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Abstract- Accurate and Interpretable toxicity prediction re- mains fundamental in computational chemistry and drug
discov- ery. We propose MolGraphormer, a Transformer-GNN hybrid architecture integrating Graph Neural Network
message passing with self-attention mechanisms for molecular property prediction. Our model incorporates
substructure-aware embeddings via multi-head attention, edge-conditioned message passing, and hierarchical
graph aggregation, enabling both local and global molecular reasoning. Evaluated on the Tox21 benchmark dataset,
MolGraphormer achieves competitive performance with F1-Score of 0.6697 and AUC-ROC of 0.7806, while
maintaining strong recall (0.7787) for identifying toxic compounds. We employ Monte Carlo Dropout and
Temperature Scaling for uncertainty quantification, Combined with uncertainty quantification and attention-based
interpretability, MolGraphormer offers a practical framework for drug safety assessment and regulatory toxicology.

Keywords: Graph Neural Networks, Molecular Toxicity, Transformer attention, uncertainty quantification, drug
discovery, interpretable Al.

. INTRODUCTION

Comprehensive uncertainty quantification with
MC Dropout(ECE = 0.0851) and temperature
scaling

Superior recall(0.7787) critical for safety-critical
toxicity screening.

Molecular toxicity prediction is critical in drug °
discovery, regulatory science, and environmental risk
assessment. Tra- ditional QSAR models rely on
handcrafted descriptors and linear methods that fail ®
to capture complex structural patterns. GNNs have

emerged as powerful alternatives by modeling
molecules as Non-Euclidean graph structures [1].
However, standard message-passing GNNs exhibit
limitations including restricted receptive fields,
limited interpretability, and inefficient modeling of
long-range dependencies.

We introduce MolGraphormer, a Transformer-
enhanced GNN framework integrating self-attention
with graph message passing. Unlike conventional
GNNs aggregating only local neighborhoods,
MolGraphormer employs hierarchical molecu- lar
reasoning to capture both long-range chemical
interactions and long-range structural
dependencies.

A. Contributions

Our main contributions include:

e A hybrid Transformer-GNN architecture
achieving F1- score of 0.6697 and AUC-ROC of
0.7806 on Tox21 benchmark

e Analysis of attention patterns correlating with
known toxicophores
¢ Open implementation enabling reproducibility

Il. RELATED WORK

GNNs have proven effective for molecular modeling
[1]. Kipf and Welling [2] introduced spectral graph
convolutions, while Gilmer et al. [3] established the
message-passing neural networks framework.
Recent work combines GNNs with Transformers for
molecular property prediction [4], [5].

For uncertainty quantification, Gal and Ghahramani
[6] proposed MC Dropout as Bayesian
approximation, while Guo et al. [7] introduced
temperature scaling for calibration. Ying et al. [8]
developed GNNExplainer for interpretability through
subgraph explanations.
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1. METHODOLOGY

A. Dataset and Preprocessing

We evaluate Tox21, containing 7,831 compounds
tested across 12 toxicity assays. We formulate binary
classification where compounds testing positive on
an assay are labeled toxic. The dataset contains 2,872
toxic (36.7%) and 4,959 non- toxic (63.3%)
compounds. We use 80% (6,264 compounds) for
training and 20% (1,567 compounds) for testing,
with 15% of training data (936 molecules) reserved
for validation.

B. Molecule Graph Construction

Molecules are represented as attributed graphs
where atoms are nodes and bonds are edges.

Node features (8 dimensions): Atomic number, atom

degree, formal charge, hybridization state,
aromaticity, hydrogen count, ring membership,
atomic mass.

Edge features (3 dimensions): Bond type (single,
double, triple, aromatic), conjugation, ring
membership.

Global features (8 dimensions): Molecular weight,
LogP, H-Bond donors/acceptors, TPSA, rotatable
bonds, aro- matic/aliphatic ring counts.

C. MolGraphormer Architecture

Our architecture consists of four components:

1. Embedding Layer: Node features are projected
from 8 to 128 dimensions with batch
normalization. Global features are projected to
64 dimensions. RelLU activation provides non-
linearity.

2. Graph Attention Layers: We employ 4 layers of
multi- head Graph Attention (4 heads) with
edge-conditioning. Each layer includes residual
connections:
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Batch normalization and dropout (0.2) provide
regularization.

3. Graph Pooling: We combine mean and max
pooling:

hgraph = [hmean||hmax||hglobal] (3)

4. Classification Head: Three-layer MLP: 320 -
128 - 64 — 2 with RelU and progressive
dropout (0.5, 0.4). Softmax output for binary
classification.

D. Training Configuration

Optimization: Adam optimizer with learning rate
0.001, weight decay 5e-4, batch size 64, cross-
entropy loss. Reducel- ROnPlateau scheduling
(factor = 0.5, patience = 10) with gradient clipping
(max norm 1.0).

Training Protocol: Maximum 100 epochs with early
stopping (Patience = 20) based on validation F1-
score. Mol- Graphormer converged at epoch 84.

E. Baseline Models

We compare against four GNN architectures: GCN
[2], GAT [9], GraphSAGE [10], and GIN [11]. All use
equivalent depth (4 layers), hidden dimensions (128),
and training protocols. GAT employs ELU activation,
while others use ReLU.

F. Uncertainty Quantification
MC Dropout: We perform 30 stochastic forward
passes with active dropout(p=0.2) to obtain
predictive uncertainty:
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Temperature Scaling: We learn
temperature T * = 0.9771 on validation set:
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IV. RESULTS AND DISCUSSION
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A. Overall Performance
Table | and Figure 1 present test set performance
compared to baseline architectures.

TABLE I: Performance on Tox21 Binary Classification

Model F1 AUC | Acc Prec Rec

GCN 0.597 | 0.741 | 0.668 | 0.538 | 0.671
GAT 0.627 | 0.754 | 0.682 | 0.551 | 0.728
GraphSAGE | 0.644 | 0.771 | 0.724 | 0.611 | 0.681
GIN 0.640 | 0.792 | 0.749 | 0.674 | 0.610
MolG. 0.670 | 0.781 | 0.718 | 0.587 | 0.779
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Key Observations:

* MolGraphormer achieves best F1-score (0.6697),
demon- strating 3.9% improvement over
GraphSAGE

» Highest recall (0.7787) identifies 77.9% of toxic
com- pounds, critical for safety screening.

+  Competitive AUC-ROC (0.7806), second to GIN
(0.7922)

*«  Moderate precision (0.5874) reflects
conservative strategy appropriate for safety
applications.

B. Uncertainty Quantification
Table I, Figure 2 and Figure 3 present calibration
metrics.

TABLE II: Uncertainty Quantification Metrics

Method ECE | |Brier |

Baseline 0.132  |0.208

Temp. Scaled (T=0.977) [0.132  |0.208

MC Dropout (30 samples) [0.085  [0.193
Accuracy
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Precision
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MC Dropout achieves best calibration (ECE =
0.0851), rep- resenting 35.5% improvement, over
baseline. Mean predictive uncertainty is 0.0583 +
0.0167. High-uncertainty predictions suggests that
the model appropriately identifies on challenging
cases. Temperature scaling marginally improves Brier
score from 0.2081 to 0.2075, confirming reasonable
initial calibration.

C. Baseline Comparison

GCN (F1=0.597): Standard spectral convolutions
struggle with chemical heterogeneity, achieving
lowest performance without attention mechanism.
GAT (F1=0.627): Multi-head attention improves
upon GCN by 5.1%, demonstrating attention value,
but lacks residual connections and global features.
GIN (F1=0.640): Isomorphism-preserving
aggregation achieves highest AUC-ROC (0.792) but
lower recall (0.610) limits safety screening utility.
MolGraphormer (F1=0.670): Hybrid architecture
suc- calibrated cessfully combines attention
strengths with global feature integration and
residual connections.
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Fig. 1: Comprehensive performance comparison across baseline GNN architectures and MolGraphormer
on Tox21 dataset. MolGraphormer achieves the best F1-score (0.670) and highest recall (0.779), critical for
safety-critical toxicity screening applications. GIN achieves the highest AUC-ROC (0.792) but with
significantly lower recall.
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Calibration Curve
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Fig. 2: Calibration curve showing predicted
probability vs. fraction of positives for baseline,
temperature-scaled, and MC Dropout models
against  perfect calibration. MC  Dropout
demonstrates the closest alignment to perfect
calibration.

D. Model Interpretability

Multi-head attention layers (4 heads across 4 layers)
learn chemically relevant patterns, inferred from
post-hoc analysis of attention outputs:

Calibration Metrics
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Fig. 3: Calibration metrics comparison. ECE (blue)
and Brier score (orange) for baseline, temperature-
scaled, and MC Dropout methods. MC Dropout
achieves the best calibration with ECE=0.085 and
Brier=0.193.

e High attention on aromatic rings, particularly
polycyclic structures (PAHs)

e Strong focus on heteroatoms (N, O, S) and
halogenated positions

e Increased attention to toxicophores: nitro
groups, epoxides, quinones, aldehydes.
e layer-wise specialization: early layers (1-2)

capture local bonding, deeper layers (3-4)
capture long-range structural motifs.
These patterns align with established toxicological
knowl- edge, suggesting the model learns
chemically meaningful representations rather than
spurious correlations.

E. Training Dynamics

MolGraphormer required 84 epochs to converge
with early stopping, compared to 27(GCN), 63(GAT),
65(GraphSAGE), and 62(GIN) epochs. The deeper
architecture with residual connections requires more
training but achieves better final performance.
Residual connections and batch normalization
provide stable training with no gradient issues. Final
training loss (0.5495) and validation F1 (0.6430)
indicate minimal overfitting, validated by test F1
(0.6697) exceeding validation performance.

F. Limitations

Despite a strong performance, MolGraphormer

exhibits limitations:

¢ Moderate precision (0.587) results in 41.3% false
positive rate

e Performance degrades on rare structural
scaffolds under- represented in training.

e Molecules exceeding 100 atoms show increased
prediction variance

e Model does not explicitly capture toxicity
mechanism (metabolic activation, protein
binding)

e Class imbalance (36.7% toxic) may not reflect
real-world screening libraries (1-5% hit rates)

G. State-of-the-Art Comparison
Recent Tox21 work reports F1-scores of 0.55-0.72,

with  ensemble methods achieving highest
performance [12], [13]. Our single-model F1-score
(0.670) falls within the competitive range,
approaching ensemble performance without

additional overhead. The interpretability features
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(attention visualization, uncertainty quantification)
provide added value beyond pure metrics.
Compared to fingerprint-based methods (F1**
**0.60- 0.65), graph-based approaches demonstrate
superior perfor- mance by directly modeling
molecular structure.

V. CONCLUSION

We present MolGraphormer, a hybrid-GNN
architecture for molecular toxicity prediction
combining graph message passing with self-
attention. Through comprehensive evaluation on
Tox21, we demonstrate competitive performance
(F1=0.67, AUC-0.781) with enhanced interpretability
and uncertainty quantification.

Key Achievements:

e Best F1-score (0.670) demonstrating effective
precision- recall balance

e Highest recall (0.779) suitable for safety-critical
screening

e Strong calibration (ECE =
uncertainty 0.058

e Interpretable attention identifying chemically
relevant substructures

e Efficient inference enabling high-throughput
deployment.

0.085) with mean

Future work should explore self-supervised pre-
training on large molecular databases, multi-task
learning across all  Tox21 endpoints, 3D
conformational information integration, ensemble
methods, mechanistic integration via knowledge
graphs, and active learning using uncertainty
estimates.

By combining performance with interpretability and
un- certainty quantification, MolGraphormer
represents a step toward trustworthy Al for drug
discovery and computational toxicology.
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