International Journal of Science,
Engineering and Technology

M. Vishal, 2025, 13:2
ISSN (Online): 2348-4098
ISSN (Print): 2395-4752

An Open Access Journal

Integrated Development Environment For Hand-

Drawn Web Sketch Recognition and Code Generation

M. Vishal, Assistant Professor Dr. K. Nandhini
A Department of Computer Science, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai, India

Abstract- An Integrated Development Environment (IDE) is a comprehensive tool that provides developers with
essential features for software development, such as code editing, debugging, and execution. This project
introduces an innovative IDE designed to efficiently convert hand-drawn sketches into functional web code.
Transforming hand-drawn sketches into executable HTML code is challenging due to the variability in artistic
styles and stroke patterns, along with the traditional separation between design and implementation. By bridging
the gap between hand-drawn designs and functional web development, this IDE offers an intuitive and interactive
environment, empowering designers with a direct link between their creative concepts and executable code, thus

optimizing and streamlining the web development process.

Keywords- Sketch Recognition, HTML Code Generation, Integrated Development Environment (IDE), Deep

Learning, Web Development Automation.

tasks, reducing the scope for errors, and supporting
rapid prototyping. Overall, this system presents a
novel contribution to the field of web development
automation, streamlining the conversion from
design to code.

I. INTRODUCTION

This research introduces an advanced Integrated
Development Environment (IDE) designed to
transform hand-drawn sketches of web
components into functional HTML code. The IDE
employs a combination of machine learning and :
deep learning techniques to interpret sketches, :
recognize web elements, and dynamically generate :
. I

standard- compliant HTML code. Central to the I
)

i

)

|

1

system is the SketchNet model, a Convolutional
Neural Network (CNN) trained to identify Ul
components from varied sketch inputs. To enhance
recognition accuracy and capture long-range
dependencies in sketch patterns, the system
integrates the Swin Transformer, a Vvision
transformer known for its efficiency in handling
spatial hierarchies in images.

Our Website Design

To bridge this gap and enhance efficiency, an
innovative solution is necessary—one that
seamlessly integrates visual creativity with

The IDE provides a user-friendly interface that
allows users to sketch elements, visualize the

generated code, and preview the web layout in
real-time. This approach empowers both designers
and developers by automating repetitive coding

automated code generation. © 2015 Author et al.
This is an Open Access article distributed under the
terms of the Creative Commons Attribution License

© 2025 M. Vishal. This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly credited.

\\\‘

M. Vishal. International Journal of Science, Engineering and Technology,

2025, 13:2

(http://creativecommons.org/licenses/by/4.0), which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
work is properly credited.

Il. LITERATURE REVIEW

Recent advancements in computer vision and deep
learning have significantly enhanced the conversion
of hand-drawn sketches into executable web code,

particularly ~ through the integration of
convolutional and transformer-based architectures.
Robinson et al. utilized deep semantic
segmentation to interpret paper mockups,

pioneering sketch-to-code automation using neural
network models for Ul recognition [1]. Jain et al.
proposed a real-time system combining deep
neural networks with structured output layers to
convert Ul sketches into code representations,
demonstrating high accuracy on benchmark
datasets [2]. Kumar introduced a caption-based
model that translated wireframes into HTML code,
leveraging encoder-decoder architectures to
capture layout semantics [3]. Barua et al. expanded
on this by introducing “Sketch2FullStack,” a deep
learning framework capable of generating both
front-end and backend code structures from hand-
drawn diagrams [4]. Guo et al. developed
UniXcoder, a unified model that integrates code
syntax trees and textual information for better
representation learning in code generation tasks
[5]. Li et al. introduced SkCoder, a retrieval- based
code generation system that mimics developer-like
reuse patterns to improve sketch interpretation and
reduce error rates [6]. Beltramelli et al. presented a
style-aware generation mechanism that preserves
visual consistency across different Ul elements in
HTML output [7]. The UCLA Deep Vision Lab
emphasized the importance of dataset diversity and
data augmentation in improving model
generalization across varied sketch styles [8]. Recent
transformer architectures, like the Swin
Transformer, have also been adopted for their
hierarchical attention capabilities, enhancing spatial
understanding of sketches [9]. Additionally,

semantic-enhanced models have demonstrated
improved accuracy in element classification and
layout rendering, supporting more robust design-
to- code pipelines [10].

I1l. MODULE-WISE DESCRIPTION

The Sketch2Code IDE is composed of six core
modules, each responsible for a specific stage in the
transformation of hand-drawn web sketches into
executable HTML code. These modules work in
unison to provide an intuitive, real-time web
development environment that empowers both
designers and developers. The modular approach
ensures flexibility, maintainability, and the ability to
adapt to diverse design styles and complex Ul
elements. The key modules of the system are
described below:

Sketch2Code IDE Web App

This module involves the complete design and
development of the Sketch2Code IDE, a web
application tailored for coders and developers. The
IDE serves as an integrated platform for seamlessly
transitioning from hand-drawn sketches to
executable HTML code. The user interface will
feature drawing tools for sketching web elements, a
code editor for reviewing generated code, and a
preview section for real-time visualization of the
executed code. The goal is to create an intuitive and
user- friendly environment that enhances the
design-to- code workflow.

End User Dashboard
The End User Dashboard
functionalities for various user roles:

encompasses

Admin: Responsible for training the SketchNet
model, managing datasets, and overseeing system
configurations.

Developer/Coder/User: Can input hand-drawn
sketches of web elements, receive generated HTML
code, and view the executed results. Additionally,

M. Vishal. International Journal of Science, Engineering and Technology,

2025, 13:2

users can copy or save the generated code for
integration into their projects.

SketchNet Model: Build and Train The SketchNet
Model module is dedicated to the comprehensive
creation and training of the SketchNet model,
leveraging Convolutional Neural Network (CNN)
architecture. This process involves a series of
meticulously designed steps to ensure the model's
proficiency in recognizing hand-drawn web element
sketches:

Fig: Admin Panel

Import Dataset

In this initial step, a diverse dataset comprising
hand- drawn web element sketches is imported.
The dataset is carefully curated to encompass a
wide range of design variations and complexities,
ensuring the model's adaptability to different
artistic styles and patterns.

Pre-processing

The pre-processing stage plays a pivotal role in
refining the imported dataset. This encompasses a
series of transformative steps, including resizing,
grey conversion, noise filtering, binarization, and
Region Proposal Network (RPN) segmentation.
These processes collectively enhance the overall
quality and clarity of the dataset, preparing it for
effective feature extraction.

Feature Extraction

The heart of the SketchNet model lies in its ability
to extract meaningful features from the pre-
processed sketches. This is achieved through the
utilization of convolutional layers, activation layers,

and pooling layers. These layers work in tandem to
identify distinctive patterns, shapes, and structures
within the sketches, providing the model with a
robust foundation for subsequent classification.

Classification

Building upon the extracted features, the model
employs fully connected layers to classify and
categorize the recognized elements. This stage
involves assigning labels and attributes to the
identified features, enabling the model to
differentiate between various web elements present
in the sketches.

SketchNet Model: Build and Train (using CNN)
The core of the module revolves around the
integration of CNN architecture to construct and
train the SketchNet model. This involves designing
the layers, defining the network architecture, and
utilizing backpropagation algorithms to optimize
the model's parameters. The training process
ensures that the model learns to generalize well,
recognizing diverse web element sketches
accurately.

Deploy Model

The culmination of the module is the deployment
of the trained SketchNet model. This deployment is
a critical step, as it involves integrating the model
into the Sketch2Code IDE. Once deployed, the
model is ready to perform real-time sketch
recognition within the IDE environment. Users can
input hand-drawn sketches, and the deployed
model will accurately identify and categorize web
elements, laying the foundation for the subsequent
stages of dynamic HTML code generation and real-
time code execution.

Sketch Recognition

The Sketch Recognition module
component responsible for the accurate
identification of hand-drawn web elements,
facilitating a seamless transition from sketches to
executable code.

is a pivotal

M. Vishal. International Journal of Science, Engineering and Technology,

2025, 13:2

Input Web Element Sketch

In this phase, users, including coders and
developers, actively contribute to the system by
providing hand- drawn sketches that represent
various web elements such as buttons, textboxes,
labels, and more. These sketches serve as the input
data for the Sketch Recognition module, initiating
the process of transforming visual concepts into
tangible and functional web components.

Fig: Element Sketch

Sketch Recognition (using Swin Transformer)
The core of the Sketch Recognition module lies in
its ability to leverage the Swin Transformer for real-
time sketch recognition. Unlike traditional
recognition methods, the Swin Transformer excels
in capturingintricate details and long-range
dependencies within the sketches. This advanced
transformer architecture enhances the accuracy of
the recognition process, allowing the model to
discern complex patterns and subtle nuances in the
hand-drawn sketches.

The utilization of the Swin Transformer marks a
departure from conventional recognition
approaches, as it excels in handling diverse and
detailed sketches. Through the application of
attention mechanisms and hierarchical feature
aggregation, the Swin Transformer can effectively
interpret the spatial relationships and hierarchical
structures present in the input sketches. This leads
to a more nuanced and accurate recognition of web
elements, ensuring that the subsequent stages of

the design-to-code workflow are based on precise
and reliable inputs.

Fig — Sketch Recogination

The real-time nature of the recognition process is
paramount, as it enables immediate feedback to
users. As hand-drawn sketches are input, the Swin
Transformer swiftly analyzes and categorizes the
visual elements, laying the groundwork for the
generation of HTML code in the subsequent stages
of the workflow. The Sketch Recognition module,
empowered by the Swin Transformer, represents a
critical step in bridging the gap between design
and code, offering a sophisticated and efficient
solution for translating creative concepts into
functional web interfaces.

Dynamic HTML Code Generation

The Dynamic HTML Code Generation module is
designed to create HTML code in real-time based
on recognized web elements. This process is crucial
for developing responsive and interactive web
applications. The system not only ensures the
syntactical correctness of the generated HTML code
but also adheres to industry standards and
incorporates security best practices.

Code Generation Process

The module begins by taking input from the Sketch
Recognition module, which identifies the web
elements in the hand-drawn sketches. These web
elements could include buttons, text boxes, images,
labels, and more. Based on the recognized

4

M. Vishal. International Journal of Science, Engineering and Technology,

2025, 13:2

elements, the system dynamically generates the
corresponding HTML code.

Real-Time Code Execution

In this module, the system enables real-time code
execution within the Sketch2Code IDE. This
functionality is designed to provide developers and
coders with an immediate visual representation of
the web interface resulting from the generated

HTML code, significantly enhancing the
development process.

' i

< — i

|
I
 §
|
|
|

M S S ——

Fig — Real-Time Code Execution

Instant Visualization

The real-time code execution module allows
developers to instantly visualize the web elements
they create from hand-drawn sketches. As the
HTML code is generated dynamically, it is
immediately rendered in the IDE's integrated
browser or preview pane. This instant visualization
helps developers see the impact of their designs
and make necessary adjustments on the fly.

V. CONCLUSION

The Sketch2Code IDE project presents a significant
leap forward in bridging the gap between creative
design and front-end web development by
automating the transformation of hand-drawn

sketches into executable HTML code. This
innovative approach eliminates the traditional
dependency on manual coding and allows

designers and developers to engage in a more

seamless, intuitive workflow. By incorporating deep
learning models such as the SketchNet CNN and
the Swin Transformer, the system ensures high
accuracy in recognizing a wide range of Ul
components despite variations in sketching styles,
complexity, or layout.

One of the key strengths of the system lies in its
modular architecture, which supports real-time
feedback, dynamic code generation, and flexible Ul
design. The preprocessing techniques and feature
extraction layers work cohesively to ensure clean
input for the recognition models, while the
integrated HTML code generator translates
recognized elements into structured, standards-
compliant code. The real-time preview window
offers users an immediate visualization of their
designs, supporting rapid iteration and refinement,
which is essential in modern web development and
Ul prototyping.

The foundation laid by this work opens avenues for
future enhancements, such as multi-language code
generation, responsive design support, integration
with design tools like Figma or Adobe XD, and
cloud- based deployment for scalability.

REFRENCES

1. Dinakar, K., Reichart, R, & Lieberman, H. (2011).
Modeling the detection of textual
cyberbullying. Proceedings of the Fifth
International AAAI Conference on Weblogs and
Social Media, 11(1), 11-17.

2. Nahar, V., Al-Maskari, S, & Li, X. (2014).
Detecting cyber bullying in social networks
using machine learning with data filtering.
Social Network Analysis and Mining, 4, 1-15.

3. Zhang, Z, Robinson, D., & Tepper, J. (2018).
Detecting hate speech on Twitter using a
convolution- GRU based deep neural network.
European Semantic Web Conference. Springer,
Cham.

4. Zhao, R, Zhou, A., & Mao, K. (2016). Automatic
detection of cyberbullying on social networks

5

M. Vishal. International Journal of Science, Engineering and Technology,

2025, 13:2

10.

based on bullying features. Proceedings of the
17th International Conference on Distributed
Computing and Networking, ACM.

Badjatiya, P., Gupta, S., Gupta, M., & Varma, V.
(2017). Deep learning for hate speech detection
in tweets. Proceedings of the 26th International
Conference on World Wide Web Companion,
759- 760.

Potha, N. & Maragoudakis, M. (2014).
Cyberbullying detection using time series
modeling. 20th Pan-Hellenic Conference on
Informatics, 1-6.

Rosa, H., Pereira, N., Ribeiro, R, Ferreira, P. C,
Carvalho, J. P, & Oliveira, H. G. (2019).
Automatic cyberbullying detection: A
systematic review. Computers in Human
Behavior Reports, 1, 100005.

Mishra, P., Yannakoudakis, H., & Shutova, E.
(2019). Tackling online abuse: A survey of
automated abuse detection methods. arXiv
preprint arXiv:1908.06024.

Singh, V., Bharti, S. K, & Singh, S. (2021). A
hybrid deep learning model for detecting
cyberbullying in social media. Procedia
Computer Science, 173, 141- 149.
Hosseinmardi, H., Ghasemianlangroodi, A., Han,
R. Lv, Q., & Mishra, S. (2015). Analyzing labeled
cyberbullying incidents on the Instagram social
network. Proceedings of the 2015 IEEE
International Conference on Data Mining
Workshop (ICDMW), 244— 251.

