
M. Vishal, 2025, 13:2

ISSN (Online): 2348-4098

ISSN (Print): 2395-4752

© 2025 M. Vishal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License

(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,

provided the original work is properly credited.

International Journal of Science,
Engineering and Technology

An Open Access Journal

Integrated Development Environment For Hand-

Drawn Web Sketch Recognition and Code Generation
M. Vishal, Assistant Professor Dr. K. Nandhini

A Department of Computer Science, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai, India

I. INTRODUCTION

This research introduces an advanced Integrated

Development Environment (IDE) designed to

transform hand-drawn sketches of web

components into functional HTML code. The IDE

employs a combination of machine learning and

deep learning techniques to interpret sketches,

recognize web elements, and dynamically generate

standard- compliant HTML code. Central to the

system is the SketchNet model, a Convolutional

Neural Network (CNN) trained to identify UI

components from varied sketch inputs. To enhance

recognition accuracy and capture long-range

dependencies in sketch patterns, the system

integrates the Swin Transformer, a vision

transformer known for its efficiency in handling

spatial hierarchies in images.

The IDE provides a user-friendly interface that

allows users to sketch elements, visualize the

generated code, and preview the web layout in

real-time. This approach empowers both designers

and developers by automating repetitive coding

tasks, reducing the scope for errors, and supporting

rapid prototyping. Overall, this system presents a

novel contribution to the field of web development

automation, streamlining the conversion from

design to code.

Our Website Design

To bridge this gap and enhance efficiency, an

innovative solution is necessary—one that

seamlessly integrates visual creativity with

automated code generation. © 2015 Author et al.

This is an Open Access article distributed under the

terms of the Creative Commons Attribution License

Abstract- An Integrated Development Environment (IDE) is a comprehensive tool that provides developers with

essential features for software development, such as code editing, debugging, and execution. This project

introduces an innovative IDE designed to efficiently convert hand-drawn sketches into functional web code.

Transforming hand-drawn sketches into executable HTML code is challenging due to the variability in artistic

styles and stroke patterns, along with the traditional separation between design and implementation. By bridging

the gap between hand-drawn designs and functional web development, this IDE offers an intuitive and interactive

environment, empowering designers with a direct link between their creative concepts and executable code, thus

optimizing and streamlining the web development process.

Keywords- Sketch Recognition, HTML Code Generation, Integrated Development Environment (IDE), Deep

Learning, Web Development Automation.

 M. Vishal. International Journal of Science, Engineering and Technology,

 2025, 13:2

2

(http://creativecommons.org/licenses/by/4.0), which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

work is properly credited.

II. LITERATURE REVIEW

Recent advancements in computer vision and deep

learning have significantly enhanced the conversion

of hand-drawn sketches into executable web code,

particularly through the integration of

convolutional and transformer-based architectures.

Robinson et al. utilized deep semantic

segmentation to interpret paper mockups,

pioneering sketch-to-code automation using neural

network models for UI recognition [1]. Jain et al.

proposed a real-time system combining deep

neural networks with structured output layers to

convert UI sketches into code representations,

demonstrating high accuracy on benchmark

datasets [2]. Kumar introduced a caption-based

model that translated wireframes into HTML code,

leveraging encoder-decoder architectures to

capture layout semantics [3]. Barua et al. expanded

on this by introducing ―Sketch2FullStack,‖ a deep

learning framework capable of generating both

front-end and backend code structures from hand-

drawn diagrams [4]. Guo et al. developed

UniXcoder, a unified model that integrates code

syntax trees and textual information for better

representation learning in code generation tasks

[5]. Li et al. introduced SkCoder, a retrieval- based

code generation system that mimics developer-like

reuse patterns to improve sketch interpretation and

reduce error rates [6]. Beltramelli et al. presented a

style-aware generation mechanism that preserves

visual consistency across different UI elements in

HTML output [7]. The UCLA Deep Vision Lab

emphasized the importance of dataset diversity and

data augmentation in improving model

generalization across varied sketch styles [8]. Recent

transformer architectures, like the Swin

Transformer, have also been adopted for their

hierarchical attention capabilities, enhancing spatial

understanding of sketches [9]. Additionally,

semantic-enhanced models have demonstrated

improved accuracy in element classification and

layout rendering, supporting more robust design-

to- code pipelines [10].

III. MODULE-WISE DESCRIPTION

The Sketch2Code IDE is composed of six core

modules, each responsible for a specific stage in the

transformation of hand-drawn web sketches into

executable HTML code. These modules work in

unison to provide an intuitive, real-time web

development environment that empowers both

designers and developers. The modular approach

ensures flexibility, maintainability, and the ability to

adapt to diverse design styles and complex UI

elements. The key modules of the system are

described below:

Sketch2Code IDE Web App

This module involves the complete design and

development of the Sketch2Code IDE, a web

application tailored for coders and developers. The

IDE serves as an integrated platform for seamlessly

transitioning from hand-drawn sketches to

executable HTML code. The user interface will

feature drawing tools for sketching web elements, a

code editor for reviewing generated code, and a

preview section for real-time visualization of the

executed code. The goal is to create an intuitive and

user- friendly environment that enhances the

design-to- code workflow.

End User Dashboard

The End User Dashboard encompasses

functionalities for various user roles:

Admin: Responsible for training the SketchNet

model, managing datasets, and overseeing system

configurations.

Developer/Coder/User: Can input hand-drawn

sketches of web elements, receive generated HTML

code, and view the executed results. Additionally,

 M. Vishal. International Journal of Science, Engineering and Technology,

 2025, 13:2

3

users can copy or save the generated code for

integration into their projects.

SketchNet Model: Build and Train The SketchNet

Model module is dedicated to the comprehensive

creation and training of the SketchNet model,

leveraging Convolutional Neural Network (CNN)

architecture. This process involves a series of

meticulously designed steps to ensure the model's

proficiency in recognizing hand-drawn web element

sketches:

Fig: Admin Panel

Import Dataset

In this initial step, a diverse dataset comprising

hand- drawn web element sketches is imported.

The dataset is carefully curated to encompass a

wide range of design variations and complexities,

ensuring the model's adaptability to different

artistic styles and patterns.

Pre-processing

The pre-processing stage plays a pivotal role in

refining the imported dataset. This encompasses a

series of transformative steps, including resizing,

grey conversion, noise filtering, binarization, and

Region Proposal Network (RPN) segmentation.

These processes collectively enhance the overall

quality and clarity of the dataset, preparing it for

effective feature extraction.

Feature Extraction

The heart of the SketchNet model lies in its ability

to extract meaningful features from the pre-

processed sketches. This is achieved through the

utilization of convolutional layers, activation layers,

and pooling layers. These layers work in tandem to

identify distinctive patterns, shapes, and structures

within the sketches, providing the model with a

robust foundation for subsequent classification.

Classification

Building upon the extracted features, the model

employs fully connected layers to classify and

categorize the recognized elements. This stage

involves assigning labels and attributes to the

identified features, enabling the model to

differentiate between various web elements present

in the sketches.

SketchNet Model: Build and Train (using CNN)

The core of the module revolves around the

integration of CNN architecture to construct and

train the SketchNet model. This involves designing

the layers, defining the network architecture, and

utilizing backpropagation algorithms to optimize

the model's parameters. The training process

ensures that the model learns to generalize well,

recognizing diverse web element sketches

accurately.

Deploy Model

The culmination of the module is the deployment

of the trained SketchNet model. This deployment is

a critical step, as it involves integrating the model

into the Sketch2Code IDE. Once deployed, the

model is ready to perform real-time sketch

recognition within the IDE environment. Users can

input hand-drawn sketches, and the deployed

model will accurately identify and categorize web

elements, laying the foundation for the subsequent

stages of dynamic HTML code generation and real-

time code execution.

Sketch Recognition

The Sketch Recognition module is a pivotal

component responsible for the accurate

identification of hand-drawn web elements,

facilitating a seamless transition from sketches to

executable code.

 M. Vishal. International Journal of Science, Engineering and Technology,

 2025, 13:2

4

Input Web Element Sketch

In this phase, users, including coders and

developers, actively contribute to the system by

providing hand- drawn sketches that represent

various web elements such as buttons, textboxes,

labels, and more. These sketches serve as the input

data for the Sketch Recognition module, initiating

the process of transforming visual concepts into

tangible and functional web components.

Fig: Element Sketch

Sketch Recognition (using Swin Transformer)

The core of the Sketch Recognition module lies in

its ability to leverage the Swin Transformer for real-

time sketch recognition. Unlike traditional

recognition methods, the Swin Transformer excels

in capturingintricate details and long-range

dependencies within the sketches. This advanced

transformer architecture enhances the accuracy of

the recognition process, allowing the model to

discern complex patterns and subtle nuances in the

hand-drawn sketches.

The utilization of the Swin Transformer marks a

departure from conventional recognition

approaches, as it excels in handling diverse and

detailed sketches. Through the application of

attention mechanisms and hierarchical feature

aggregation, the Swin Transformer can effectively

interpret the spatial relationships and hierarchical

structures present in the input sketches. This leads

to a more nuanced and accurate recognition of web

elements, ensuring that the subsequent stages of

the design-to-code workflow are based on precise

and reliable inputs.

Fig – Sketch Recogination

The real-time nature of the recognition process is

paramount, as it enables immediate feedback to

users. As hand-drawn sketches are input, the Swin

Transformer swiftly analyzes and categorizes the

visual elements, laying the groundwork for the

generation of HTML code in the subsequent stages

of the workflow. The Sketch Recognition module,

empowered by the Swin Transformer, represents a

critical step in bridging the gap between design

and code, offering a sophisticated and efficient

solution for translating creative concepts into

functional web interfaces.

Dynamic HTML Code Generation

The Dynamic HTML Code Generation module is

designed to create HTML code in real-time based

on recognized web elements. This process is crucial

for developing responsive and interactive web

applications. The system not only ensures the

syntactical correctness of the generated HTML code

but also adheres to industry standards and

incorporates security best practices.

Code Generation Process

The module begins by taking input from the Sketch

Recognition module, which identifies the web

elements in the hand-drawn sketches. These web

elements could include buttons, text boxes, images,

labels, and more. Based on the recognized

 M. Vishal. International Journal of Science, Engineering and Technology,

 2025, 13:2

5

elements, the system dynamically generates the

corresponding HTML code.

Real-Time Code Execution

In this module, the system enables real-time code

execution within the Sketch2Code IDE. This

functionality is designed to provide developers and

coders with an immediate visual representation of

the web interface resulting from the generated

HTML code, significantly enhancing the

development process.

Fig – Real-Time Code Execution

Instant Visualization

The real-time code execution module allows

developers to instantly visualize the web elements

they create from hand-drawn sketches. As the

HTML code is generated dynamically, it is

immediately rendered in the IDE’s integrated

browser or preview pane. This instant visualization

helps developers see the impact of their designs

and make necessary adjustments on the fly.

V. CONCLUSION

The Sketch2Code IDE project presents a significant

leap forward in bridging the gap between creative

design and front-end web development by

automating the transformation of hand-drawn

sketches into executable HTML code. This

innovative approach eliminates the traditional

dependency on manual coding and allows

designers and developers to engage in a more

seamless, intuitive workflow. By incorporating deep

learning models such as the SketchNet CNN and

the Swin Transformer, the system ensures high

accuracy in recognizing a wide range of UI

components despite variations in sketching styles,

complexity, or layout.

One of the key strengths of the system lies in its

modular architecture, which supports real-time

feedback, dynamic code generation, and flexible UI

design. The preprocessing techniques and feature

extraction layers work cohesively to ensure clean

input for the recognition models, while the

integrated HTML code generator translates

recognized elements into structured, standards-

compliant code. The real-time preview window

offers users an immediate visualization of their

designs, supporting rapid iteration and refinement,

which is essential in modern web development and

UI prototyping.

The foundation laid by this work opens avenues for

future enhancements, such as multi-language code

generation, responsive design support, integration

with design tools like Figma or Adobe XD, and

cloud- based deployment for scalability.

REFRENCES

1. Dinakar, K., Reichart, R., & Lieberman, H. (2011).

Modeling the detection of textual

cyberbullying. Proceedings of the Fifth

International AAAI Conference on Weblogs and

Social Media, 11(1), 11–17.

2. Nahar, V., Al-Maskari, S., & Li, X. (2014).

Detecting cyber bullying in social networks

using machine learning with data filtering.

Social Network Analysis and Mining, 4, 1–15.

3. Zhang, Z., Robinson, D., & Tepper, J. (2018).

Detecting hate speech on Twitter using a

convolution- GRU based deep neural network.

European Semantic Web Conference. Springer,

Cham.

4. Zhao, R., Zhou, A., & Mao, K. (2016). Automatic

detection of cyberbullying on social networks

 M. Vishal. International Journal of Science, Engineering and Technology,

 2025, 13:2

6

based on bullying features. Proceedings of the

17th International Conference on Distributed

Computing and Networking, ACM.

5. Badjatiya, P., Gupta, S., Gupta, M., & Varma, V.

(2017). Deep learning for hate speech detection

in tweets. Proceedings of the 26th International

Conference on World Wide Web Companion,

759– 760.

6. Potha, N., & Maragoudakis, M. (2014).

Cyberbullying detection using time series

modeling. 20th Pan-Hellenic Conference on

Informatics, 1–6.

7. Rosa, H., Pereira, N., Ribeiro, R., Ferreira, P. C.,

Carvalho, J. P., & Oliveira, H. G. (2019).

Automatic cyberbullying detection: A

systematic review. Computers in Human

Behavior Reports, 1, 100005.

8. Mishra, P., Yannakoudakis, H., & Shutova, E.

(2019). Tackling online abuse: A survey of

automated abuse detection methods. arXiv

preprint arXiv:1908.06024.

9. Singh, V., Bharti, S. K., & Singh, S. (2021). A

hybrid deep learning model for detecting

cyberbullying in social media. Procedia

Computer Science, 173, 141– 149.

10. Hosseinmardi, H., Ghasemianlangroodi, A., Han,

R., Lv, Q., & Mishra, S. (2015). Analyzing labeled

cyberbullying incidents on the Instagram social

network. Proceedings of the 2015 IEEE

International Conference on Data Mining

Workshop (ICDMW), 244– 251.

