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Abstract- As environmental regulations grow increasingly stringent and fuel efficiency becomes a central
concern for both manufacturers and consumers, the automotive industry is undergoing a technological shift
toward intelligent engine management systems. Internal combustion (IC) engines, though mature, continue to
dominate the global vehicle fleet, particularly in developing economies. However, traditional emission control
and fuel optimization methods, which rely on fixed calibration maps and rule-based logic, struggle to adapt to
real-time driving conditions and evolving operational complexities. This paper explores the transformative role
of Artificial Intelligence (Al) in enhancing emission control and fuel efficiency in IC engines through a
comprehensive secondary analysis of literature, case studies, and industrial applications from 2015 to 2025. Al
techniques such as machine learning, deep learning, and reinforcement learning are capable of analyzing real-
time engine data from multiple sensors, enabling dynamic adjustment of parameters like fuel injection, ignition
timing, and air-fuel ratios. Case studies from companies such as Bosch, Toyota, and Mahindra demonstrate
tangible improvements in emission reduction (up to 18%) and fuel savings (up to 10%) through Al-powered
systems. The paper also discusses emerging trends including edge Al in ECUs, hybrid control systems, digital
twin modeling, and Al integration in hybrid and biofuel engines. While the potential is vast, challenges such as
data noise, computational constraints, legacy system integration, and regulatory compliance must be
addressed. The study concludes that Al-driven engine control systems offer a promising path toward cleaner,

more adaptive, and efficient automotive technologies.
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learning, ECU, edge Al, predictive maintenance, hybrid engines, automotive technology.

vehicle emissions must be reduced and fuel
I. INTRODUCTION economy increased [2]. European Euro 6, US CAFE,
and Indian Bharat Stage VI are examples of rigorous
emission regulations placed by governments
globally. To satisfy these criteria, which require
dramatic reductions in PM, HC, and NOx emissions,
manufacturers are under intense pressure to create
novel engine controls [3]. Internal combustion
engines use closed-loop feedback systems to adjust
air-fuel ratio, ignition timing, and EGR. These
systems use look-up tables and pre-calibrated
control maps extensively [4]. Despite their

Despite rising electric vehicle use, many vehicles
worldwide still use internal combustion (IC) engines.
Due to their versatility to many fuel types, lower
upfront costs, and widespread infrastructure
support, they will stay essential in the automotive
industry, especially in developing economies [1]. In
response to climate change, carbon footprints, and
air pollution, there is now universal agreement that
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effectiveness, these approaches can't handle engine
operations' non-linearity and constant change. Many
factors affect engine performance, including engine
load, speed, altitude, fuel type, environmental
temperature, and driver actions [5]. These aspects
are too complex for static control. Thus, advanced,
real-time adaptive control systems that can
accurately manage this unpredictability are
desperately needed [6].

Al could revolutionise this issue. In particular, RL, ML,
and DL offer data-driven methods for modelling
complex nonlinear systems without physical
equations [7]. Onboard sensors including oxygen,
knock, exhaust gas, and throttle position sensors
provide high-frequency engine data that artificial
intelligence systems use to improve control
parameters [8]. Al systems may adjust ignition timing
to reduce knocking and boost power, dynamically
vary the air-fuel mixture for optimal burn efficiency,
and predict combustion abnormalities [9]. Artificial
intelligence can also help the ECU predict engine
behaviour and emission trends in different settings.
These findings improve pollution compliance,
proactive maintenance planning, and vehicle
efficiency across its lifecycle. Reinforcement learning
can learn optimal control rules from engine system
interaction to maximise long-term performance and
emission advantages

II.METHODOLOGY

Literature analysis and synthesis are employed in this
secondary study to examine how Al is applied in IC
engines for emission control and fuel optimisation.
We searched academic publications, technical
conference transcripts, white papers, patent
applications, and automobile industry case studies
from 2015 to 2025 for this study. This study
examined powertrain management Al-driven system
advances, deployment strategies, and performance
comparisons. Relevance, credibility, and an emphasis
on core subjects including combustion optimisation,
emissions monitoring, adaptive fuel injection, real-
time electronic control unit control, and Al-based
diagnostics dictated literature selection. Technical
material from Bosch, Toyota, Mahindra, Hyundai,
and Siemens; IEEE and SAE International

publications; and Elsevier's "Applied Energy" and
"Energy Conversion and Management." were helpful.
These publications presented theoretical and
practical knowledge on implementing Al systems in
hybrids, passenger automobiles, and heavy-duty
trucks. Real-world automotive Al case studies are
reviewed in this article. Bosch pollution compliance
oecus, Toyota deep learning adaptive fuel mapping,
and Mahindra diesel engine predictive diagnostics
are the case studies. Readers should understand how
Al is affecting fuel and emission management. To
enable structured comparison, we classified the
studied materials by artificial intelligence technique,
engine type (diesel or petrol), performance metric
(fuel economy, NOx reduction, etc.), and system
design (centralised ECU or distributed control).
Classifying the industry this way reveals common
trends, implementation challenges, and innovation
gaps. The study examined computing demands,
sensor dependencies, training data requirements,
and real-time responsiveness to evaluate if Al
models were realistic for general deployment.

I1l. Al APPLICATIONS IN EMISSION
CONTROL SYSTEMS

Al-based emission control systems provide new
ways to manage IC engine exhaust emissions.
Traditional emission control technologies fail in
changing engine conditions because they are rule-
based and rely on predetermined parameters [10].
Al-enabled  solutions  outperform traditional
approaches in predictive, intelligent, and self-
learning due to real-time flexibility and regulatory
restrictions. Al algorithms, especially ML and RL-
based ones, can optimise fuel-air mixture
management, exhaust gas recirculation (EGR), and
catalytic converters autonomously [11]. This reduces
pollution significantly without affecting engine
performance. Artificial intelligence is wused in
emission control systems to optimise catalytic
converters, perform predictive maintenance on
emission-related components, and apply
reinforcement learning for dynamic emission
management.
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Al-Based Catalytic Converter Optimization
Catalytic converters play a crucial role in decreasing
emissions from combustion by converting harmful
gases like CO, NOx, and HC into less toxic ones like
CO,, N, and water vapour. The ideal exhaust gas
temperature, air-fuel ratio, and flow rate are crucial
to a catalytic converter's performance. Traditional
ECMs have a narrow calibration window and often
use worst-case scenarios instead than real-world
driving [12]. Deep learning-based Al algorithms can
monitor and anticipate exhaust system temperature
behaviour in real time. Based on lambda sensors,
NOx sensors, exhaust temperature probes, and mass
airflow meters, the system adjusts the air-fuel ratio
and EGR valve position. This lets the converter work
within its ideal operating window, usually 200-400°C
for three-way catalysts.

Predictive Maintenance of Emission Components

Al also controls emissions with predictive
maintenance. Heat stress, soot buildup, and
chemical contamination can damage oxygen

sensors, diesel particulate filters (DPFs), and exhaust
gas recirculation valves. Older onboard diagnostic
(OBD) systems often cause poor performance,
greater emissions, and costly maintenance. Al-based
predictive maintenance systems can detect
component degradation trends before failure by
evaluating past sensor data, applying machine
learning algorithms, and using fault prediction
models [13]. Recurrent neural networks (RNNSs) or
long short-term memory (LSTM) models can
estimate soot loading patterns by analysing pressure
sensor time series data across the DPF. These models
can forecast filter clogging and start proactive
regeneration cycles to extend DPF life and maintain
exhaust backpressure. Use usage patterns,

temperature cycles, and prior faults to estimate the
RUL of emission control essential components using
predictive algorithms. Service professionals and fleet
managers can use this data to enhance maintenance
scheduling, reduce unplanned downtime, and
ensure emission compliance [14].

Reinforcement Learning in Dynamic Emission
Control

artificial intelligence in which an agent learns optimal
tactics by interacting with its environment and
receiving feedback in the form of incentives or
punishments, has great potential for dynamic
emission control optimisation. RL systems manage
many interconnected variables in IC engine systems.
RL systems use long-term performance goals to train
policies, unlike traditional machine learning models.
RL agents in the ECU can monitor engine RPM, load,
temperature, throttle position, and exhaust gas data
to manage emissions [15]. The RL model uses fuel
economy and pollution levels to pick control actions
(such as ignition timing, valve actuation, or injection
pressure) and receive feedback. Over time, the
system learns emission-reducing and fuel-efficient
control algorithms. RL's ability to adapt without
reprogramming is promising. If a vehicle uses a
different fuel or operates in a new place with
unpredictable weather, the RL agent can adjust its
management strategy by learning about the new
environment. Researchers have found that deep
reinforcement learning (DRL) algorithms like PPO
and DQN outperform static control maps in dynamic
driving circumstances.

IV. Fuel Optimization Using Artificial
Intelligence

Automakers and government organisations have
long understood the need for internal combustion
engine fuel efficiency. Due to rising gasoline prices,
environmental awareness, and higher emission
restrictions, an intelligent and efficient fuel
management system is needed more than ever.
Traditional fuel management uses the ECU's pre-
programmed control logic and static fuel maps.
These maps are frequently built with extensive
empirical testing and calibration. In controlled
situations, this works well, but realistic drivers
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encounter non-linear and dynamic variables. This
highlights the revolutionary potential of Al
especially ML and deep learning algorithms.

Al-Optimized Fuel Injection

Engine efficiency and fuel economy are strongly
affected by fuel injection. Timing, pressure, and
duration of fuel injection affect combustion quality,
thermal efficiency, and pollutant output. Traditional
fuel injection systems are calibrated and controlled
by engine RPM, load, throttle position, and manifold
pressure. Since these algorithms can't adapt, they're
not always the greatest choice [16]. Al-based fuel
injection control systems transcend these limits by
simulating the complex relationships between many
engine variables with supervised learning methods.
Multiple linear regression (ML) models such decision
trees, SVM, and ANN can analyse past and present
sensor data from crankshaft position, temperature,
injector voltage, engine knock, and air-fuel ratio.
These Al algorithms predict fuel injection quantity
and timing to improve combustion efficiency and
minimise fuel waste and pollutants. For highway fuel
economy, the model can lean the mixture, but for
cold start ignition, it can enrich it. Al systems may
also monitor the engine for injector wear, fuel
pressure variations, and misfires and adapt injection
tactics in real time to keep it operating smoothly.

Combustion Modeling and Real-Time Tuning

Engine emissions, fuel utilisation, and power
production depend on combustion efficiency. Due to
its dynamic nature and dependence on temperature,
turbulence, in-cylinder pressure, and air-fuel mixture
homogeneity, modelling the combustion process in
real time has proved difficult. Al solves the problem
of creating predictive combustion models utilising
sensor fusion and high-resolution time-series data.
Thermal profiles, crank angle sensors, and in-cylinder
pressure traces can be used to train deep learning
architectures like CNNs or LSTM networks to predict
combustion behaviour and identify abnormalities
like knocking, misfiring, and incomplete combustion
[17]. Real-time combustion modelling lets the ECU
tune spark timing, intake valve timing, and EGR rate
for every engine cycle. Dynamic tuning reduces
cycle-to-cycle instability, a major cause of efficiency
loss in conventional engines, and improves fuel

economy. Al models can also adjust to varied fuel
grades, air pressures, and engine wear by updating
their forecasts and control actions through learning.

Fuel Map Learning and Adaptive Control
Traditional oecus pre-program fuel maps, which are
lookup tables that control fuel supply under different
conditions. Despite their success in controlled
environments, static maps struggle in real-world
settings including heavy traffic, steep inclines, and
diverse driving styles. Al-driven adaptive control
systems optimise the fuel map in real time by
learning from driving data. These systems create a
fuel plan for each automobile using adaptive fuzzy
logic models or reinforcement learning to optimise
fuel usage based on driver habits, road conditions,
and traffic patterns. In urban stop-and-go traffic, the
system may prioritise fuel-saving strategies like early
gear upshifts and leaner mixtures. On highways, it
can maintain power delivery with little fuel waste. Al
models can modify the fuel map to maintain
performance and efficiency despite vehicle load, tyre
pressure, or weather changes [18]. Connected
vehicles can improve adaptive control with cloud-
based Al technologies that update fuel maps and
analyse fleet data. Manufacturers and fleet managers
can use over-the-air optimisation to improve vehicle
fuel efficiency after deployment. Adaptive fuel
mapping reduces calibration time when designing
engines.

V. INDUSTRY CASE STUDIES AND
COMPARATIVE ANALYSIS

Al is being tested in internal combustion engines by
top automakers and tech companies. Bosch, Toyota,
and Mahindra, three leaders in Al for pollution
management and fuel efficiency optimisation, have
shared their case studies here. These companies
have solved problems with Al, improving fuel
economy and reducing emissions. These instances
show the variety of Al uses and their demonstrable
impact on vehicle performance. German auto parts
maker Bosch has developed cutting-edge electronic
control units (oecus) with Al algorithms that can
learn and modify [19]. Their Al-powered electronic
control units (oecus) dynamically adjust fuel injection
and ignition timing based on input from hundreds of
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engine sensors, including throttle position, oxygen
levels, cylinder pressure, and ambient conditions.
Traditional oecus with machine learning models
directly incorporated into the ECU firmware can
lower emissions by 18% and fuel savings by 10% in
mixed-condition driving, according to Bosch
systems. The Al-enabled oecus seamlessly integrate
with petrol, diesel, and hybrid engines, making them
helpful in urban traffic situations where shifting
conditions make conventional maps useless. Bosch's
edge Al concept enables rapid automobile decisions
without cloud infrastructure. Toyota pioneered fuel
management system calibration with machine
learning [20]. Toyota engineers used enormous
datasets from test tracks and drivers to construct
ML-driven fuel maps that adjust to diverse terrains,
driving styles, and environmental factors. These
adaptive maps change constantly, improving fuel
efficiency over time and reducing calibration. Toyota
reported an 8% fuel economy increase and a 15%
emissions reduction in controlled test conditions,
with the highest gains in low-load cruising and hill-
climbing.  Al-based  dashboard  suggestions
recommend driver behaviour changes to increase
mileage. Toyota uses OTA software upgrades to
remotely update fuel maps to enhance performance
after the sale, one of the most scalable methods in
the industry. Mahindra uses Al for predictive
maintenance in emission-reducing parts. Diesel-
heavy vehicles are their speciality. One area where it
has had the largest impact is DPF control. A tried-
and-true procedure for recharging DPFs at regular
intervals might produce backpressure, decreased
performance, and increased emissions if done
improperly or late [21]. Mahindra's predictive
algorithm uses fuel injector, temperature probe, and
exhaust pressure sensor time-series data to estimate
soot development and find the best regeneration
point. This Al-powered technique prevents fuel
waste from over-regeneration and ensures timely
regeneration.
Comparative
Representation
The following table summarizes the performance
improvements achieved by each company through
their Al-powered systems:

Overview and Visual

Company | Al Use | Emission Fuel

Case Reduction | Savings
(%) (%)

Bosch Al- 18% 10%
powered
ECU

Toyota ML- 15% 8%
driven
fuel maps

Mahindra | Predictive | 12% 5%
DPF
cleaning

VI. CHALLENGES AND LIMITATIONS

Al can improve pollution management and fuel
efficiency in internal combustion engine systems, but
there are many challenges. These technological,
operational, and regulatory issues must be resolved
before mass-market cars may adopt Al-powered
engine  control  systems.  Developers and
manufacturers must grasp these issues to design
strong, scalable, and compliant solutions. Reliable
and accurate input data determine Al model
performance. Automotive sensors including oxygen,
manifold pressure, crankshaft position, knock
detectors and exhaust gas analysers provide this
data. These sensors may lose data quality due to
signal noise, drift, ageing, and calibration errors. Al
models trained on noisy or inconsistent data may
forecast erroneous fuel injection timings, air-fuel
ratios, or regeneration cycles. Real-time
measurement abnormalities from fast throttle
adjustments, rocky roads, or changing ambient
temps hinder decision-making. Thus, improved
filtering algorithms, sensor redundancy, and self-
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calibration are needed to assure high-quality sensor
data for Al integration.

VII. FUTURE TRENDS AND PROSPECTS

As Al continues to redefine automotive engineering,
better, more efficient, and more adaptive Al-
powered solutions will be developed and applied to
optimise fuel economy and manage pollutants in
internal combustion (IC) engines. New paradigms in
vehicle intelligence, sustainability, and system
integration will accompany the next innovation
wave. Several new advancements will influence the
application of Al in automotive engine management
systems. These include the use of Al in hybrid and
alternative fuel powertrain management, digital twin
models for simulation-driven optimisation, hybrid Al
systems that combine traditional control with
intelligent learning, and edge Al for real-time
decision-making. Edge Al in engine control units
(oecus) is a promising future development.
Traditional Al models that use cloud infrastructure
for processing raise latency, connectivity, and
security concerns in automotive applications. Small,
highly optimised Al models are executed on vehicle-
integrated hardware in edge Al. These devices' low
power, memory, and energy consumption make
them ideal for real-time automobile settings. Edge Al
systems can immediately respond to engine issues
since they can infer at the vehicle level. This enables
proactive  emission = management,  adaptive
combustion control, and exact fuel supply without
remote servers. Modern automobile systems require
secure and private data transmission, and local
processing improves both.  Al-accelerated
microcontrollers like NVIDIA Jetson, NXP's S32
platform, and Qualcomm's Snapdragon Auto are
accelerating edge-native automotive Al.

The automotive industry is rapidly using Al as hybrid
powertrains, flex-fuel systems, and biofuel-
compatible engines become more common. These
engines can handle varying fuel mixtures, battery
voltages, regeneration cycles, and drivetrain
arrangements. Al can handle this complexity by
evaluating the attributes of multiple power sources
and combining or switching them to improve

efficiency and limit pollution. Al may consider road
ahead, traffic, and battery health to decide when to
use the electric motor or combustion engine in a
plug-in hybrid.

VIil. CONCLUSION

With Al's dynamic, adaptive, and predictive
capabilities, internal combustion (IC) engine control
systems are rapidly developing beyond standard
control approaches. Al allows engine management
systems to react intelligently to data in real time,
improve performance, and fulfil tightening emission
limits by combining ML, DL, and RL algorithms. This
secondary research shows that Al-powered methods
outperform energy efficiency, real-time fuel injection
optimisation, predictive maintenance, and reaction
to changing conditions. Hybrid learning frameworks,
Al-based predictive diagnostics, adaptive fuel
mapping, and intelligent emission reduction tactics
are among the growing uses. Edge computing and
the loT infrastructure boost Al in automotive engine
systems. Edge Al lets the vehicle's oecus examine
sensor data in real time, improving safety and
latency. Cloud connectivity allows remote
performance improvement and ongoing learning.
These technologies enable smarter cars. These
vehicles can adjust to their surroundings, driver
behaviours, and mechanical wear and tear while
meeting emissions and fuel efficiency criteria. Al's
flexibility to hybrids, flex-fuel engines, and biofuel
systems makes it essential for integrating
combustion-based  propulsion with ecological
sustainability. Before Al to fully realise its potential in
IC engines, many obstacles must be addressed.
Sensor reliability, embedded system computational
restrictions, legacy hardware integration, and robust
regulatory frameworks are examples. Despite
advances in simulation tools, digital twin models,
and cloud-based training environments, mass-
produced cars need substantial experimental
validation and field trials for artificial intelligence.
Technology vendors and automakers must
collaborate to standardise Al model testing,
certification, and reliability. Finally, Al can improve IC
engine fuel efficiency and pollution. Integrating Al
with combustion engine management is a game-
changer in the automotive sector, ushering in
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smarter, greener  transportation. Research,
development, and industry collaboration must
continue to grow these solutions across vehicle
platforms and global markets.
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