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I. INTRODUCTION 
 

Molecular toxicity prediction is critical in drug 

discovery, regulatory science, and environmental risk 

assessment. Tra- ditional QSAR models rely on 

handcrafted descriptors and linear methods that fail 

to capture complex structural patterns. GNNs have 

emerged as powerful alternatives by modeling 

molecules as Non-Euclidean graph structures [1]. 

However, standard message-passing GNNs exhibit 

limitations including restricted receptive fields, 

limited interpretability, and inefficient modeling of 

long-range dependencies. 

 

We introduce MolGraphormer, a Transformer-

enhanced GNN framework integrating self-attention 

with graph message passing. Unlike conventional 

GNNs aggregating only local neighborhoods, 

MolGraphormer employs hierarchical molecu- lar 

reasoning to capture both long-range chemical 

interactions and long-range structural 

dependencies. 

 

A. Contributions 

Our main contributions include: 

 A hybrid Transformer-GNN architecture 

achieving F1- score of 0.6697 and AUC-ROC of 

0.7806 on Tox21 benchmark 

  

 

 

 

 Comprehensive uncertainty quantification with 

MC Dropout(ECE = 0.0851) and temperature 

scaling 

 Superior recall(0.7787) critical for safety-critical 

toxicity screening. 

 Analysis of attention patterns correlating with 

known toxicophores 

 Open implementation enabling reproducibility 

 

II. RELATED WORK 
 

GNNs have proven effective for molecular modeling 

[1]. Kipf and Welling [2] introduced spectral graph 

convolutions, while Gilmer et al. [3] established the 

message-passing neural networks framework. 

Recent work combines GNNs with Transformers for 

molecular property prediction [4], [5]. 

 

For uncertainty quantification, Gal and Ghahramani 

[6] proposed MC Dropout as Bayesian 

approximation, while Guo et al. [7] introduced 

temperature scaling for calibration. Ying et al. [8] 

developed GNNExplainer for interpretability through 

subgraph explanations. 
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III. METHODOLOGY 
 

A. Dataset and Preprocessing 

We evaluate Tox21, containing 7,831 compounds 

tested across 12 toxicity assays. We formulate binary 

classification where compounds testing positive on 

an assay are labeled toxic. The dataset contains 2,872 

toxic (36.7%) and 4,959 non- toxic (63.3%) 

compounds. We use 80% (6,264 compounds) for 

training and 20% (1,567 compounds) for testing, 

with 15% of training data (936 molecules) reserved 

for validation. 

 

B. Molecule Graph Construction 

Molecules are represented as attributed graphs 

where atoms are nodes and bonds are edges. 

Node features (8 dimensions): Atomic number, atom 

degree, formal charge, hybridization state, 

aromaticity, hydrogen count, ring membership, 

atomic mass. 

Edge features (3 dimensions): Bond type (single, 

double, triple, aromatic), conjugation, ring 

membership. 

Global features (8 dimensions): Molecular weight, 

LogP, H-Bond donors/acceptors, TPSA, rotatable 

bonds, aro- matic/aliphatic ring counts. 

  

C. MolGraphormer Architecture 

Our architecture consists of four components: 

1. Embedding Layer: Node features are projected 

from 8 to 128 dimensions with batch 

normalization. Global features are projected to 

64 dimensions. ReLU activation provides non- 

linearity. 

2. Graph Attention Layers: We employ 4 layers of 

multi- head Graph Attention (4 heads) with 

edge-conditioning. Each layer includes residual 

connections: 

 
where evu represents edge features. Attention 

coefficients are: 

 
 Batch normalization and dropout (0.2) provide 

regularization. 

3. Graph Pooling: We combine mean and max 

pooling: 

hgraph = [hmean||hmax||hglobal] (3) 

4. Classification Head: Three-layer MLP: 320 → 

128 → 64 → 2 with ReLU and progressive 

dropout (0.5, 0.4). Softmax output for binary 

classification. 

 

D. Training Configuration 

Optimization: Adam optimizer with learning rate 

0.001, weight decay 5e-4, batch size 64, cross-

entropy loss. ReduceL- ROnPlateau scheduling 

(factor = 0.5, patience = 10) with gradient clipping 

(max norm 1.0). 

Training Protocol: Maximum 100 epochs with early 

stopping (Patience = 20) based on validation F1-

score. Mol- Graphormer converged at epoch 84. 

 

E. Baseline Models 

We compare against four GNN architectures: GCN 

[2], GAT [9], GraphSAGE [10], and GIN [11]. All use 

equivalent depth (4 layers), hidden dimensions (128), 

and training protocols. GAT employs ELU activation, 

while others use ReLU. 

 

F. Uncertainty Quantification 

MC Dropout: We perform 30 stochastic forward 

passes with active dropout(p=0.2) to obtain 

predictive uncertainty: 

 
Temperature Scaling: We learn optimal 

temperature T ∗ = 0.9771 on validation set: 

 

IV. RESULTS AND DISCUSSION 
 

A. Overall Performance 

Table I and Figure 1 present test set performance 

compared to baseline architectures. 

TABLE I: Performance on Tox21 Binary Classification 

Model F1 AUC Acc Prec Rec 

GCN 0.597 0.741 0.668 0.538 0.671 

GAT 0.627 0.754 0.682 0.551 0.728 

GraphSAGE 0.644 0.771 0.724 0.611 0.681 
GIN 0.640 0.792 0.749 0.674 0.610 

MolG. 0.670 0.781 0.718 0.587 0.779 
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Key Observations: 

• MolGraphormer achieves best F1-score (0.6697), 

demon- strating 3.9% improvement over 

GraphSAGE 

• Highest recall (0.7787) identifies 77.9% of toxic 

com- pounds, critical for safety screening. 

• Competitive AUC-ROC (0.7806), second to GIN 

(0.7922) 

• Moderate precision (0.5874) reflects 

conservative strategy appropriate for safety 

applications. 

 

B. Uncertainty Quantification 

Table II, Figure 2 and Figure 3 present calibration 

metrics. 

TABLE II: Uncertainty Quantification Metrics 

 

Method ECE ↓ Brier ↓ 

Baseline 0.132 0.208 

Temp. Scaled (T=0.977) 0.132 0.208 

MC Dropout (30 samples) 0.085 0.193 

 

 

 

MC Dropout achieves best calibration (ECE = 

0.0851), rep- resenting 35.5% improvement, over 

baseline. Mean predictive uncertainty is 0.0583 ± 

0.0167. High-uncertainty predictions suggests that 

the model appropriately identifies on challenging 

cases. Temperature scaling marginally improves Brier 

score from 0.2081 to 0.2075, confirming reasonable 

initial calibration. 

 

C. Baseline Comparison 

GCN (F1=0.597): Standard spectral convolutions 

struggle with chemical heterogeneity, achieving 

lowest performance without attention mechanism. 

GAT (F1=0.627): Multi-head attention improves 

upon GCN by 5.1%, demonstrating attention value, 

but lacks residual connections and global features. 

GIN (F1=0.640): Isomorphism-preserving 

aggregation achieves highest AUC-ROC (0.792) but 

lower recall (0.610) limits safety screening utility. 

MolGraphormer (F1=0.670): Hybrid architecture 

suc- calibrated cessfully combines attention 

strengths with global feature integration and 

residual connections. 

Fig. 1: Comprehensive performance comparison across baseline GNN architectures and MolGraphormer 

on Tox21 dataset. MolGraphormer achieves the best F1-score (0.670) and highest recall (0.779), critical for 

safety-critical toxicity screening applications. GIN achieves the highest AUC-ROC (0.792) but with 

significantly lower recall. 
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Fig. 2: Calibration curve showing predicted 

probability vs. fraction of positives for baseline, 

temperature-scaled, and MC Dropout models 

against perfect calibration. MC Dropout 

demonstrates the closest alignment to perfect 

calibration. 

 

D. Model Interpretability 

Multi-head attention layers (4 heads across 4 layers) 

learn chemically relevant patterns, inferred from 

post-hoc analysis of attention outputs: 

 

 
 

Fig. 3: Calibration metrics comparison. ECE (blue) 

and Brier score (orange) for baseline, temperature-

scaled, and MC Dropout methods. MC Dropout 

achieves the best calibration with ECE=0.085 and 

Brier=0.193. 

 

 High attention on aromatic rings, particularly 

polycyclic structures (PAHs) 

 Strong focus on heteroatoms (N, O, S) and 

halogenated positions 

 Increased attention to toxicophores: nitro 

groups, epoxides, quinones, aldehydes. 

 Layer-wise specialization: early layers (1-2) 

capture local bonding, deeper layers (3-4) 

capture long-range structural motifs. 

These patterns align with established toxicological 

knowl- edge, suggesting the model learns 

chemically meaningful representations rather than 

spurious correlations. 

 

E. Training Dynamics 

MolGraphormer required 84 epochs to converge 

with early stopping, compared to 27(GCN), 63(GAT), 

65(GraphSAGE), and 62(GIN) epochs. The deeper 

architecture with residual connections requires more 

training but achieves better final performance. 

Residual connections and batch normalization 

provide stable training with no gradient issues. Final 

training loss (0.5495) and validation F1 (0.6430) 

indicate minimal overfitting, validated by test F1 

(0.6697) exceeding validation performance. 

 

F. Limitations 

Despite a strong performance, MolGraphormer 

exhibits limitations: 

 Moderate precision (0.587) results in 41.3% false 

positive rate 

 Performance degrades on rare structural 

scaffolds under- represented in training. 

 Molecules exceeding 100 atoms show increased 

prediction variance 

 Model does not explicitly capture toxicity 

mechanism (metabolic activation, protein 

binding) 

 Class imbalance (36.7% toxic) may not reflect 

real-world screening libraries (1-5% hit rates) 

 

G. State-of-the-Art Comparison 

Recent Tox21 work reports F1-scores of 0.55-0.72, 

with ensemble methods achieving highest 

performance [12], [13]. Our single-model F1-score 

(0.670) falls within the competitive range, 

approaching ensemble performance without 

additional overhead. The interpretability features 



 Akshay Balaji, International Journal of Science, Engineering and Technology, 

 2025, 13:5 

 

2 

 

 

(attention visualization, uncertainty quantification) 

provide added value beyond pure metrics. 

Compared to fingerprint-based methods (F1** 

**0.60- 0.65), graph-based approaches demonstrate 

superior perfor- mance by directly modeling 

molecular structure. 

 

V. CONCLUSION 

 

We present MolGraphormer, a hybrid-GNN 

architecture for molecular toxicity prediction 

combining graph message passing with self-

attention. Through comprehensive evaluation on 

Tox21, we demonstrate competitive performance 

(F1=0.67, AUC-0.781) with enhanced interpretability 

and uncertainty quantification. 

 

Key Achievements: 

 Best F1-score (0.670) demonstrating effective 

precision- recall balance 

 Highest recall (0.779) suitable for safety-critical 

screening 

 Strong calibration (ECE = 0.085) with mean 

uncertainty 0.058 

 Interpretable attention identifying chemically 

relevant substructures 

 Efficient inference enabling high-throughput 

deployment. 

 

Future work should explore self-supervised pre-

training on large molecular databases, multi-task 

learning across all Tox21 endpoints, 3D 

conformational information integration, ensemble 

methods, mechanistic integration via knowledge 

graphs, and active learning using uncertainty 

estimates. 

By combining performance with interpretability and 

un- certainty quantification, MolGraphormer 

represents a step toward trustworthy AI for drug 

discovery and computational toxicology. 
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