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Abstract- Internet of Vehicles (loVs) provides communication and computing resources, which makes the on-
board diagnosis of vehicle faults possible. However, those resources need to be expanded to support the
accurate analysis of the on-board diagnosis. Vehicular Cloud Computing (VCC) can solve the pressure of local
vehicle processing but will cause an unavoidable delay. Thus, the accuracy and timeliness of on-board diagnosis
cannot be guaranteed. To address the issue, we propose a Mobile Edge Caching based Resource Scheduling
(MECRS) mechanism for the on-board diagnosis of vehicle faults. According to the urgency of vehicle fault
diagnosis, we first design a cloud scheduling algorithm to meet the computation requirements of both the
essential business of loVs and the fault diagnosis. Subsequently, the priority allocation strategy is made for all
four types of requests The urgent requests can be processed timely then. Specifically, Theproposed method is a
multi-objective optimization method for allocating communication and computing resources for the above
requests. We also present a large scale file mobile edge caching alr algorithm where the large scale file is cached
at the mobile edge. Offloading the cloud with high popularity takes advantage of it to relieve the pressure of the
cloud. Finally, we carry out comprehensive simulations. Results show that the developed mechanism has a high
service rate for on board The performances of the other three essential services are not compromised.

Keywords- nternet of Vehicles (loVs), Mobile Edge Caching, Resource Scheduling, Vehicular Cloud Computing
(VCC), On-board Diagnosis, Vehicle Fault Detection, Multi-objective Optimization, Edge Computing, Priority
Allocation Strategy, Cloud Offloading, Real-time Processing, Intelligent Transportation Systems.

I. INTRODUCTION knowledge-based, signal-based, and model-based
approaches, may be quicker and more effective
depending on the expertise of the specialists.
Subsequently, as computer technology advanced,

intensity overload. China, the US, and Japan will be three primary techniques emerged: online large

the top three nations in terms of car ownership by data processing, reliability statistics, and signal
2023. China leads the group with 430 processing. The advancement of big data

million. Automobiles, 1821 million new energy technologies has made it possible to diagnose car
vehicles, and 520 million drivers. The rise in car problems more quickly and effectively. In light of
ownership contributes to traffic issues like gridlock, big data technology, a car must process vast

. . . amounts of data gathered by sensors using local
collisions, and pollution of the environment. Long- )

L . computer resources . However, more is needed

term load operation in automobiles can lead to a han i h hicles' local ) ]
variety of issues. Effective car fault diagnosis is than just the vehicles' local computing capacity.

therefore crucial. However, anomalous performance When data volume rises, car fault diagnosis duties
and even security hazards are caused by the need t.o be .handled quickly. To Iess.en. the
delayed diagnosis of vehicle faults Vehicle damage processing strain on ngarby r.esources,.th'ls Issue
follows, endangering public safety. Consequently, needs to be resolv edimmediately. This issue is

with a prompt and precise car fault diagnosis thought' to be resolved .by vehlcula.r cloud
. . - computing (VCC) technologies and vehicle-to-X

operation, A linked car can efficiently ensure safety VX . q ible by loVs Th

and receive problem notifications in real time. (V2X) communication made possible by loVs Those

. . . tasks that were not completed in a timely manner
Conventional fault detection technologies, such as i )
could be offloaded to the vehicular cloud using V2X

As more cars are used, a number of unforeseen
issues occur while the vehicle is operating at high
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communication. The computing power and storage
capacity of the cloud platform are immense. A car
might then obtain the processed diagnosis results
that VCC provides by uploading large amounts of
data associated with those jobs. loVs' high mobility
causes sporadic connectivity, making it challenging
to upload data and download findings . You should
ignore requests that the cloud is unable to process
quickly. To ensure the promptness and precision of
vehicle problem diagnostics, there are two main
obstacles.

Cloud computing has been used in numerous
studies due to its strong computational and storage
capabilities. Research on the relationship between
cloud computing and car fault diagnosis is still
somewhat limited. It can be difficult to schedule
cloud resources to handle requests for vehicle
faults.

The majority of studies on cloud resource allocation
solely concentrate on one scheduling request and
objective. The cloud platform, however, offers a
wider range of services than just on-board
diagnosis of car faults. Other crucial functions
including network operation requests, emergency
requests, and largescale file requests must be
maintained. Therefore, there is positive research
value for a multitasking scheduling method with
complete indicators

In order to handle car fault demands, we expect the
cloud platform will be able to reserve additional
computing resources. Next, we must lessen the
resource usage of additional queries on cloud,
which could have an impact on their offerings. The
research focus is on how to increase the service rate
of car problem requests while maintaining the
ability to service other requests as usual

A Multi-Task Scheduling Mechanism. Applying
cloudcomputing to vehicle fault diagnosis cannot
ignore the diversity of tasks on cloud platforms. We
divide requests into four groups based on the
Quality of Service (QoS) requirements, aiming to
target various applications. This not only ensures
sufficient processing capability for vehicle fault

requests, but also ensures timely response to other
tasks

A Priority Allocation Strategy. As a result, there are
two categories of car problem diagnosis requests:
those that are handled locally for emergence and
those that are handled by the cloud for delay
tolerance. It is possible to receive a fault diagnosis
with great timeliness and precision. Additionally, we
establish an emergency factor for the cloud
emergency request that keeps its priority. Lastly, the
priority policy is used to sort all requests that have
been uploaded to the cloud platform.

A Mobile Edge Caching Algorithm. Optimizing
resource allocation in the cloud to optimize system
reward and decrease the volume of large-scale files
downloaded from the cloud is an issue based on
the allocation method. Next, we suggest a multi-
objective optimization technique to effectively
identify suboptimal alternatives, increasing the
service rate while maintaining low complexity.

A comprehensive simulation. is carried out, which
verifies our findings from both the service and user
perspectives. According to simulation results, the
service interval for car onboard diagnostic queries
was extended by 100% while maintaining the
functionality of other network-based services. We
can even ensure a 50% service rate even in the case
of a high vehicle density. Additionally, the ideal
number of virtual machine configurations was
provided for the specified simulation size, which has
useful reference value in real life.

Il. LITERATURE SURVEY

Title: Framework Of Cloud Computing Resources
Scheduling For Vehicle Fault Diagnosis Authors: W
Gu, H Xu, L Zhu -

Year: 2024

Description: Vehicle defects can be diagnosed on-
board thanks to the communication and
computation capabilities offered by the Internet of
Vehicles (loVs). To enable the precise examination
of the on-board diagnosis, those resources must be
increased. The strain of local vehicle processing can
be relieved by vehicular cloud computing (VCC),
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although there will inevitably be a delay. Therefore,
it is impossible to guarantee the precision and
promptness of on-board diagnosis. We suggest a
Mobile Edge Caching-based Resource to solve the
problem.

Keywords:

*Vehicle cloud computing

*Resource scheduling

*Mobile edge caching

*Fault diagnosis

lIl. RELATED WORK

Vehicle fault diagnosis has long been a priority of
industry and research since driving safety is closely
linked to the preservation of life and property.
Numerous sophisticated algorithms are currently
available for fault diagnosis. In for example, a new
defect diagnosis method based on enhanced
symplectic geometry mode de composition (SGMD)
and optimized support vector machine (SVM) is
introduced, demonstrating the method's efficacy
and resilience in diagnosing faults in rotating
machinery. Aojia et al. create a tracking controller
that is fault-tolerant and a fault detector. To
address the negative consequences of delay, they
suggest a delay-dependent stability criterion. In the
authors implemented output control for a
roddriven vehicle and presented an active fault-
tolerant control method for an underwater remotely
operated vehicle. A fault tree analysis (FTA)-based
fault detection method for electric vehicle charging
devices is developed in literature and is capable of
precisely identifying and promptly resolving
charging device defects. Furthermore, For onboard
applications in EVs, Paper suggests a soft SC fault
diagnosis technique based on the extended Kalman
filter (EKF). By modifying a gain matrix in response
to real-time observed voltages, the EKF in the
suggested method determines the state of charge
(SOQ) of the defective cell. It is reliable and useful
for promptly identifying a soft SC failure.

Vehicle defects can in a variety of forms, though.
Thus, there is an urgent need for a vehicle fault
diagnosis method for large amounts of problem
data.

As big data technology develops, researchers
suggest efficient detection techniques that can
process larger amounts of data. Vehicle fault
activities can be processed in real time with the
help of online diagnosis. A brand-new intelligent in-
car electrical power supply network is suggested in .
This study shows that online problems are
successfully identified, the power supply process for
each device is suitably monitored, and the fault-
tolerant approach can provide real-time protection
and restoration. Following feature analysis and
judgment, Zhang et al used BPNN for
categorization and decision-making. A three-layer
BP neural network structure was created by Liu et al
to achieve the effective fusion of Fixed Detector
Data (FDD) and Floating Car Data (FCD). Tian et al
introduced a KNN-based bearing fault detection
technique that uses spectral kurtosis and cross
correlation to extract fault signals. One benefit of
online diagnostics is its promptness. However, the
local processor will be under stress from processing
a lot of problematic services, and it must also
handle other IoV services. Barabino et al. create an
offline system that uses automatic vehicle position
data to diagnose time reliability. Transit
management can use this paradigm to conduct
precise reliability analysisAn intelligent diagnosis
technique for sensor intermittent faults based on a
data-driven model was presented in Paper A speed
sensor fault detection technique based on a
learning-based data-driven approach in induction
motor drive systems was proposed in paper .
However, depending solely on the offline diagnostic
makes it difficult to guarantee punctuality. It is
impossible to obtain a multi-objective joint
diagnosis in response to the requirement for
additional local resources. To guarantee accuracy
and punctuality, we seek a multi-objective
optimization system. As a result, we combine offline
and online techniques to upload and download
data using VCC.

We send the local vehicle's time-sensitive demands
for online processing. The cloud platform is used to
send the processing results back to the car once the
time-delay insensitive requests are uploaded there
for offline processing.To improve the cloud's service
capabilities, numerous cloud computing projects
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have been completed. Additionally, the service rate
can be raised with sensible resource scheduling. In
order to increase resource usage, researchers from
the University of Ottawa study the migration of
virtual machines in cloud computing. A method for
allocating resources that applies maxmin fairness to
a variety of resource categories was presented. It
was designed to cooperatively optimize time
allocations in order to maximize the minimal energy
balance among all users. In order to optimize the
overall expected benefit of the linked vehicular
cloud system, Zheng et al. suggest an efficient
computing resource allocation scheme. The method
achieves notable performance improvements within
a manageable complexity range by representing
the optimization problem as an infinite-level semi-
Markov decision process. Dominant Resource with
Bottlenecked Fairness (DRBF), a novel allocation
technique, is proposed by Zhao et al. in their
discussion of the equitable distribution of
numerous resources. To guarantee that users in the
same column receive an allocation in accordance
with their fair portions, they separate users into
distinct queues depending on their dominant
resources. To solve the issue of cloud computing
resource distribution and pricing in the mobile
blockchain, a contract mechanism is used. and
suggested an adverse selection contract to address
the issue of information asymmetry. This paper
focuses on the VCC architecture, which applies
cloud computing to the loV and then uploads fault
tasks to the cloud. The volume of vehicle fault data
is enormous. But requests in VCC are diverse, and
the performances of other essential services cannot
be compromised. Some common mechanisms, such
as FCFS (First-Come-First-Served) mechanism, cause
untimely service and huge resource waste. The
vehicle fault diagnosis mechanism orienting
towards multiple requests in VCC is closer to the
actual scenario and solves the problem of poor
communication and computing resources. Hence,
an effective cloud resource allocation mechanism
becomes the interest of this paper.

IV. SYSTEM MODEL

The system model is explained in the parts that
follow. We begin by outlining the communication

scenario. Next, we go over the system reward
function model, vehicle collaborative transmission
model, traffic model, and overall optimization goal.
Different kinds of requests are sent by vehicles to
the central base station, which then transmits them
to the cloud platform for processing. The vehicles
will receive the processed results. The dotted circles
show the base station's effective communication
range because of the high dynamic topology of
loV. Direct communication between the base
station and vehicles outside its range is not
possible. Consequently, the transmission can be
used for V2| (Vehicle to Infrastructure)
communication range of the base station, and the
V2V (Vehicle to Vehicle) communication can be
performed outside the transmission range.
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We consider a vehicular communication scenario
that occurred within a base station and the cloud
platform, as shown in Fig.1, including the forward
driving and reverse driving vehicles. The user
vehicles sends four types of tasks to the cloud
platform and forwards them by the base station.
The flowchart is shown in Figure 2. It represents the
process from the vehicle sending the requests to
the cloud platform processing the requests.
Besides, the Table 1 is the list of important
notations in this

1. Traffic Model

Vehicle fault requests are one of four categories
into which we divide requests based on Quality of
Service (QoS) needs. Eunit (concentrating on the
typical driving of the vehicle), network operation
requests Large-scale file requests, emergency
requests (Eerg), and Econ (which focuses on
network stability between the cloud platform and
the vehicle) Efficient (concentrate on the driving
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pleasure). The vehicles produce the Eunit, Econ, and
EF ile. The cloud platform itself generates theEerg.
The base station sends the three types of requests
to the cloud platform after receiving them. The
system reward is then calculated by the cloud
platform, with the highest priority going to the
largest reward request.

2. Overall Optimization Objective

As the optimization goal, we decide on the overall
system reward. Additionally, incorporate into the
reward function the VCC's processing, bandwidth,
energy, and time consumption:

max R(S,0) (P1)
min(-';,.v, (P2)
Cl1 :(‘Il!uf =} (‘um + C rg T ('ju‘u <(C,

(I.-)' :('uuil > ('/ilv '

Vie K,

r
7454

V-2t :
¥

where the reward function for the system is R(S, O).
The greatest cloud computing resource is C.
Together, the four tasks' total capacity ought to be
less than C. C stands for the vehicle's capacity to
store huge files in its cache. Requests for network

operations, emergency situations, large-scale files,
and vehicle faults, respectively, take up Cunit, Ccon,
Cerg, and Cfile computer resources. By C2, we imply
that Cunit should be as big as possible compared
to Cfile. C3 is a representation of the limited cache
capacity per vehicle. The maximum number of
large-scale file requests that a vehicle can
accommodate is denoted as Kj, where K is the set
of cars, K = {1, 2, 3,..., j..}. The goal of this system is
to maximize system reward while enabling more
computing and communication resources for
analyzing and transmitting vehicle faults. However,
lowering the Ccon will significantly affect network
stability, which will further lead to poor
communication quality, while lowering the Cerg will
ignore network crises. Additionally, when the Cfile
decreased, customers' happiness with the driving
experience decreased. However, cloud resources
might not always be used in the Ef ile response to
large-scale file demands. In order to minimize
large-scale file service from the cloud, we therefore
provide a mobile edge caching technique in section
IV. B, which states that vehicle caching serves the
large-scale file requests.

3. System Reward Function Model

Equation (2) illustrates how the difference between
the gain function E(S, O) and the overhead function
P(S, O) can be used to determine the reward
function.

R(S, O) = E(S, O) - P(S, O) is the VCC platform's
state set. The VCC platform's operation set is O =
{0, 1, 2,..., NRU}. The event set is B = {Ra, Rl}. Ra
stands for "request arrivals." Ra stands for "request
leaves."

Nq
E(S,0)=>_ei(S,0),
i=1

where the gain of one request handled by the cloud
platform is denoted by ei(S, O). The advantages of
each request should be combined, as this paper
examined the system. Additionally, the primary
reason of ei(S, O) is time and energy usage due to
the cloud platform's strong resources and data
storage capacity, as demonstrated by the following:
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The gain is zero when op = 0 since the car does not
benefit from the cloud service.
The car benefits from the cloud service when op
6=0. As a result, it eliminates the massive energy
use (EVI) and time consumption (Tvi) associated
with standard internet downloading. However, the
cloud platform procedure adds P &i and &i
consumption. Furthermore, overhead function P (S,
O) reflects the processing consumption of cloud
platforms. The system overhead function for the
requests, P (S, O), can be written as follows: It
includes energy consumption, time consumption,

and energy consumption due to channel fading.
Nq

P(S,O) - C'(S,O)'r(S, 0) + Zﬁc(Pi poe Qn) &,

i=]

where the overhead per unit of time is denoted by
C(S, O). The time it takes for the cloud to serve the
request is T (S, O).

No

Z B(,(PL QL) ) 52
=N
Is the overhead brought on by fading channels.
Furthermore, because the number of virtual
machines allotted by the cloud platform determines
C(S, 0),
Nru
C(S5,0)= Z i« (PuBw * TUS o, + TUD )
i=1
We allot sufficient virtual machine resources to
requests that can be handled in the user's tolerance
period, therefore each request's processing time is

Vehicle Collaborative Transmission Mode
Vehicles can receive services outside of the
transmission  range thanks to the V2V
communication method, which is an addition to the
V2l communication method. It lessens the strain on
computing and communication services. As a result,
V2V turns into a strong tool for enhancing cloud
services in VCC.

Here, we concentrate on two automobiles
communicating with one another. Through multi-

hop transmission, many cars can communicate with
each other via V2V. Vehicles A and B are the target
and assisting vehicles, respectively, if vehicle

A uses vehicle-to-vehicle (V2V) transmission to
send a request from vehicle B. V2V communication
can be separated into three scenarios based on the
vehicle traffic scene: relative driving, opposite
driving, and same direction driving between the
target vehicle and the aiding vehicle. According to
the IEEE 802.11p agreement, the vehicle
communication equipment transmission radius is
[50m, 500m], and the V2V transmission bandwidth
is 100kB/s.

(
Tv?v s i

The communication time between the vehicles
when they are driving relative to one another,
including opposite driving, is shown in the first
segment. Additionally, the greatest communication
distance between two vehicles is known as the
communication range tangent. The communication
duration for two cars moving in the same direction
but not stationary is expressed in the second
segment, and the third segment displays the
communication duration for the vehicles that are
comparatively stationary.

The two cars can now continue communicating
with one another until the request is fulfilled or the
relative motion varies. Furthermore, this model can
be used to download huge files from the cloud to
automobiles.

2r
D e — .
Sz e Vp1 V2 <0

ol Vo1 * Vo2 > 0, %1 # Vy2

min{ 5, Teng} Vo1 = vez,

V. RESOURCE ALLOCATION FOR VCC

We suggest a Resource Scheduling (MECRS)
technique based on Mobile Edge Caching to
address the objective function optimization
challenge. These three sections make up its
content.

1. Priority Allocation Strategy

We upload some car defect queries to the cloud
platform since we don't have enough computer
power locally. The cloud platform ranks the four
categories of requests in order of user tolerance
time, data volume, and request popularity.
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The three primary components of this approach are
as follows:

Local computing

We can select either local computing or cloud
computing for the Eunit based on the relationship
between the service tolerance time Tt and the time
threshold Ts. It falls under the emergency vehicle
fault request when Tt < Ts. To guarantee prompt
processing, the requests should now be handled
locally in the car.

This request is not time-sensitive when Tt > Ts. In
this instance, the services ought to be uploaded to
the cloud for processing.

Emergency response

All services must use computing resources, with
the exception of the local computing component.
Because of their urgency, Cloud should respond to
Eerg's request first. For that, we set an emergency
factor . { = 1 ensures preferential processing when
Eerg occurs.

¢ = 1 Eerg occurs
0 no Eeqg occurs.

Priority computing

All requests submitted to the cloud must have
access to sufficient cloud computing resources. We
will lose out on some high reward requests if we
solely adhere to the first come, first served premise
because vehicle nodes move quickly. As a result,
we create priority rules. The following is the priority
equation:

Pri = (w1 /T + w2/ E;) X Ny
s.t. w tw2=1,

where w1 and w2 stand for the weights of data
volume and user tolerance time, respectively.
Furthermore, various requests require different
amounts of resources. For instance, the
computation-intensive files need processing speed
and virtual machine memory, while the
communicationintensive files concentrate on the

requirement for network bandwidth resources.
Therefore, w1 and w2 are utilized to modify how
much emphasis is placed on communication or
computation  resources. Under the same
circumstances, it is evident that the processing
priority increases with the shorter user tolerance
time, the lower request data amount, and the
higher request popularity. When the cloud platform
receives several similar requests (such the precise
automotive part defect, downloading the same
enormous file, etc.), this request is very common.
The request popularity degree Nri is the most
crucial of the three priority factors as, when
receiving the request, the cloud verifies that there
are precise requests before deciding on a
scheduling strategy. It is possible to acquire further
identical requests from V2V if the most popular
request is chosen and fulfilled.

2. Mobile Edge Caching Algorithm

We categorize the cloud requests into four groups,
as was previously described. Our goal is to
promptly respond to requests for car fault diagnosis
while using the least amount of network and
processing power possible. We anticipate that more
cloud resources will be available to handle the Eunit
in addition to the locally processed requests. The
cloud platform, however, is unable to target a single
request type. How can we be sure that the response
to the other three kinds of inquiries is the issue to
be resolved? Lowering the Ccon will significantly
affect network stability, which will further lead to
poor communication quality, while lowering the
Cerg will ignore network crises. The cloud must
handle these two kinds of requests. In order to
reduce the service of large-scale files from the
cloud, we therefore suggest a mobile edge caching
technique that is targeted at efficiency.

min Cy;e
Kj
st.). E;<c VjeK.
i=1

Vehicles are separated into two categories: service
vehicles and requesting vehicles. Each vehicle can,
of course, be a server or a requester. According to
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certain guidelines, we pre-cache huge files onto the
service vehicle. Large-scale file services from the
cloud can be reduced by using the V2V
transmission technique, which allows the requesting
vehicle to download large-scale files straight from
the service vehicle.

This approach can guarantee Ef ile's service rate,
lessen the cloud platform's processing load, and
free up additional processing power for Ef ile. Since
caching material at the edge of mobile networks is
a promising solution to the data tsunami, we have
chosen to use the edge caching method to serve
largescale file requests in the resource allocation
mechanism. It is believed that there will be little
temporal overlap when many vehicles have the
same storage contents. This indicates that the same
content is being stored in cars. Until the
transmission distance causes it to be halted, the
user car just needs to issue a request to a service
vehicle. This paper queues based on M/D/1 in the
resource buffer pool. E[rp], the file playback rate, is
the service rate. The arrival rate is Ap, and the
transmissive huge file data size is E[Y].

)\I):)\-:B,l:,

E[Y] = E[D]- Elry),

where A denotes the communication speed
between the target vehicle and the auxiliary vehicle,
or the task arrival rate, E[D] denotes the
transmission time between user vehicles and service
vehicles, E[rh] denotes the download rate of
vehicles, and xi denotes the quantity of identical
files downloaded simultaneously from the
collaborative vehicle. It is evident that the queue's
service rate:

L B _ Efr)

* Elry] Elry]’

where E[rp] is the watching playout rate of large-
scale files and p is the queue's longterm usage. Pi is
the queue's free probability at the time of the
large-scale file request i.

i+ E[D]-

__ B,
' E[B;] + E[li]

where the busy length of the playout buffer upon
arrival of request | is represented by E[Bi], and the
free length of the playout buffer is represented by
Efli].

P»

The transfer time is prolonged because our model
handles huge files. Next, keep in mind that Cf ile is
equal to the total number of bytes that were
downloaded from the cloud. We own that:

From the above derivation, we can get the
following formula:

Crite =E; - (1— A\ E[D]- E[rh]

E[r] p]

The calculation above shows that, once the other
factors are established, the Cf file mostly relies on
the file's attribute, which is the Ei Nevertheless, we

prioritize largescale file requests, which are
unavoidable for massive Ei. As a result, we
investigate document popularity, another file

attribute. The demand for documents is referred to
as popularity. Many individuals can download such
large-scale files due to their high popularity. We
suggest a greedy algorithm based on popularity in
section

V. GLOBAL OPTIMIZATION METHOD

Optimizing resource allocation in the cloud to
optimize system reward and decrease the volume
of large-scale files downloaded from the cloud is an
issue that arises based on the allocation technique.
Next, we suggest a multiobjective optimization
technique to effectively identify suboptimal
alternatives, increasing the service rate while
maintaining low complexity.

P1 is receiving the highest system reward, as
demonstrated by algorithm 1. P2 is reducing the
amount of processing power used by huge files. P1
and P2 are both quite computationally complex.
Therefore, we suggest a greedy two-phase resource
allocation approach to effectively identify low-

8
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complexity sub-optimal solutions for Problems 1
and 2. As illustrated in Algorithm 1, P1 and P2 are
solved in Phase 1 (Algorithm 2) and Phase 2
(Algorithm 3), respectively.

Algorithm 1 is broken down into Algorithms 2 and
3. Algorithm 2 uses greedy algorithms to distribute
virtual machine resources across different request
kinds and organizes requests according to priority
and system reward functions. Depending on the file
popularity,

Algorithm 3 avariciously caches the user's vehicle's
substantial file requirements into the service
vehicle. Bubble sorting, the algorithm's sorting
technique, has a lower temporal complexity than
fast sorting and other techniques. The Greedy
algorithm's simplicity and low temporal complexity
are its merits. The Greedy method, which has an
O(n 2) complexity, is improved upon in this article.
In order for each optimization result to reduce the
problem to a smaller sub-problem, this research
focuses on efficiently allocating the available cloud
computing resources. Furthermore, if the requests
are handled via the FCFS technique, computer
resources cannot be used efficiently due to the
cloud platform's limited bandwidth, computational
load, and varying tolerance times, data volumes,
and popularity for distinct requests.

In order to make resource allocation more
thorough and rational, this work enhances the
request priority while choosing the best solution of
sub-problems, given the greedy algorithm's
simplicity and low time complexity.The algorithm
breaks down the resource optimization challenge
for cloud platforms into a few sub-selection issues.
Every sub-selection simultaneously maximizes the
present advantage, resulting in a local optimal
solution. The choice is made once more to find the

best local solution for the new subproblem
whenever the cloud platform releases fresh
resources.

Algorithm 1: Two-Phase Greedy Resource
Allocation Algorithm 1)

Algorithm 2: Priority-based Dynamic Greedy

Algorithm
Input : 1 [num_request]
Output : Sorted | [max_num_request]

Initialization :
Begin
Inidalize parameters, K = {1,2,3,...,7...}:
For j € K wonum_request
Calculate cormresponding (S, 0) , e s
End For
Fori = 1to num_request — 1
If R(S,0), = R(S,0),,, Then
Exchange 7[{] and Jf{i + 1] :
End Ir
If (S, 0), s R(S,0),,, Then
If Py = Frgisr) Then
Exchange /[{] and I[{ + 1]
Eod Ir
End Ir
End For
Allocate VMs in the sequence of J [max_num_request)
End

Algorithm 3 : Popularity-based Caching
Greedy Algorithm
Input: 1 [file_request], ¢
Output: Sorted | [f ile_max_popular]
Initialization:
Begin
Initialize parameters, ;
For j € K to file_request
If Niij) < Nigj41; Then
Exchange l[jl] and I[j + 1] ;
End If
End For
Vehicle cache in the sequence of I [file_mazx_popular)
For j = 1to file_request
while 377 Euiji| + Evi{monst_poputar] < €
jei+1
End For
End
In the real scenario, the vehicle would continuously
reach the base station communication range and
send requests, as described by the repeated
process. Consequently, the cloud platform's
processing and bandwidth resources can be
efficiently optimized to maximize the system
reward by employing a prioritybased dynamic
greedy algorithm.

In particular, for every request that the cloud
platform receives, the algorithm first determines
the system rewards. Sort by prize level after that. An
overall ordered task queue will arise if all of the
requests have the same reward and are ranked
from high to low in terms of priority. Then,
beginning at the top of the task queue, each
attempt is made to assign enough virtual machines
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to satisfy the amount of bandwidth and
computation demand. If the optimization measure
outperforms other requests, the allocation is
finished. If not, the task queue's subsequent
request might be chosen. Algorithm 2 below
illustrates the concept of the algorithm.

During the waiting phase, the cloud platform
gathers requests, and during the decision period, it
makes decisions. The cloud platform consistently
serves highpriority and large-reward requests, and
the pseudocode depicts a single resource allocation
strategy of the VCC during the decision time.The
procedure is repeated during the subsequent
decision time after the service requests have been
gathered. A dynamic scheduling system for cloud
platform resources is created since the time
separation between neighboring periods is limited.
is the collection of cars, and since the duration of
both periods is brief, a dynamic cloud platform
resource scheduling selection procedure is formed.
Additionally, | [max_num_request] is the arranged
request set, K is the set of cars, and | [num_request]
denotes the set of requests gathered by the cloud
platform while awaiting a decision.

In Algorithm 3, we provide a caching greedy
algorithm based on popularity to solve the P2. The
most popular material in each service vehicle is
replicated by this algorithm. Next, the Large-scale
files are avariciously crammed into the vehicle's
remaining storage, arranged from high to low
popularity. In this manner, the service vehicle
efficiently offloads the massive file requests.
Consequently, the strain on cloud resources to
handle numerous requests can be reduced. As a
result, more computer power is available for Ef ile,
increasing the Ef ile service rate. Furthermore, Evi[i]
represents the file size, Nr[i] indicates the efficiency
popularity level, and c is the vehicle's cache
capacity for huge files.

VI. SIMULATION AND ANALYSIS

We perform extensive simulations in this section.
Four service rates of successful requests are used as
metrics to assess the effectiveness of the suggested
approach. Both the service side and the user side

are used to display MECRS. Prior to comparing the
rates under various request proportions, we first
show how the four requests service rates vary with
vehicle density. Lastly, MECRS optimality is
demonstrated by how the service rate varies with
cloud virtual machine density. We model the
communication scenarios depicted in Figure 1, in
which M cars are outside the base station's range
and N vehicles are inside the coverage area of a
single cellular base station. Vehicles are separated
into relative and opposite driving, and the road has
a single lane in both directions. Three different
kinds of requests are sent by the user cars to the
cloud platform, where the base station transmits
them. The cloud platform itself is the source of the
additional Eerg requests.

A:Simulation Setup

Parameters Value
Calculation rate of per virtual machine 3000 MIPS
Occupied bandwidth of per virtual machine 4) Mbps
Computation price of per virtual machine | 1.1 yuan/hour
Bandwidth price of per virtual machine | 0.8 yuan/hour
Energy consumption unit price withno cloud | 1.2 yuan/hour
Time consumption unit price with no cloud | 0.9 yuan/hour
The number of virtual machines {0, 500}
The number of vehicles (0, 400]
Transmission power from base station to cloud 100 W
Average received power in the fading process AW
Data volume processed by per virtual machine | 6000 bytes

MATLAB is used to carry out the simulation analysis
task. To model the requests for cars to the cloud,
we create a simulation tool. We placed
infrastructure at 5,000 meters in the middle of the
10,000-meter-long road. There should be fifty
meters between each car. Usually, the vehicle
accelerates in a scattered manner. Additionally,
when there is less than the safe distance between

two cars, real-time speed adjustment s
implemented.
Regarding the network environment's

specifications, we use the IEEE 802.11p protocol,
which has a V2V transmission bandwidth of 100
kB/s and an onboard communication equipment
transmission radius of [50, 500 m]. In this case, we'll
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assume that big files are ranked from 1 to 10, where
1 represents the least popular and 10 represents
the most popular. Next, we assume that the cloud
platform has not yet reached saturation and that
there are always computing resources available.
Table 2 displays the simulation parameters. The
cost per virtual machine is the same as the cost of
public cloud services offered by Amazon.

There are two sections to the simulation
experiment. This study illustrates the effectiveness
of the MECRS mechanism from the viewpoints of
the user and the server using four request success
service rate evaluation criteria. The percentage of
requests that are successfully answered relative to
the total number of requests is how we define the
service rate. The trajectory of successful service
ratios for four distinct services under various
mechanisms as vehicle density rose is first
compared in the user-side experiment analysis.

Next, we show the variations in service ratios for
four distinct requests in varying amounts. Lastly, we
confirm the efficacy of the cloud platform-assisted
car defect diagnosis processing using the actual
data that was gathered.

As the vehicle density rose, we compared the virtual
machine occupancy under various computing
resource techniques in the server-side experimental
analysis.

To prevent resource waste, the ideal number of
virtual machines is offered.

2. Compare Mechanism

We take into account and contrast the results using

the allocation policies listed below:

e MECRS: In order to properly utilize local
resources, the approach suggested in this
research separates local processing from cloud

processing. Next, an optimal resource
scheduling strategy with several objectives is
used.

e Random: The car caches huge files at random
and uploads all fault requests to the cloud for
processing.

e No-Caching: The cloud is used to process all
car fault queries; the vehicle edge caching
technique is not used.

e FCFS: The cloud follows the principle of first
come, first served when responding to all
queries.

3. Analysis for User Side

Every second, we force every car to send a request.
Vehicles beyond the effective communication range
can use V2V to send data over a number of hops.
The quantity of cloud virtual machines (VMs)

200 machines), with a 5:2:2:5 ratio of four requests.
Our assumptions are that Eerg is proportional to
Econ and Eunit is proportional to Ef ile. Eunit and Ef
ile are sent more regularly, of course. This paper's
goal is to optimize the system reward function,
which is mostly established by the overhead and
gain functions in Equation (2). Furthermore, this
research makes the assumption that channel fading
loss is not taken into account. Figure 3 shows that
although Econ and Erg requests are fulfilled
promptly, the first three methods have the potential
to prolong the time it takes for Eunit to receive a
100% service. But if the number of vehicles
increases, under the Random and No-

Caching Mechanisms:

Because category Eerg and Econ have a higher
priority, Eunit does not have enough virtual
machines. Because of this, the vehicle fault service
rate is even lower than that of the FCFS mechanism
(Fig. 3(d) shows the same explanation for the lower
Ef EF service rate of the NoCaching technique). To
address this issue, we then provide a popularity-
based caching greedy algorithm and a
prioritybased approach.

When compared to alternative methods, Fig. 3(a)
demonstrates how well the MECRS mechanism can
increase the service rate of Ef ile. Sequentially, we
can provide a 50% service rate even in the case of a
high vehicle density. The emergency factor we
choose allows Eerg to be reacted to preferentially in
Fig. 3(b)(c). The Econ has a higher service rate to
guarantee network security and stability under the
100 percent Eerg service rate premise. The MECRS
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mechanism enhances the Efile service rate, as seen
in Fig. 3(d). There is a minimum service rate for the
number of cars, N=120. This is because the cloud
platform uses a lot of resources for other requests
with a higher priority, and the cached file capacity is
limited by the number of vehicles.

As a result, the lowest value is displayed. The
overall buffer capacity rises with vehicle density,
which causes the service rate to grow before
leveling off. The cloud resources are now the
limiting factor since the service rate for users
retrieving huge files from the cache cars has
reached its maximum.The service rates of Eunit and
Ef ile at various ratios are displayed in Fig. 4. Both
are in the same proportion in the first. The Efficient
Weight Ratio comes in second. Eunit weight ratio
comes in third
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FIGUIRE 4:
Service rate in different proportion vs number of
vehicles, VMs=200.
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Because of the decrease in Eunit, the local
processing capacity is enough under the 1: 1: 1: 50
ratio and may achieve a 100% service rate.

Additionally, with the boost in efficiency, all of the
car's cache files have been used up, allowing the
service rate to hit 99 percent. The reason for the
remaining 1% is that none of the nearby cars have
such a file. A service failure will occur if this file,
which needs to be downloaded from the cloud,
cannot be successfully delivered in the allotted
time. Additionally, as the request density has
increased, the Eunit service rate and the successful
service rate have also increased under the 50: 1: 1: 1
ratio. In the meantime, the service rate improves
when the efficiency declines and there is less
competition with enough cache space. In
conclusion, for different request ratios, the
suggested mechanism can raise the service request
rate. The majority of problem data is gathered and
processed online by conventional car fault
diagnosis algorithms. This can guarantee that tasks
are completed on time, but it will result in the local
processor in cars having insufficient processing
power.

Particularly in light of the numerous other kinds of
jobs that need local processing in cars, including
autonomous driving, road section alerts, etc. Thus, a
fault task offloading system is proposed in this
study, which retains some of the vehicle failure
duties locally and transfers others to the cloud
platform for processing. Section IV goes into further
detail. A vehiclemounted defect diagnosis system
with less data and minimal computational
complexity is proposed by V.

A.Literature storage, in order to monitor the status
of the vehicle in real time. It confirms that the
suggested  diagnosis method is  accurate,
sophisticated, and has enough storage space.
Electronic vehicle management provided 466688
samples for this study, of which 177261 are
defective. In conclusion, the actual data capacity is
6.52 GB, and there are 539 original characteristics.
Some data errors and omissions may inevitably
occur during the dataset collection procedure. As a
result, preprocessing the data is required prior to
simulation verification. Effective real data vyields
more valuable and enlightening experimental
outcomes. The three primary phases are missing
value processing, data integration, and the removal
of superfluous attributes.v
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(d)E FILE service rate

Certain fault tasks with high latency requirements
may not be processed in a timely manner if the
local computing power is inadequate or heavily
occupied by other processes. The vehicle has now
driven outside of the V2| transmission range and is
unable to transmit via V2V, resulting in resource
waste. The MECRS method can increase the service
rate of Ef ile when local resources are insufficient, as
demonstrated by the simulation results in Fig. 5,
assuming that only 20% of the vehicle's CPU
resources are used.

Additionally, as the vehicle density rises, it
eventually falls.  Furthermore, vehicle
density has no effect on the real-time diagnosing
mechanism. Each feature's weight is displayed in
Fig. 6. As we can see, features pertaining to
batteries carry the largest weights, whereas features
pertaining to vehicle components rank second in
importance. The energy aspects come in third. The
term "other features” refers to allofthe remaining
characteristics. To validate the mechanism
suggested in this paper, we used these four feature
categories. Figure 7 shows that all four categories
of failure data were successfully addressed. A 100%
response rate can be attained at low vehicle
densities.

4. Analysis for Service Side

Every one second, we force every car to send
requests. There are 200 vehicles, and the
percentage of four requests is 5:2:2:5.
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Figure 8 shows that the service rates of four
requests improve with increasing virtual machine
density.

High priority Econ and Eerg take up the majority of
virtual machines under the Random and No-
Caching procedures when virtual machine resources
are limited, which lowers the efficient service rate
even further compared to the FCFS mechanism. But
when the number of virtual machines rises to 160, it
gets much better. We successfully raised the Eunit
service rate under the Econ and Eerg's prompt
responses. On the one hand, we guarantee that all
requests be fulfilled, provided that the virtual
machines (280- 400) are not overloaded. On the
other hand, vehicle local processing can also ensure
a 50% service rate when the number of virtual
machines (20-80) is insufficient. Because the other
three requests in Fig. 8(d) have a higher priority
than large-scale file requests, the efficient service
rate under the no-caching mechanism is the lowest.
Therefore, in order to address the issue of poor file
service rate, we employ the Popularitybased edge
caching approach. The efficiency service rate is
clearly increased by the suggested MRCRS
mechanism, and the other two requests are likewise
promptly handled.

Furthermore, it is evident that 360 virtual computers
is the ideal number when all needs are fully fulfilled.
Nonetheless, the first three categories of requests
have achieved a 100% service rate at 260 units. The
efficient service rate does not rise much between
260 and 360. Therefore, from an economic
standpoint, there should be roughly 260 virtual
machines on the cloud platform, which has real-
world use.

In this project, a secure cloud storage system was
designed and implemented to address the growing
concerns surrounding data privacy, integrity, and
user confidentiality in modern digital environments.
By incorporating advanced encryption techniques
such as AES for data encryption and RSA for key
management, along with SHA-256 hashing for
integrity verification, the system ensures that user
data remains confidential and tamper-proof
throughout its lifecycle.

The integration of secure user authentication
mechanisms and access control features further
enhances the trustworthiness of the platform,
minimizing risks related to unauthorized access and
potential data breaches. Leveraging lightweight and
scalable technologies like Python, Flask, and SQLite,
the system offers a modular, user-friendly, and
efficient solution suitable for small to medium-scale
deployments.

Future work may include scaling the system for
distributed cloud  environments, integrating
biometric authentication, and ensuring compliance
with broader data privacy regulations such as GDPR
and CCPA.

VIl. CONCLUSION AND FUTURE WORD

In order to diagnose on-board vehicle faults, we
suggested a computational resource allocation
technique in this article. For each of the four
request categories, we first created a priority
allocation plan based on the diagnosis service's
tolerance time.

Then, in order to optimize the VCC system's long-
term reward, we developed a priority allocation
mechanism taking into account the QoS features of
requests. Furthermore, a widely used mobile edge
caching strategy was put forth to relieve the strain
on the cloud by offloading massive file requests. In
order to distribute computational and
communication resources, the multi-objective
optimization resource scheduling approach was put
out. Ultimately, the simulation results showed that
the Eunit 100% serviced interval was extended while
maintaining the promptness of the other requests,
and we could ensure a 50% service rate even in the
case of a high vehicle density. It can increase the
service rate in the event of low resources when
compared to the real-time diagnosis mechanism.
This will greatly lessen the impact that vehicle fault
has on traffic. Additionally, 260 was determined to
be the ideal number of virtual machine
configurations for the specified simulation scale
from an economic standpoint; this figure has real-
world application. Vehicle fault diagnosis research is
highly significant and can successfully prevent a
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number of traffic issues, including trip plans, traffic
accidents, and traffic congestion. A vast knowledge
base about car faults can be created by employing
knowledge graph technology to associate and mine
the gathered data. Furthermore, car defect
diagnosis issues can be resolved more successfully
because to cloud computing's strong processing
and storage capabilities, opening up new avenues
for future research.
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