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I. INTRODUCTION 
 

The environmental problem of plastic pollution has 

expanded widely, since microplastics have been 

found in both freshwater and marine habitats 

(Courtene-Jones et al., 2020; Russell and Webster, 

2021; Bertoldi et al., 2021). Recent estimates suggest 

that marine environments harbor 12.5–125 trillion 

MPs (Lindeque et al., 2020), while freshwater 

ecosystems act as critical channel for their transfer 

into oceans (Lebreton et al., 2017; Li et al., 2018). MPs 

obtained from a wide range of sources, including the 

fragmentation of terrestrial plastic debris, 

agricultural plastics, urban dust, treated wastewater, 

and landfill leachates (Galafassi et al., 2022). 

Wastewater treatment plants are particularly 

significant contributors, releasing millions of 

synthetic fibers and microbeads daily into aquatic 

systems (Alvim et al., 2020; Turan et al., 2021; Enfrin 

et al., 2022). Despite their widespread distribution, 

evidence of biomagnification of MPs along the food 

chain remains limited (Carbery et al.,2018; Miller et 

al.,2020). 

 

Primary producers in transitional waters, such as 

seagrasses and macroalgae, are frequently neglect in 

studies of microplastic pollution, even though they 

can accumulate significant amounts of MPs (Sfriso et 

al.,2021; Huang et al.,2023). Macrophytes are 

important bioindicators and pollutant 

bioaccumulators (Polechońska & Klink,2023; Petrov 

et al.,2023), serving as temporary reservoirs that can 

extend MP duration and facilitate trophic transfer. 

Additionally, MPs are highly resilient in aquatic 

conditions, degrading slowly (Yuan et al.,2020; 

Debroy et al.,2022), and their breakdown can 

generate nanoplastics, which may pose further 

ecological risks (Koelmans et al.,2015; Jaiswal et al., 

2025). Microplastics in water interact with different 

co-contaminants (antibiotics, PAHs, heavy metals, 

and pathogens) and microplastic–pollutant 

complexes via multiple physicochemical 

mechanisms. (Goutam et al.,2022; Singh et al.,2025). 

These complexes can be readily absorbed by plant 

roots, resulting in bioaccumulation and potential 

transfer through the food chain, as illustrated in 

Figure 1. Finally, these particles do not remain in the 

environment; they affect living organisms. Aquatic 

and terrestrial species, such as fish, mollusks, 

plankton, insects, and birds, consume them, allowing 

plastics to enter several trophic levels and link 

aquatic and terrestrial food webs (Srivastava et al., 

2025). 

 

Aquatic macrophytes including floating species 

(Eichhornia crassipes, Lemna minor, Pistia stratiotes) 

and emergent species (Typha latifolia, Phragmites 
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australis) provide a sustainable method, low-cost, 

and eco-friendly strategy for in situ removal of MPs 

(Selvaraj & Velvizhi,2021; Sayanthan et al.,2024). 

Numerous research has reported MP adhesion on 

species such as Lemna minor, Sphagnum palustre, 

Fucus vesiculosus, and Spirodela polyrhiza (Kalčíková 

et al., 2020; Rozman et al.,2022; Sawangproh,2024) 

emphasizing their potential as natural biofilters. The 

adsorption, aggregation, and sedimentation of MPs 

are improved by the combination of large root 

systems, submerged surfaces, and biofilm formation; 

this significantly lowers MPs' mobility, bioavailability, 

and downstream transfer to marine habitats (Debroy 

et al.,2022; Qin et al.,2024). Furthermore, aquatic 

macrophytes can mitigate the negative effect of MPs 

on the environment by stabilizing sediments, 

promoting microbial colonization, and offering 

additional pathways for particle removal (Li et 

al,2024; Gao et al,2024). 

 

This review aims to synthesize current knowledge on 

the role of aquatic macrophytes in microplastic 

remediation, focusing the mechanisms, species-

specific efficiencies, and ecological effect of their 

phytoremediation potential. By highlighting 

knowledge gaps and recent developments, it 

provides a comprehensive framework for the using 

macrophytes as natural filters to reduce MP pollution 

in freshwater ecosystems. 

                                                                                                                       

 

 

 

 

Fig.1 Interaction of microplastic with co-pollutants in water and their potential uptake by aquatic 

macrophytes through root absorption mechanisms 

 



 Prateek Srivastava, International Journal of Science, Engineering and Technology, 

 2025, 13:5 

 

3 

 

 

II. SOURCES OF MICROPLASTICS IN 

FRESHWATER ECOSYSTEMS 
 

Plastics are commonly classified based on their size 

into macroplastics (>25 mm), mesoplastics (5–25 

mm), microplastics (1 μm–5 mm), and nanoplastics 

(1–100 nm) (Sharma et al., 2023; Chaudhary et 

al.,2024). Additionally, some researchers subdivide 

microplastics into large microplastics (1–5 mm) and 

small microplastics (1 μm–1 mm) to better capture 

their environmental behavior and ecological impacts 

(Kim et al., 2020).  

 

Some researchers also classify microplastics based 

on their origin like primary microplastics and 

secondary microplastics (Zhang and Liu, 2018; 

Sharma et al. 2023; Song et al. 2024). Primary 

microplastics are intentionally manufactured small 

plastic particles, such as microbeads in personal care 

products, synthetic fibers from textiles, and pre-

production pellets used in industrial processes. 

These particles often enter aquatic environments 

directly through wastewater effluents, industrial 

discharges, or stormwater runoff (Alvim et al., 2020; 

Turan et al., 2021). In contrast, secondary 

microplastics are formed through the fragmentation 

and degradation of larger plastic items which 

includes packaging materials, plastic bottles, 

agricultural films, and fishing gear. Physical, 

chemical, and biological weathering processes break 

down these macroplastics into smaller particles, 

which are subsequently transported into freshwater 

ecosystems via surface runoff, rivers, or wastewater 

streams (Enfrin et al., 2020; Galafassi et al., 2022). 

Figure 2 illustrates the major sources of microplastics 

in aquatic environments, including wastewater 

effluents, industrial discharges, urban runoff, and 

degradation of larger plastic debris. 

 

 
 

Fig.2 Sources of microplastics in aquatic environment 

III. PHYSICAL AND CHEMICAL 

PROPERTIES INFLUENCING 

INTERACTION WITH PLANTS 
 

The behavior of MPs in freshwater, including their 

adhesion to macrophytes, is largely determined by 

their size, shape, density, surface charge, and 

chemical composition: 

Size and shape: MPs range from 1 μm to 5 mm and 

include fragments, fibers, films, and spheres. Fibers 

and films with large surface areas are more likely to 

entangle with plant roots and submerged surfaces 

(Kalˇcíkova G, 2020; McIlwraith et al.,2024). 
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Density: High-density MPs tend to sink, while low-

density particles float, affecting their availability to 

different plant species in the water column (Kumar 

et al.,2021). 

 

Surface chemistry: Hydrophobicity, functional 

groups, and surface roughness influence MP 

aggregation, biofilm formation, and adhesion to 

plant surfaces (Gao et al.,2025). 

 

Additives and polymer type: Plasticizers, stabilizers, 

and different polymer compositions (e.g., 

polyethylene, polypropylene, polystyrene) might 

alter interactions with aquatic species and impact the 

potential of bioaccumulation (Li et al.,2024). 

 

IV. ROLE OF AQUATIC MACROPHYTES 

AS NATURAL FILTERS 
 

The increasing prevalence of MPs in freshwater and 

marine environments is growing interest in 

developing various effective strategies to limit their 

environmental release and accumulation (Ogunola 

et al.,2018; Tang et al.,2023). Out of all these, 

phytoremediation has emerged as a simple, cost-

effective, and environmentally sustainable ways for 

the in-situ removal of MPs from aquatic systems. 

Several studies have demonstrated the adhesion 

potential of aquatic macrophytes toward MPs 

(Wentzell,2025); however, the interactions between 

MPs and macrophytes have not been systematically 

explored yet (Mao et al.,2023). Understanding these 

interactions is critical for evaluating the ecological 

role of macrophytes for the mitigation of 

microplastic pollution and for optimizing their 

application in water remediation strategies (Gao et 

al.,2024). 

 

Aquatic macrophytes contribute significantly in the 

mitigation of MPs through a combination of physical 

entrapment and adsorption mechanisms (Mateos-

Cárdenas et al.,2021; Rozman et al.,2022). The 

structural complexity and physiological traits of 

these plants allow them to act as natural filters which 

can effectively trap MPs from the water column. 

Dense arrangements of roots, stems, and leaves 

create physical barriers that reduce MP mobility, 

while surface properties such as surface roughness, 

hydrophobicity and the presence of biofilms 

enhance aggregation and adhesion of particles 

(Cheng et al.,2023; Moyal et al.,2023). All these 

mechanisms collectively promote the retention of 

MPs and confine their downstream transport in 

freshwater ecosystems. 

 

The efficiency capturing the MPs varies on various 

factors like macrophyte species, root architecture, 

and surface area. Species having extensive root 

systems and larger leaf surface areas provide more 

sites for the attachment of MPs (Senavirathna et 

al.,2022). For example, Hydrilla verticillata and 

Mayaca fluviatilis have been reported to retain 

significant amounts of MPs in which leaf 

morphology and cellulose content playing important 

roles (Wang et al.,2024). Additionally, the type of 

macrophyte like submerged, emergent, or floating 

are strongly influences its filtration capacity. 

Submerged species, owing to their extensive root 

networks and full exposure to the water column, are 

often the most effective at entrapping suspended 

MPs (Kane & Clare,2019; Chen et al.,2024). 

 

Overall, aquatic macrophytes offer a potential and 

sustainable biological approach to reduce the 

persistence and mobility of microplastics in 

freshwater environments. By understanding species-

specific interactions and optimizing plant selection, 

phytoremediation can become a practical strategy 

for controlling MP contamination in situ. 

 

V. BIOFILM AND RHIZOSPHERE 

INTERACTIONS 
 

Aquatic macrophytes not only provide physical 

surfaces for microplastic (MP) entrapment but also 

host complex microbial communities on their roots 

and leaves, forming biofilms that play a pivotal role 

in MP dynamics. 

 

Role of Microbial Communities in Particle 

Aggregation 

Biofilms on macrophyte surfaces consist of bacteria, 

fungus, algae, and other microbes embedded in 

extracellular polymeric substances (EPS) (Liu et 

al.,2020; Chen et al.,2022). These microbial matrices 

improve surface stickiness, which promotes MP 
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aggregation and adherence. Aggregated MPs are 

more likely to settle, reducing their mobility in the 

water column and facilitating their removal from the 

aquatic environment. Biofilm-mediated aggregation 

also affects the size, density, and surface properties 

of MPs, influencing their interactions with aquatic 

plants and other species (Jia et al.,2024). 

 

Role in Degradation 

Certain microbes in these biofilms have shown the 

ability to partially breakdown plastic polymers. 

Bacterial species capable of producing enzymes such 

as esterases, hydrolases, or laccases can break down 

polymers, inducing fragmentation or surface 

modification of MPs (Pathak,2017). While natural 

conditions limit MP mineralization, microbial activity 

can increase biofilm-mediated fragmentation, 

surface oxidation, and reduce MP persistence in 

aquatic systems. Certain bacteria (e.g., 

Pseudomonas, Bacillus) and fungi (e.g., Aspergillus, 

Penicillium) produce enzymes such as esterases, 

hydrolases, and laccases that can partially 

breakdown plastic polymers, change their surface 

properties, and increase biofilm-mediated 

aggregation (Yang et al.,2020; Kalčíková et al., 2023; 

Sun et al.,2023). 

 

Rhizosphere Interactions 

The rhizosphere, the zone around plant roots, is 

particularly active in MP dynamics. Root exudates 

provide nutrients that promote microbial growth 

and biofilm formation, which enhances MP adhesion 

and aggregation (Wang et al.,2024). These 

interactions form a synergistic system in which 

aquatic macrophytes and their associated microbial 

communities restrict MP mobility, improve 

sedimentation, and potentially contribute to 

polymer degradation (Dovidat et al., 2020; Wang et 

al.,2025). 

 

Overall, biofilm and rhizosphere interactions 

highlight the biological component of 

phytoremediation, demonstrating that microbial 

communities associated with macrophytes are 

essential partners in the aggregation, retention, and 

partial degradation of microplastics in freshwater 

ecosystems. Table 1 summarizes the key microbial 

taxa in biofilms and the rhizosphere that are involved 

in microplastic aggregation and degradation. 

Bacteria such as Pseudomonas, Bacillus, and 

Rhodococcus, along with fungal species like 

Aspergillus and Penicillium, contribute to biofilm 

formation, particle aggregation, and enzymatic 

degradation of microplastics, thereby influencing 

their fate and transport in aquatic ecosystems. 

 

Table 1. Key microbial taxa in biofilms and rhizosphere involved in microplastic aggregation and 

degradation 

Microbial Group Mechanism  Effect References 

Bacteria (e.g., 

Pseudomonas, Bacillus) 

Enzyme-mediated degradation 

(esterases, hydrolases) 

Partial polymer breakdown, 

surface modification 

Othman et al.,2021; 

Procházková et 

al.,2025 

Fungi (e.g., Aspergillus, 

Penicillium) 

Surface oxidation, biofilm 

formation 

Fragmentation and aggregation 

of MPs 
 Wu et al.,2023 

Algae & Cyanobacteria 
EPS production, biofilm 

matrix formation 

Aggregation and sedimentation 

of MPs 

Debroy et al.,2022; 

Rosati et al.,2024 

Rhizosphere microbes 
Root exudate-stimulated 

biofilm growth 

Enhanced MP adhesion and 

localized degradation 
 Dovidat et al., 2020 

VI. FACTORS AFFECTING REMOVAL 

EFFICIENCY 
 

The efficiency of microplastic (MP) removal by 

aquatic macrophytes is influenced by a complex 

interplay of water quality parameters, microplastic 

characteristics, and plant-specific traits. Figure 3 

illustrates the interaction of these various factors 

influencing microplastic removal by aquatic 

macrophytes. 

Water Parameters 

pH and temperature: These factors affect the surface 

charge of both microplastics and plant tissues, 
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influencing adsorption and aggregation behavior 

(Senavirathna et al.,2022). 

 

Turbidity and suspended solids: High turbidity can 

limit light penetration, reducing plant growth and 

surface contact with MPs. 

Dissolved organic matter (DOM): DOM can either 

enhance or inhibit MP adsorption by altering the 

hydrophobicity of the surrounding medium (Fan et 

al.,2024). 

Hydrodynamic conditions: Water flow rate and 

turbulence determine the contact time between MPs 

and plant surfaces. 

 

Microplastic Properties 

Size and shape: Smaller MPs (<100 µm) tend to be 

more easily trapped within biofilms and root mats, 

while fibers and fragments show different deposition 

patterns. 

Polymer type and density: Low-density plastics (e.g., 

PE, PP) remain suspended and interact with floating 

plants, whereas high-density types (e.g., PVC) settle 

near submerged roots. 

Surface roughness and aging: Weathered MPs have 

more functional groups and greater affinity for 

biofilm attachment. 

 

 
Fig.3 Factors influencing removal efficiency of 

Microplastic by Aquatic Macrophytes 

 

Plant Traits 

Root architecture and surface area: MPs have a 

higher trapping potential when their roots are 

densely fibrous or hairy. 

Exudate secretion: Root exudates can modify local 

pH and enhance biofilm formation, indirectly 

affecting MP retention. 

Growth form: The ability of floating, submerged, and 

emergent macrophytes to intercept MPs varies by 

ecological zone. 

Biofilm association: Plants supporting dense 

microbial biofilms show higher MP entrapment due 

to enhanced aggregation and adhesion (Li et 

al.,2024). 

 

VII. ECOLOGICAL AND 

ENVIRONMENTAL IMPLICATIONS 
 

The interaction of microplastics with aquatic 

macrophytes has significant ecological and 

environmental implications, influencing both plant 

health and overall ecosystem functioning (Kumar et 

al.,2022; Li et al.,2024). The accumulation of 

microplastics in the rhizosphere can hinder root 

growth, limit nutrient uptake, may inhibit 

photosynthetic efficiency, ultimately impairing plant 

productivity (Ren et al., 2021; Azeem et al., 2021). 

Furthermore, co-contaminants including heavy 

metals, polycyclic aromatic hydrocarbons (PAHs), 

and antibiotics can be carried by microplastics, 

intensifying phytotoxic effects and changing plant 

metabolic processes (Li et al., 2020; Narwal et al., 

2024). These interactions may also disturb the 

rhizospheric microbial community structure and 

nutrient cycling, which are essential for maintaining 

aquatic ecosystem stability (Schmidt et al.,2019; Gao 

et al., 2025). In addition, floating microplastics impair 

oxygen exchange and light penetration, which has a 

detrimental effect on submerged vegetation and 

primary productivity in aquatic systems (Prata et al., 

2020). 

 

Beyond direct impacts on macrophytes, 

microplastics pose indirect risks through trophic 

transfer. Aquatic plant-retained particles can enter 

the food web, where they are ingested by herbivores 

and subsequently transferred to higher trophic 

levels, resulting in potential bioaccumulation and 

biomagnification (Wright et al., 2013; Eerkes-

Medrano et al., 2015). Furthermore, microplastics 

extracted or trapped by plants are not permanently 

sequestered they may be released back into the 

environment through plant decay, sediment 

resuspension, or hydrological fluctuations (Wang et 

al., 2024). Such remobilization and fragmentation 
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contribute to the persistence and secondary 

pollution of microplastics in aquatic ecosystems. 

Addressing these challenges requires incorporated 

management approaches that combine 

phytoremediation with plastic waste reduction, 

improved wastewater treatment, and sustainable 

ecosystem restoration strategies (Sharma and 

Chatterjee, 2017). 

 

VIII. RESEARCH GAPS AND FUTURE 

DIRECTIONS 
 

Despite an abundance of research showing the 

potential of aquatic macrophytes to eliminate 

contaminants like microplastic (Tang,2023; Gecheva 

et al.,2025), heavy metals (Eid et al.,2020; Singh et 

al.,2025) and organic pollutants (Dhir et al.,2009; 

Xiao et al.,2021) there are still significant challenges 

that prevent these systems from being fully utilized. 

We are unaware of their long-term efficacy and 

ecological effects in natural environments because 

majority of research are laboratory-based and short-

term. Field-scale assessments are particularly 

lacking, which are crucial for the evaluation of 

seasonal fluctuations, plant health, pollutant 

dynamics, and resilience to shifting climate and 

water quality (Brix, 1997; Vymazal, 2011). Without 

such comprehensive, long-term studies, it is difficult 

to predict the sustainability and effectiveness of 

constructed wetlands and other nature-based 

solutions across different ecosystems and 

geographical regions (Thorslund et al.,2017). 

 

Another critical research gap is the inadequate 

knowledge of co-pollutant interactions, particularly 

the combined effects of nutrients, heavy metals, 

organic contaminants, and emerging pollutants like 

microplastics (Liu et al.,2023; Shaji et al.,2025). The 

fate, bioavailability, and the potential synergistic or 

antagonistic impacts of these co-occurring 

contaminants remain largely unexplored, which 

limited our capability to optimize remediation 

strategies (Ye et al., 2017; Narwal et al., 2024). 

Furthermore, research combining current 

monitoring instruments, molecular-level analysis of 

rhizosphere microbial communities, and mechanistic 

understandings of pollution uptake and 

transformation is required. Addressing up these 

gaps will aid in the development of robust, 

ecologically integrated, multipurpose water 

treatment systems that enhance ecosystem services 

and biodiversity while contributing to water quality. 

 

IX. CONCLUSION 
 

 In conclusion, aquatic macrophytes provide an 

efficient and sustainable way to reduce the      

microplastic pollution in freshwater environments. 

These plants can capture, aggregate, and possibly 

break down microplastic particles while also 

improving water quality and supporting biodiversity 

through mechanisms like root adsorption, surface 

entanglement, and interactions with rhizosphere 

microbial communities. Although there have been 

promising laboratory and small-scale field studies, 

there have been few long-term and large-scale 

evaluations, and little is known about the fate of 

microplastics in plant tissues and sediments. 

Addressing these gaps through field-based research, 

studies on co-pollutant interactions, and integrated 

remediation strategies will be crucial for optimizing 

macrophyte-based interventions. Overall, using 

aquatic plants as natural filters is a multifunctional, 

environmentally responsible approach that 

integrates ecosystem restoration and water 

purification, providing an effective way to 

microplastics in an environmentally sustainable 

manner. 
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