traits

Root architecture and surface area: MPs have a
higher trapping potential when their roots are
densely fibrous or hairy.

Exudate secretion: Root exudates can modify local
pH and enhance biofilm formation, indirectly
affecting MP retention.

Growth form: The ability of floating, submerged, and
emergent macrophytes to intercept MPs varies by
ecological zone.

Biofilm association: Plants supporting dense
microbial biofilms show higher MP entrapment due
to enhanced aggregation and adhesion (Li et
al.,2024).

VII. ECOLOGICAL AND
ENVIRONMENTAL IMPLICATIONS

The interaction of microplastics with aquatic
macrophytes has significant ecological and
environmental implications, influencing both plant
health and overall ecosystem functioning (Kumar et
al,2022; Li et al,2024). The accumulation of
microplastics in the rhizosphere can hinder root
growth, limit nutrient uptake, may inhibit
photosynthetic efficiency, ultimately impairing plant
productivity (Ren et al, 2021; Azeem et al, 2021).
Furthermore, co-contaminants including heavy
metals, polycyclic aromatic hydrocarbons (PAHs),
and antibiotics can be carried by microplastics,
intensifying phytotoxic effects and changing plant
metabolic processes (Li et al., 2020; Narwal et al.,
2024). These interactions may also disturb the
rhizospheric microbial community structure and
nutrient cycling, which are essential for maintaining
aquatic ecosystem stability (Schmidt et al.,2019; Gao
et al,, 2025). In addition, floating microplastics impair
oxygen exchange and light penetration, which has a
detrimental effect on submerged vegetation and
primary productivity in aquatic systems (Prata et al.,
2020).

Beyond direct impacts on  macrophytes,
microplastics pose indirect risks through trophic
transfer. Aquatic plant-retained particles can enter
the food web, where they are ingested by herbivores
and subsequently transferred to higher trophic
levels, resulting in potential bioaccumulation and
biomagnification (Wright et al, 2013; Eerkes-
Medrano et al., 2015). Furthermore, microplastics
extracted or trapped by plants are not permanently
sequestered they may be released back into the
environment through plant decay, sediment
resuspension, or hydrological fluctuations (Wang et
al, 2024). Such remobilization and fragmentation
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contribute to the persistence and secondary
pollution of microplastics in aquatic ecosystems.
Addressing these challenges requires incorporated
management approaches that combine
phytoremediation with plastic waste reduction,
improved wastewater treatment, and sustainable
ecosystem restoration strategies (Sharma and
Chatterjee, 2017).

VIil. RESEARCH GAPS AND FUTURE
DIRECTIONS

Despite an abundance of research showing the
potential of aquatic macrophytes to eliminate
contaminants like microplastic (Tang,2023; Gecheva
et al.,2025), heavy metals (Eid et al.,2020; Singh et
al,2025) and organic pollutants (Dhir et al,2009;
Xiao et al.,2021) there are still significant challenges
that prevent these systems from being fully utilized.
We are unaware of their long-term efficacy and
ecological effects in natural environments because
majority of research are laboratory-based and short-
term. Field-scale assessments are particularly
lacking, which are crucial for the evaluation of
seasonal fluctuations, plant health, pollutant
dynamics, and resilience to shifting climate and
water quality (Brix, 1997; Vymazal, 2011). Without
such comprehensive, long-term studies, it is difficult
to predict the sustainability and effectiveness of
constructed wetlands and other nature-based
solutions across different ecosystems and
geographical regions (Thorslund et al.,2017).

Another critical research gap is the inadequate
knowledge of co-pollutant interactions, particularly
the combined effects of nutrients, heavy metals,
organic contaminants, and emerging pollutants like
microplastics (Liu et al.2023; Shaji et al.,2025). The
fate, bioavailability, and the potential synergistic or
antagonistic impacts of these co-occurring
contaminants remain largely unexplored, which
limited our capability to optimize remediation
strategies (Ye et al, 2017; Narwal et al, 2024).
Furthermore, research combining current
monitoring instruments, molecular-level analysis of
rhizosphere microbial communities, and mechanistic
understandings  of  pollution  uptake and
transformation is required. Addressing up these

gaps will aid in the development of robust,
ecologically integrated, multipurpose  water
treatment systems that enhance ecosystem services

and biodiversity while contributing to water quality.
IX. CONCLUSION

In conclusion, aquatic macrophytes provide an
efficient and sustainable way to reduce the
microplastic pollution in freshwater environments.
These plants can capture, aggregate, and possibly
break down microplastic particles while also
improving water quality and supporting biodiversity
through mechanisms like root adsorption, surface
entanglement, and interactions with rhizosphere
microbial communities. Although there have been
promising laboratory and small-scale field studies,
there have been few long-term and large-scale
evaluations, and little is known about the fate of
microplastics in plant tissues and sediments.
Addressing these gaps through field-based research,
studies on co-pollutant interactions, and integrated
remediation strategies will be crucial for optimizing
macrophyte-based interventions. Overall, using
aquatic plants as natural filters is a multifunctional,
environmentally  responsible  approach  that
integrates ecosystem restoration and water
purification, providing an effective way to
microplastics in an environmentally sustainable
manner.
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