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I. INTRODUCTION 
 

As more cars are used, a number of unforeseen 

issues occur while the vehicle is operating at high 

intensity overload. China, the US, and Japan will be 

the top three nations in terms of car ownership by 

2023. China leads the group with 430 

million.Automobiles, 18.21 million new energy 

vehicles, and 520 million drivers. The rise in car 

ownership contributes to traffic issues like gridlock, 

collisions, and pollution of the environment. Long-

term load operation in automobiles can lead to a 

variety of issues. Effective car fault diagnosis is 

therefore crucial. However, anomalous performance 

and even security hazards are caused by the 

delayed diagnosis of vehicle faults Vehicle damage 

follows, endangering public safety. Consequently, 

with a prompt and precise car fault diagnosis 

operation,  A linked car can efficiently ensure safety 

and receive problem notifications in real time. 

Conventional fault detection technologies, such as  

 

knowledge-based, signal-based, and model-based 

approaches, may be quicker and more effective 

depending on the expertise of the specialists. 

Subsequently, as computer technology advanced, 

three primary techniques emerged: online large 

data processing, reliability statistics, and signal 

processing. The advancement of big data 

technologies has made it possible to diagnose car 

problems more quickly and effectively. In light of 

big data technology, a car must process vast 

amounts of data gathered by sensors using local 

computer resources . However, more is needed 

than just the vehicles' local computing capacity.  

When data volume rises, car fault diagnosis duties 

need to be handled quickly. To lessen the 

processing strain on nearby resources, this issue 

needs to be resolv edimmediately. This issue is 

thought to be resolved by vehicular cloud 

computing (VCC) technologies and vehicle-to-X 

(V2X) communication made possible by IoVs  Those 

tasks that were not completed in a timely manner 

could be offloaded to the vehicular cloud using V2X 
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communication. The computing power and storage 

capacity of the cloud platform are immense. A car 

might then obtain the processed diagnosis results 

that VCC provides by uploading large amounts of 

data associated with those jobs.  IoVs' high mobility 

causes sporadic connectivity, making it challenging 

to upload data and download findings . You should 

ignore requests that the cloud is unable to process 

quickly. To ensure the promptness and precision of 

vehicle problem diagnostics, there are two main 

obstacles.  

 

Cloud computing has been used in numerous 

studies due to its strong computational and storage 

capabilities. Research on the relationship between 

cloud computing and car fault diagnosis is still 

somewhat limited. It can be difficult to schedule 

cloud resources to handle requests for vehicle 

faults.   

 

The majority of studies on cloud resource allocation 

solely concentrate on one scheduling request and 

objective.  The cloud platform, however, offers a 

wider range of services than just on-board 

diagnosis of car faults. Other crucial functions 

including network operation requests, emergency 

requests, and largescale file requests must be 

maintained. Therefore, there is positive research 

value for a multitasking scheduling method with 

complete indicators   

 

In order to handle car fault demands, we expect the 

cloud platform will be able to reserve additional 

computing resources. Next, we must lessen the 

resource usage of additional queries on cloud, 

which could have an impact on their offerings. The 

research focus is on how to increase the service rate 

of car problem requests while maintaining the 

ability to service other requests as usual  

 

A Multi-Task Scheduling Mechanism. Applying 

cloudcomputing to vehicle fault diagnosis cannot 

ignore the diversity of tasks on cloud platforms. We 

divide requests into four groups based on the 

Quality of Service (QoS) requirements, aiming to 

target various applications. This not only ensures 

sufficient processing capability for vehicle fault 

requests, but also ensures timely response to other 

tasks  

 

A Priority Allocation Strategy.  As a result, there are 

two categories of car problem diagnosis requests: 

those that are handled locally for emergence and 

those that are handled by the cloud for delay 

tolerance. It is possible to receive a fault diagnosis 

with great timeliness and precision. Additionally, we 

establish an emergency factor for the cloud 

emergency request that keeps its priority. Lastly, the 

priority policy is used to sort all requests that have 

been uploaded to the cloud platform.  

 

A Mobile Edge Caching Algorithm. Optimizing 

resource allocation in the cloud to optimize system 

reward and decrease the volume of large-scale files 

downloaded from the cloud is an issue based on 

the allocation method. Next, we suggest a multi-

objective optimization technique to effectively 

identify suboptimal alternatives, increasing the 

service rate while maintaining low complexity.  

 

A comprehensive simulation. is carried out, which 

verifies our findings from both the service and user 

perspectives. According to simulation results, the 

service interval for car onboard diagnostic queries 

was extended by 100% while maintaining the 

functionality of other network-based services. We 

can even ensure a 50% service rate even in the case 

of a high vehicle density. Additionally, the ideal 

number of virtual machine configurations was 

provided for the specified simulation size, which has 

useful reference value in real life.  

 

II. LITERATURE SURVEY 

 
Title:  Framework Of Cloud Computing Resources 

Scheduling For Vehicle Fault Diagnosis Authors: W 

Gu, H Xu, L Zhu –  

Year: 2024  

Description: Vehicle defects can be diagnosed on-

board thanks to the communication and 

computation capabilities offered by the Internet of 

Vehicles (IoVs).  To enable the precise examination 

of the on-board diagnosis, those resources must be 

increased.  The strain of local vehicle processing can 

be relieved by vehicular cloud computing (VCC), 
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although there will inevitably be a delay.  Therefore, 

it is impossible to guarantee the precision and 

promptness of on-board diagnosis.  We suggest a 

Mobile Edge Caching-based Resource to solve the 

problem.  

Keywords:  

•Vehicle cloud computing  

•Resource scheduling  

•Mobile edge caching  

•Fault diagnosis 

 

III. RELATED WORK  

 
Vehicle fault diagnosis has long been a priority of 

industry and research since driving safety is closely 

linked to the preservation of life and property. 

Numerous sophisticated algorithms are currently 

available for fault diagnosis. In  for example, a new 

defect diagnosis method based on enhanced 

symplectic geometry mode de composition (SGMD) 

and optimized support vector machine (SVM) is 

introduced, demonstrating the method's efficacy 

and resilience in diagnosing faults in rotating 

machinery. Aojia et al. create a tracking controller 

that is fault-tolerant and a fault detector. To 

address the negative consequences of delay, they 

suggest a delay-dependent stability criterion. In the 

authors implemented output control for a 

roddriven vehicle and presented an active fault-

tolerant control method for an underwater remotely 

operated vehicle. A fault tree analysis (FTA)-based 

fault detection method for electric vehicle charging 

devices is developed in literature  and is capable of 

precisely identifying and promptly resolving 

charging device defects. Furthermore, For onboard 

applications in EVs, Paper  suggests a soft SC fault 

diagnosis technique based on the extended Kalman 

filter (EKF). By modifying a gain matrix in response 

to real-time observed voltages, the EKF in the 

suggested method determines the state of charge 

(SOC) of the defective cell. It is reliable and useful 

for promptly identifying a soft SC failure.   

 

Vehicle defects can in a variety of forms, though. 

Thus, there is an urgent need for a vehicle fault 

diagnosis method for large amounts of problem 

data.  

As big data technology develops, researchers 

suggest efficient detection techniques that can 

process larger amounts of data. Vehicle fault 

activities can be processed in real time with the 

help of online diagnosis. A brand-new intelligent in-

car electrical power supply network is suggested in . 

This study shows that online problems are 

successfully identified, the power supply process for 

each device is suitably monitored, and the fault-

tolerant approach can provide real-time protection 

and restoration. Following feature analysis and 

judgment, Zhang et al used BPNN for 

categorization and decision-making. A three-layer 

BP neural network structure was created by Liu et al 

to achieve the effective fusion of Fixed Detector 

Data (FDD) and Floating Car Data (FCD). Tian et al  

introduced a KNN-based bearing fault detection 

technique that uses spectral kurtosis and cross 

correlation to extract fault signals. One benefit of 

online diagnostics is its promptness. However, the 

local processor will be under stress from processing 

a lot of problematic services, and it must also 

handle other IoV services. Barabino et al. create an 

offline system that uses automatic vehicle position 

data to diagnose time reliability. Transit 

management can use this paradigm to conduct 

precise reliability analysisAn intelligent diagnosis 

technique for sensor intermittent faults based on a 

data-driven model was presented in Paper A speed 

sensor fault detection technique based on a 

learning-based data-driven approach in induction 

motor drive systems was proposed in paper . 

However, depending solely on the offline diagnostic 

makes it difficult to guarantee punctuality. It is 

impossible to obtain a multi-objective joint 

diagnosis in response to the requirement for 

additional local resources. To guarantee accuracy 

and punctuality, we seek a multi-objective 

optimization system. As a result, we combine offline 

and online techniques to upload and download 

data using VCC.   

 

We send the local vehicle's time-sensitive demands 

for online processing. The cloud platform is used to 

send the processing results back to the car once the 

time-delay insensitive requests are uploaded there 

for offline processing.To improve the cloud's service 

capabilities, numerous cloud computing projects 
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have been completed. Additionally, the service rate 

can be raised with sensible resource scheduling. In 

order to increase resource usage, researchers from 

the University of Ottawa study the migration of 

virtual machines in cloud computing. A method for 

allocating resources that applies maxmin fairness to 

a variety of resource categories was presented. It 

was designed to cooperatively optimize time 

allocations in order to maximize the minimal energy 

balance among all users. In order to optimize the 

overall expected benefit of the linked vehicular 

cloud system, Zheng et al. suggest an efficient 

computing resource allocation scheme. The method 

achieves notable performance improvements within 

a manageable complexity range by representing 

the optimization problem as an infinite-level semi-

Markov decision process. Dominant Resource with 

Bottlenecked Fairness (DRBF), a novel allocation 

technique, is proposed by Zhao et al. in their 

discussion of the equitable distribution of 

numerous resources. To guarantee that users in the 

same column receive an allocation in accordance 

with their fair portions, they separate users into 

distinct queues depending on their dominant 

resources. To solve the issue of cloud computing 

resource distribution and pricing in the mobile 

blockchain, a contract mechanism is used. and 

suggested an adverse selection contract to address 

the issue of information asymmetry. This paper 

focuses on the VCC architecture, which applies 

cloud computing to the IoV and then uploads fault 

tasks to the cloud. The volume of vehicle fault data 

is enormous. But requests in VCC are diverse, and 

the performances of other essential services cannot 

be compromised. Some common mechanisms, such 

as FCFS (First-Come-First-Served) mechanism, cause 

untimely service and huge resource waste. The 

vehicle fault diagnosis mechanism orienting 

towards multiple requests in VCC is closer to the 

actual scenario and solves the problem of poor 

communication and computing resources. Hence, 

an effective cloud resource allocation mechanism 

becomes the interest of this paper. 

 

IV. SYSTEM MODEL 
 

The system model is explained in the parts that 

follow. We begin by outlining the communication 

scenario. Next, we go over the system reward 

function model, vehicle collaborative transmission 

model, traffic model, and overall optimization goal. 

Different kinds of requests are sent by vehicles to 

the central base station, which then transmits them 

to the cloud platform for processing. The vehicles 

will receive the processed results. The dotted circles 

show the base station's effective communication 

range because of the high dynamic topology of 

IoV. Direct communication between the base 

station and vehicles outside its range is not 

possible. Consequently, the transmission can be 

used for V2I (Vehicle to Infrastructure) 

communication range of the base station, and the 

V2V (Vehicle to Vehicle) communication can be 

performed outside the transmission range. 

 

 
 

We consider a vehicular communication scenario 

that occurred within a base station and the cloud 

platform, as shown in Fig.1, including the forward 

driving and reverse driving vehicles. The user 

vehicles sends four types of tasks to the cloud 

platform and forwards them by the base station. 

The flowchart is shown in Figure 2. It represents the 

process from the vehicle sending the requests to 

the cloud platform processing the requests. 

Besides, the Table 1 is the list of important 

notations in this  

 

1. Traffic Model 

Vehicle fault requests are one of four categories 

into which we divide requests based on Quality of 

Service (QoS) needs. Eunit (concentrating on the 

typical driving of the vehicle), network operation 

requests Large-scale file requests, emergency 

requests (Eerg), and Econ (which focuses on 

network stability between the cloud platform and 

the vehicle) Efficient (concentrate on the driving 
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pleasure). The vehicles produce the Eunit, Econ, and 

EF ile. The cloud platform itself generates theEerg. 

The base station sends the three types of requests 

to the cloud platform after receiving them. The 

system reward is then calculated by the cloud 

platform, with the highest priority going to the 

largest reward request. 

 

2. Overall Optimization Objective  

As the optimization goal, we decide on the overall 

system reward. Additionally, incorporate into the 

reward function the VCC's processing, bandwidth, 

energy, and time consumption: 

 

 

 
where the reward function for the system is R(S, O). 

The greatest cloud computing resource is C. 

Together, the four tasks' total capacity ought to be 

less than C. C stands for the vehicle's capacity to 

store huge files in its cache. Requests for network 

operations, emergency situations, large-scale files, 

and vehicle faults, respectively, take up Cunit, Ccon, 

Cerg, and Cfile computer resources. By C2, we imply 

that Cunit should be as big as possible compared 

to Cfile. C3 is a representation of the limited cache 

capacity per vehicle. The maximum number of 

large-scale file requests that a vehicle can 

accommodate is denoted as Kj, where K is the set 

of cars, K = {1, 2, 3,..., j...}. The goal of this system is 

to maximize system reward while enabling more 

computing and communication resources for 

analyzing and transmitting vehicle faults. However, 

lowering the Ccon will significantly affect network 

stability, which will further lead to poor 

communication quality, while lowering the Cerg will 

ignore network crises. Additionally, when the Cfile 

decreased, customers' happiness with the driving 

experience decreased. However, cloud resources 

might not always be used in the Ef ile response to 

large-scale file demands.  In order to minimize 

large-scale file service from the cloud, we therefore 

provide a mobile edge caching technique in section 

IV. B, which states that vehicle caching serves the 

large-scale file requests. 

 

3. System Reward Function Model  

Equation (2) illustrates how the difference between 

the gain function E(S, O) and the overhead function 

P(S, O) can be used to determine the reward 

function.  

R(S, O) = E(S, O) − P(S, O) is the VCC platform's 

state set. The VCC platform's operation set is O = 

{0, 1, 2,..., NRU}. The event set is B = {Ra, Rl}. Ra 

stands for "request arrivals." Ra stands for "request 

leaves." 

 
where the gain of one request handled by the cloud 

platform is denoted by ei(S, O). The advantages of 

each request should be combined, as this paper 

examined the system. Additionally, the primary 

reason of ei(S, O) is time and energy usage due to 

the cloud platform's strong resources and data 

storage capacity, as demonstrated by the following: 
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The gain is zero when op = 0 since the car does not 

benefit from the cloud service.  

The car benefits from the cloud service when op 

6=0. As a result, it eliminates the massive energy 

use (EVI) and time consumption (Tvi) associated 

with standard internet downloading. However, the 

cloud platform procedure adds P δi and δi 

consumption. Furthermore, overhead function P (S, 

O) reflects the processing consumption of cloud 

platforms.  The system overhead function for the 

requests, P (S, O), can be written as follows: It 

includes energy consumption, time consumption, 

and energy consumption due to channel fading.  

 
 

where the overhead per unit of time is denoted by 

C(S, O). The time it takes for the cloud to serve the 

request is τ (S, O). 

 
Is the overhead brought on by fading channels. 

Furthermore, because the number of virtual 

machines allotted by the cloud platform determines 

C(S, O), 

 We allot sufficient virtual machine resources to 

requests that can be handled in the user's tolerance 

period, therefore each request's processing time is  

 

Vehicle Collaborative Transmission Mode  

Vehicles can receive services outside of the 

transmission range thanks to the V2V 

communication method, which is an addition to the 

V2I communication method. It lessens the strain on 

computing and communication services. As a result, 

V2V turns into a strong tool for enhancing cloud 

services in VCC.  

Here, we concentrate on two automobiles 

communicating with one another. Through multi-

hop transmission, many cars can communicate with 

each other via V2V. Vehicles A and B are the target 

and assisting vehicles, respectively, if vehicle  

A uses vehicle-to-vehicle (V2V) transmission to 

send a request from vehicle B. V2V communication 

can be separated into three scenarios based on the 

vehicle traffic scene: relative driving, opposite 

driving, and same direction driving between the 

target vehicle and the aiding vehicle. According to 

the IEEE 802.11p agreement, the vehicle 

communication equipment transmission radius is 

[50m, 500m], and the V2V transmission bandwidth 

is 100kB/s.   

 
The communication time between the vehicles 

when they are driving relative to one another, 

including opposite driving, is shown in the first 

segment. Additionally, the greatest communication 

distance between two vehicles is known as the 

communication range tangent. The communication 

duration for two cars moving in the same direction 

but not stationary is expressed in the second 

segment, and the third segment displays the 

communication duration for the vehicles that are 

comparatively stationary.  

The two cars can now continue communicating 

with one another until the request is fulfilled or the 

relative motion varies. Furthermore, this model can 

be used to download huge files from the cloud to 

automobiles.  

 

V. RESOURCE ALLOCATION FOR VCC 
 

We suggest a Resource Scheduling (MECRS) 

technique based on Mobile Edge Caching to 

address the objective function optimization 

challenge. These three sections make up its 

content.  

 

1. Priority Allocation Strategy  

We upload some car defect queries to the cloud 

platform since we don't have enough computer 

power locally. The cloud platform ranks the four 

categories of requests in order of user tolerance 

time, data volume, and request popularity.   
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The three primary components of this approach are 

as follows:  

 

Local computing  

We can select either local computing or cloud 

computing for the Eunit based on the relationship 

between the service tolerance time Tt and the time 

threshold Ts.  It falls under the emergency vehicle 

fault request when Tt < Ts. To guarantee prompt 

processing, the requests should now be handled 

locally in the car.   

 

This request is not time-sensitive when Tt > Ts. In 

this instance, the services ought to be uploaded to 

the cloud for processing.  

 

Emergency response 

 All services must use computing resources, with 

the exception of the local computing component. 

Because of their urgency, Cloud should respond to 

Eerg's request first. For that, we set an emergency 

factor ζ. ζ = 1 ensures preferential processing when 

Eerg occurs. 

 
 

Priority computing  

All requests submitted to the cloud must have 

access to sufficient cloud computing resources. We 

will lose out on some high reward requests if we 

solely adhere to the first come, first served premise 

because vehicle nodes move quickly.  As a result, 

we create priority rules. The following is the priority 

equation: 

 
 

where ω1 and ω2 stand for the weights of data 

volume and user tolerance time, respectively. 

Furthermore, various requests require different 

amounts of resources. For instance, the 

computation-intensive files need processing speed 

and virtual machine memory, while the 

communicationintensive files concentrate on the 

requirement for network bandwidth resources. 

Therefore, ω1 and ω2 are utilized to modify how 

much emphasis is placed on communication or 

computation resources. Under the same 

circumstances, it is evident that the processing 

priority increases with the shorter user tolerance 

time, the lower request data amount, and the 

higher request popularity. When the cloud platform 

receives several similar requests (such the precise 

automotive part defect, downloading the same 

enormous file, etc.), this request is very common. 

The request popularity degree Nri is the most 

crucial of the three priority factors as, when 

receiving the request, the cloud verifies that there 

are precise requests before deciding on a 

scheduling strategy. It is possible to acquire further 

identical requests from V2V if the most popular 

request is chosen and fulfilled. 

 

2. Mobile Edge Caching Algorithm  

We categorize the cloud requests into four groups, 

as was previously described. Our goal is to 

promptly respond to requests for car fault diagnosis 

while using the least amount of network and 

processing power possible. We anticipate that more 

cloud resources will be available to handle the Eunit 

in addition to the locally processed requests. The 

cloud platform, however, is unable to target a single 

request type. How can we be sure that the response 

to the other three kinds of inquiries is the issue to 

be resolved? Lowering the Ccon will significantly 

affect network stability, which will further lead to 

poor communication quality, while lowering the 

Cerg will ignore network crises. The cloud must 

handle these two kinds of requests. In order to 

reduce the service of large-scale files from the 

cloud, we therefore suggest a mobile edge caching 

technique that is targeted at efficiency. 

 
Vehicles are separated into two categories: service 

vehicles and requesting vehicles. Each vehicle can, 

of course, be a server or a requester. According to 
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certain guidelines, we pre-cache huge files onto the 

service vehicle. Large-scale file services from the 

cloud can be reduced by using the V2V 

transmission technique, which allows the requesting 

vehicle to download large-scale files straight from 

the service vehicle.  

 

This approach can guarantee Ef ile's service rate, 

lessen the cloud platform's processing load, and 

free up additional processing power for Ef ile. Since 

caching material at the edge of mobile networks is 

a promising solution to the data tsunami , we have 

chosen to use the edge caching method to serve 

largescale file requests in the resource allocation 

mechanism. It is believed that there will be little 

temporal overlap when many vehicles have the 

same storage contents. This indicates that the same 

content is being stored in cars. Until the 

transmission distance causes it to be halted, the 

user car just needs to issue a request to a service 

vehicle. This paper queues based on M/D/1 in the 

resource buffer pool. E[rp], the file playback rate, is 

the service rate. The arrival rate is λp, and the 

transmissive huge file data size is E[Y]. 

 
where λ denotes the communication speed 

between the target vehicle and the auxiliary vehicle, 

or the task arrival rate, E[D] denotes the 

transmission time between user vehicles and service 

vehicles, E[rh] denotes the download rate of 

vehicles, and xi denotes the quantity of identical 

files downloaded simultaneously from the 

collaborative vehicle. It is evident that the queue's 

service rate: 

 
where E[rp] is the watching playout rate of large-

scale files and ρ is the queue's longterm usage. Pi is 

the queue's free probability at the time of the 

large-scale file request i. 

 
where the busy length of the playout buffer upon 

arrival of request I is represented by E[Bi], and the 

free length of the playout buffer is represented by 

E[Ii].   

 

The transfer time is prolonged because our model 

handles huge files. Next, keep in mind that Cf ile is 

equal to the total number of bytes that were 

downloaded from the cloud. We own that:  

From the above derivation, we can get the 

following formula: 

 
The calculation above shows that, once the other 

factors are established, the Cf file mostly relies on 

the file's attribute, which is the Ei Nevertheless, we 

prioritize largescale file requests, which are 

unavoidable for massive Ei. As a result, we 

investigate document popularity, another file 

attribute. The demand for documents is referred to 

as popularity. Many individuals can download such 

large-scale files due to their high popularity. We 

suggest a greedy algorithm based on popularity in 

section  

 

V. GLOBAL OPTIMIZATION METHOD 
 

Optimizing resource allocation in the cloud to 

optimize system reward and decrease the volume 

of large-scale files downloaded from the cloud is an 

issue that arises based on the allocation technique. 

Next, we suggest a multiobjective optimization 

technique to effectively identify suboptimal 

alternatives, increasing the service rate while 

maintaining low complexity.  

 

P1 is receiving the highest system reward, as 

demonstrated by algorithm 1. P2 is reducing the 

amount of processing power used by huge files. P1 

and P2 are both quite computationally complex. 

Therefore, we suggest a greedy two-phase resource 

allocation approach to effectively identify low-
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complexity sub-optimal solutions for Problems 1 

and 2. As illustrated in Algorithm 1, P1 and P2 are 

solved in Phase 1 (Algorithm 2) and Phase 2 

(Algorithm 3), respectively.  

 

Algorithm 1 is broken down into Algorithms 2 and 

3. Algorithm 2 uses greedy algorithms to distribute 

virtual machine resources across different request 

kinds and organizes requests according to priority 

and system reward functions. Depending on the file 

popularity,  

 

Algorithm 3 avariciously caches the user's vehicle's 

substantial file requirements into the service 

vehicle. Bubble sorting, the algorithm's sorting 

technique, has a lower temporal complexity than 

fast sorting and other techniques. The Greedy 

algorithm's simplicity and low temporal complexity 

are its merits. The Greedy method, which has an 

O(n 2) complexity, is improved upon in this article. 

In order for each optimization result to reduce the 

problem to a smaller sub-problem, this research 

focuses on efficiently allocating the available cloud 

computing resources. Furthermore, if the requests 

are handled via the FCFS technique, computer 

resources cannot be used efficiently due to the 

cloud platform's limited bandwidth, computational 

load, and varying tolerance times, data volumes, 

and popularity for distinct requests.  

  

In order to make resource allocation more 

thorough and rational, this work enhances the 

request priority while choosing the best solution of 

sub-problems, given the greedy algorithm's 

simplicity and low time complexity.The algorithm 

breaks down the resource optimization challenge 

for cloud platforms into a few sub-selection issues. 

Every sub-selection simultaneously maximizes the 

present advantage, resulting in a local optimal 

solution. The choice is made once more to find the 

best local solution for the new subproblem 

whenever the cloud platform releases fresh 

resources.  

  

Algorithm 1:  Two-Phase Greedy Resource 

Allocation Algorithm 1)  

 

 

Algorithm 2: Priority-based Dynamic Greedy  

 

Algorithm  

Input : 1 [num_request]  

Output : Sorted I [max_num_request]   

Initialization :   

 
 

Algorithm 3 : Popularity-based Caching  

Greedy Algorithm  

Input: 1  [f ile_request], c   

Output: Sorted I [f ile_max_popular] 

Initialization: 

 
In the real scenario, the vehicle would continuously 

reach the base station communication range and 

send requests, as described by the repeated 

process. Consequently, the cloud platform's 

processing and bandwidth resources can be 

efficiently optimized to maximize the system 

reward by employing a prioritybased dynamic 

greedy algorithm.  

  

In particular, for every request that the cloud 

platform receives, the algorithm first determines 

the system rewards. Sort by prize level after that. An 

overall ordered task queue will arise if all of the 

requests have the same reward and are ranked 

from high to low in terms of priority. Then, 

beginning at the top of the task queue, each 

attempt is made to assign enough virtual machines 
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to satisfy the amount of bandwidth and 

computation demand. If the optimization measure 

outperforms other requests, the allocation is 

finished. If not, the task queue's subsequent 

request might be chosen. Algorithm 2 below 

illustrates the concept of the algorithm.  

  

During the waiting phase, the cloud platform 

gathers requests, and during the decision period, it 

makes decisions. The cloud platform consistently 

serves highpriority and large-reward requests, and 

the pseudocode depicts a single resource allocation 

strategy of the VCC during the decision time.The 

procedure is repeated during the subsequent 

decision time after the service requests have been 

gathered. A dynamic scheduling system for cloud 

platform resources is created since the time 

separation between neighboring periods is limited. 

is the collection of cars, and since the duration of 

both periods is brief, a dynamic cloud platform 

resource scheduling selection procedure is formed. 

Additionally, I [max_num_request] is the arranged 

request set, K is the set of cars, and I [num_request] 

denotes the set of requests gathered by the cloud 

platform while awaiting a decision.  

  

In Algorithm 3, we provide a caching greedy 

algorithm based on popularity to solve the P2. The 

most popular material in each service vehicle is 

replicated by this algorithm. Next, the Large-scale 

files are avariciously crammed into the vehicle's 

remaining storage, arranged from high to low 

popularity. In this manner, the service vehicle 

efficiently offloads the massive file requests. 

Consequently, the strain on cloud resources to 

handle numerous requests can be reduced. As a 

result, more computer power is available for Ef ile, 

increasing the Ef ile service rate. Furthermore, Evi[i] 

represents the file size, Nr[i] indicates the efficiency 

popularity level, and c is the vehicle's cache 

capacity for huge files. 

 

VI. SIMULATION AND ANALYSIS 

 
We perform extensive simulations in this section. 

Four service rates of successful requests are used as 

metrics to assess the effectiveness of the suggested 

approach. Both the service side and the user side 

are used to display MECRS. Prior to comparing the 

rates under various request proportions, we first 

show how the four requests service rates vary with 

vehicle density. Lastly, MECRS optimality is 

demonstrated by how the service rate varies with 

cloud virtual machine density. We model the 

communication scenarios depicted in Figure 1, in 

which M cars are outside the base station's range 

and N vehicles are inside the coverage area of a 

single cellular base station. Vehicles are separated 

into relative and opposite driving, and the road has 

a single lane in both directions. Three different 

kinds of requests are sent by the user cars to the 

cloud platform, where the base station transmits 

them. The cloud platform itself is the source of the 

additional Eerg requests.  

A:Simulation Setup 

 
MATLAB is used to carry out the simulation analysis 

task. To model the requests for cars to the cloud, 

we create a simulation tool. We placed 

infrastructure at 5,000 meters in the middle of the 

10,000-meter-long road. There should be fifty 

meters between each car. Usually, the vehicle 

accelerates in a scattered manner. Additionally, 

when there is less than the safe distance between 

two cars, real-time speed adjustment is 

implemented.  

 

Regarding the network environment's 

specifications, we use the IEEE 802.11p protocol, 

which has a V2V transmission bandwidth of 100 

kB/s and an onboard communication equipment 

transmission radius of [50, 500 m]. In this case, we'll 
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assume that big files are ranked from 1 to 10, where 

1 represents the least popular and 10 represents 

the most popular. Next, we assume that the cloud 

platform has not yet reached saturation and that 

there are always computing resources available. 

Table 2 displays the simulation parameters. The 

cost per virtual machine is the same as the cost of 

public cloud services offered by Amazon.  

  

There are two sections to the simulation 

experiment. This study illustrates the effectiveness 

of the MECRS mechanism from the viewpoints of 

the user and the server using four request success 

service rate evaluation criteria. The percentage of 

requests that are successfully answered relative to 

the total number of requests is how we define the 

service rate. The trajectory of successful service 

ratios for four distinct services under various 

mechanisms as vehicle density rose is first 

compared in the user-side experiment analysis.  

  

Next, we show the variations in service ratios for 

four distinct requests in varying amounts. Lastly, we 

confirm the efficacy of the cloud platform-assisted 

car defect diagnosis processing using the actual 

data that was gathered.   

 

As the vehicle density rose, we compared the virtual 

machine occupancy under various computing 

resource techniques in the server-side experimental 

analysis.   

 

To prevent resource waste, the ideal number of 

virtual machines is offered.  

 

2. Compare Mechanism  

We take into account and contrast the results using 

the allocation policies listed below:  

 MECRS: In order to properly utilize local 

resources, the approach suggested in this 

research separates local processing from cloud 

processing. Next, an optimal resource 

scheduling strategy with several objectives is 

used.  

 Random: The car caches huge files at random 

and uploads all fault requests to the cloud for 

processing.  

 No-Caching: The cloud is used to process all 

car fault queries; the vehicle edge caching 

technique is not used.  

 FCFS: The cloud follows the principle of first 

come, first served when responding to all 

queries.  

 

3. Analysis for User Side  

Every second, we force every car to send a request. 

Vehicles beyond the effective communication range 

can use V2V to send data over a number of hops. 

The quantity of cloud virtual machines (VMs)   

 

200 machines), with a 5:2:2:5 ratio of four requests. 

Our assumptions are that Eerg is proportional to 

Econ and Eunit is proportional to Ef ile. Eunit and Ef 

ile are sent more regularly, of course. This paper's 

goal is to optimize the system reward function, 

which is mostly established by the overhead and 

gain functions in Equation (2). Furthermore, this 

research makes the assumption that channel fading 

loss is not taken into account. Figure 3 shows that 

although Econ and Erg requests are fulfilled 

promptly, the first three methods have the potential 

to prolong the time it takes for Eunit to receive a 

100% service. But if the number of vehicles 

increases, under the Random and No-  

 

Caching Mechanisms:   

Because category Eerg and Econ have a higher 

priority, Eunit does not have enough virtual 

machines. Because of this, the vehicle fault service 

rate is even lower than that of the FCFS mechanism 

(Fig. 3(d) shows the same explanation for the lower 

Ef EF service rate of the NoCaching technique). To 

address this issue, we then provide a popularity-

based caching greedy algorithm and a 

prioritybased approach.  

  

When compared to alternative methods, Fig. 3(a) 

demonstrates how well the MECRS mechanism can 

increase the service rate of Ef ile. Sequentially, we 

can provide a 50% service rate even in the case of a 

high vehicle density. The emergency factor we 

choose allows Eerg to be reacted to preferentially in 

Fig. 3(b)(c). The Econ has a higher service rate to 

guarantee network security and stability under the 

100 percent Eerg service rate premise. The MECRS 
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mechanism enhances the Efile service rate, as seen 

in Fig. 3(d). There is a minimum service rate for the 

number of cars, N=120. This is because the cloud 

platform uses a lot of resources for other requests 

with a higher priority, and the cached file capacity is 

limited by the number of vehicles.   

  

As a result, the lowest value is displayed.  The 

overall buffer capacity rises with vehicle density, 

which causes the service rate to grow before 

leveling off. The cloud resources are now the 

limiting factor since the service rate for users 

retrieving huge files from the cache cars has 

reached its maximum.The service rates of Eunit and 

Ef ile at various ratios are displayed in Fig. 4. Both 

are in the same proportion in the first. The Efficient 

Weight Ratio comes in second. Eunit weight ratio 

comes in third  

 

 

 

 
 

 FIGURE 3 :    

Service rate of four requests vs.number of vehicles, 

VMs = 200,proportion of four types is 5:2:2:5.   
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FIGUIRE 4:  

Service rate in different proportion vs number of 

vehicles, VMs=200. 

 
FIGURE 5 : Service rate under different mechanisms 

 
FIGURE 6 : Feature weights 

 
FIGURE 7 : Service rate ofvechicle features   

Because of the decrease in Eunit, the local 

processing capacity is enough under the 1: 1: 1: 50 

ratio and may achieve a 100% service rate. 

Additionally, with the  boost in efficiency, all of the 

car's cache files have been used up, allowing the 

service rate to hit 99 percent. The reason for the 

remaining 1% is that none of the nearby cars have 

such a file. A service failure will occur if this file, 

which needs to be downloaded from the cloud, 

cannot be successfully delivered in the allotted 

time. Additionally, as the request density has 

increased, the Eunit service rate and the successful 

service rate have also increased under the 50: 1: 1: 1 

ratio. In the meantime, the service rate improves 

when the efficiency declines and there is less 

competition with enough cache space. In 

conclusion, for different request ratios, the 

suggested mechanism can raise the service request 

rate. The majority of problem data is gathered and 

processed online by conventional car fault 

diagnosis algorithms. This can guarantee that tasks 

are completed on time, but it will result in the local 

processor in cars having insufficient processing 

power.  

Particularly in light of the numerous other kinds of 

jobs that need local processing in cars, including 

autonomous driving, road section alerts, etc. Thus, a 

fault task offloading system is proposed in this 

study, which retains some of the vehicle failure 

duties locally and transfers others to the cloud 

platform for processing. Section IV goes into further 

detail. A vehiclemounted defect diagnosis system 

with less data and minimal computational 

complexity is proposed by V.  

A.Literature storage, in order to monitor the status 

of the vehicle in real time. It confirms that the 

suggested diagnosis method is accurate, 

sophisticated, and has enough storage space. 

Electronic vehicle management provided 466688 

samples for this study, of which 177261 are 

defective.  In conclusion, the actual data capacity is 

6.52 GB, and there are 539 original characteristics. 

Some data errors and omissions may inevitably 

occur during the dataset collection procedure. As a 

result, preprocessing the data is required prior to 

simulation verification. Effective real data yields 

more valuable and enlightening experimental 

outcomes.  The three primary phases are missing 

value processing, data integration, and the removal 

of superfluous attributes.v 
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(a)E UNIT service rate:  

 
(b)E CON service rate:  

   
(c)E ERG service rate:  

  

 
(d)E FILE service rate  

Certain fault tasks with high latency requirements 

may not be processed in a timely manner if the 

local computing power is inadequate or heavily 

occupied by other processes. The vehicle has now 

driven outside of the V2I transmission range and is 

unable to transmit via V2V, resulting in resource 

waste.  The MECRS method can increase the service 

rate of Ef ile when local resources are insufficient, as 

demonstrated by the simulation results in Fig. 5, 

assuming that only 20% of the vehicle's CPU 

resources are used.  

 

Additionally, as the vehicle density rises, it 

eventually  falls.  Furthermore,  vehicle 

density has no effect on the real-time diagnosing 

mechanism. Each feature's weight is displayed in 

Fig. 6. As we can see, features pertaining to 

batteries carry the largest weights, whereas features 

pertaining to vehicle components rank second in 

importance. The energy aspects come in third. The 

term "other features" refers  to  allofthe remaining 

characteristics. To validate the mechanism 

suggested in this paper, we used these four feature 

categories. Figure 7 shows that all four categories 

of failure data were successfully addressed. A 100% 

response rate can be attained at low vehicle 

densities.  

  

4. Analysis for Service Side  

Every one second, we force every car to send 

requests. There are 200 vehicles, and the 

percentage of four requests is 5:2:2:5.  
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Figure 8 shows that the service rates of four 

requests improve with increasing virtual machine 

density.   

 

High priority Econ and Eerg take up the majority of 

virtual machines under the Random and No-

Caching procedures when virtual machine resources 

are limited, which lowers the efficient service rate 

even further compared to the FCFS mechanism. But 

when the number of virtual machines rises to 160, it 

gets much better. We successfully raised the Eunit 

service rate under the Econ and Eerg's prompt 

responses. On the one hand, we guarantee that all 

requests be fulfilled, provided that the virtual 

machines (280– 400) are not overloaded. On the 

other hand, vehicle local processing can also ensure 

a 50% service rate when the number of virtual 

machines (20–80) is insufficient. Because the other 

three requests in Fig. 8(d) have a higher priority 

than large-scale file requests, the efficient service 

rate under the no-caching mechanism is the lowest. 

Therefore, in order to address the issue of poor file 

service rate, we employ the Popularitybased edge 

caching approach. The efficiency service rate is 

clearly increased by the suggested MRCRS 

mechanism, and the other two requests are likewise 

promptly handled.  

 

Furthermore, it is evident that 360 virtual computers 

is the ideal number when all needs are fully fulfilled. 

Nonetheless, the first three categories of requests 

have achieved a 100% service rate at 260 units. The 

efficient service rate does not rise much between 

260 and 360. Therefore, from an economic 

standpoint, there should be roughly 260 virtual 

machines on the cloud platform, which has real-

world use.    

 
In this project, a secure cloud storage system was 

designed and implemented to address the growing 

concerns surrounding data privacy, integrity, and 

user confidentiality in modern digital environments. 

By incorporating advanced encryption techniques 

such as AES for data encryption and RSA for key 

management, along with SHA-256 hashing for 

integrity verification, the system ensures that user 

data remains confidential and tamper-proof 

throughout its lifecycle.  

The integration of secure user authentication 

mechanisms and access control features further 

enhances the trustworthiness of the platform, 

minimizing risks related to unauthorized access and 

potential data breaches. Leveraging lightweight and 

scalable technologies like Python, Flask, and SQLite, 

the system offers a modular, user-friendly, and 

efficient solution suitable for small to medium-scale 

deployments.  

 

Future work may include scaling the system for 

distributed cloud environments, integrating 

biometric authentication, and ensuring compliance 

with broader data privacy regulations such as GDPR 

and CCPA. 

 

VII. CONCLUSION AND FUTURE WORD  

 
In order to diagnose on-board vehicle faults, we 

suggested a computational resource allocation 

technique in this article. For each of the four 

request categories, we first created a priority 

allocation plan based on the diagnosis service's 

tolerance time.  

 

Then, in order to optimize the VCC system's long-

term reward, we developed a priority allocation 

mechanism taking into account the QoS features of 

requests. Furthermore, a widely used mobile edge 

caching strategy was put forth to relieve the strain 

on the cloud by offloading massive file requests. In 

order to distribute computational and 

communication resources, the multi-objective 

optimization resource scheduling approach was put 

out. Ultimately, the simulation results showed that 

the Eunit 100% serviced interval was extended while 

maintaining the promptness of the other requests, 

and we could ensure a 50% service rate even in the 

case of a high vehicle density. It can increase the 

service rate in the event of low resources when 

compared to the real-time diagnosis mechanism. 

This will greatly lessen the impact that vehicle fault 

has on traffic. Additionally, 260 was determined to 

be the ideal number of virtual machine 

configurations for the specified simulation scale 

from an economic standpoint; this figure has real-

world application. Vehicle fault diagnosis research is 

highly significant and can successfully prevent a 
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number of traffic issues, including trip plans, traffic 

accidents, and traffic congestion. A vast knowledge 

base about car faults can be created by employing 

knowledge graph technology to associate and mine 

the gathered data. Furthermore, car defect 

diagnosis issues can be resolved more successfully 

because to cloud computing's strong processing 

and storage capabilities, opening up new avenues 

for future research. 
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