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I. INTRODUCTION 
 

Understanding and predicting how materials 

behave—like how well they conduct electricity, how 

strong or stable they are, or how they respond to 

heat—is a major goal in materials science. These  

 

 

physical properties are directly linked to how atoms  

are arranged and interact with each other. Accurate 

predictions help researchers design new materials 

for important uses such as batteries, electronics, 

construction, and clean energy. 

 

Abstract- Predicting the physical properties of materials—like how strong, conductive, or stable they are—

based on their atomic structure is a key goal in materials science and chemistry. These predictions are 

essential for designing new materials used in things like batteries, electronics, and clean energy 

technologies. Traditionally, scientists use accurate methods like density functional theory (DFT) to simulate 

the behavior of atoms and electrons. However, DFT is very slow and requires a lot of computing power, 

especially for large or complex systems. This makes it difficult to use for fast or large-scale materials 

discovery. Machine learning (ML) offers a powerful solution. Once trained on large, reliable datasets, ML 

models can quickly learn how atomic structure relates to material properties—such as band gaps, formation 

energy, or elasticity—making predictions much faster than traditional methods. This paper reviews how ML 

is being applied in this field. We look at how atomic structures are converted into machine-readable formats 

using descriptors like symmetry functions, Coulomb matrices, and graph-based methods. We then explore 

different ML models, from basic regression methods to advanced deep learning architectures like graph 

neural networks (GNNs) and convolutional neural networks (CNNs). We also highlight important challenges, 

including the need for high-quality data, making models understandable, and ensuring they follow physical 

laws. Special attention is given to physics-informed ML, which builds real-world scientific knowledge into 

model design to improve accuracy and generalization. Finally, we showcase real-world examples where ML 

has successfully predicted material properties and compare the results with traditional methods and 

experiments. The goal of this paper is to map out the current progress in this field and suggest where future 

research should focus. 
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Traditionally, scientists use simulation methods like 

Density Functional Theory (DFT) and Molecular 

Dynamics (MD) to calculate these properties. These 

methods are very accurate because they are based 

on fundamental physics, but they are also very slow 

and require a lot of computing power. This makes 

them hard to use when we need to test a large 

number of materials quickly. 

 

To solve this problem, researchers are now using 

machine learning (ML). ML models can be trained 

on existing data—either from experiments or from 

simulations—and can then make fast predictions 

about new materials. Once trained, these models 

can screen thousands or even millions of material 

candidates in a short time, which speeds up the 

discovery process. 

 

Recently, deep learning approaches like graph 

neural networks (GNNs) have become especially 

popular. These models are great at handling the 

complex structures of materials because they treat 

atomic structures like graphs, where atoms are 

nodes and bonds are connections. This helps the 

model learn detailed chemical and spatial patterns. 

In this paper, we explore how ML can be used to 

predict physical properties of materials just from 

their atomic configurations. We look at different 

ways to represent atomic structures for ML, 

compare different types of models, and discuss key 

challenges—like how to make predictions that 

follow physical laws, how to understand what the 

models are doing, and how to make them work for 

new types of materials. Our aim is to give a clear 

overview of the current progress and guide future 

work in this fast-growing area of research. 

 

II. BACKGROUND AND MOTIVATION 
 

The physical properties of materials—like how well 

they conduct electricity, how strong they are, or 

how stable they are under heat—are determined by 

how their atoms are arranged, how they bond, and 

how electrons behave in the material. To predict 

these properties correctly, we need to understand 

the relationship between atomic structure and 

material behavior. 

Traditionally, scientists have used powerful methods 

like Density Functional Theory (DFT) to study these 

relationships. While DFT is very accurate, it takes a 

lot of time and computing power, which makes it 

hard to use when studying large numbers of 

materials. 

 

Luckily, new databases like the Materials Project, 

OQMD, and NOMAD have collected huge amounts 

of data about materials and their properties. These 

databases have made it possible to apply machine 

learning (ML), which can find patterns in the data 

and predict properties much faster than traditional 

methods. 

 

However, for ML to work well in this field, it must: 

1. Accurately represent atomic structures. 

• Understand both the chemical and spatial 

relationships between atoms. 

• Give results that are easy to interpret and 

reliable for new, unseen materials. 

• This paper looks at how different ML models 

and ways of representing atomic structures are 

used to achieve these goals and improve 

materials property prediction. 

 

III. DESCRIPTORS AND FEATURE 

ENGINEERING 
 

One of the most important steps in building 

machine learning (ML) models for predicting 

material properties is converting atomic structures 

into numerical formats that models can understand. 

This is done using descriptors or representations—

ways to encode atomic identities, positions, and 

interactions into feature vectors or graphs. 

 

There are two main types of descriptors: 

 

1. Handcrafted Descriptors rely on physical and 

chemical knowledge to extract features from 

atomic structures. Common examples include 

Coulomb matrices, atom-centered symmetry 

functions (ACSFs), and SOAP (Smooth Overlap of 

Atomic Positions). These descriptors aim to capture 

essential structural information such as interatomic 

distances and local atomic environments. They are 

interpretable and effective but often limited in 



 Dr. Sarika Vaijanathrao Jadhav.  International Journal of Science, Engineering and Technology, 

 2025, 13:2 

 

3 

 

 

flexibility and may struggle to generalize across 

diverse material types. 

 

2. Learned Representations are generated 

automatically by deep learning models during 

training. Graph neural networks (GNNs) like SchNet, 

DimeNet, and MEGNet treat materials as graphs—

atoms as nodes and bonds as edges—and learn 

multi-scale features directly from atomic 

configurations. These methods capture intricate 

bonding patterns, long-range interactions, and 

symmetries without manual feature engineering, 

making them highly suitable for complex and 

varied materials systems. 

Overall, choosing the right descriptor plays a key 

role in determining the performance  and 

generalizability of ML models in materials science. 

 

IV. MACHINE LEARNING MODEL 
 

A variety of machine learning (ML) models have 

been developed to predict physical properties of 

materials based on their atomic configurations. 

Each model type offers unique benefits and comes 

with certain limitations, often depending on the 

amount of data available and the complexity of the 

property being predicted. 

 

Kernel Methods such as Gaussian Process 

Regression (GPR) and Kernel Ridge Regression 

(KRR) are particularly effective when working with 

smaller datasets. These models are grounded in 

strong mathematical theory and can deliver high 

accuracy when combined with informative 

descriptors like SOAP. A key advantage of GPR is its 

ability to provide uncertainty estimates, making it 

useful in scenarios where confidence in predictions 

is essential. 

 

Ensemble Methods, including random forests and 

gradient boosting machines, are widely 

appreciated for their robustness and ease of 

interpretation.  

 

These models perform well with structured, 

engineered features and are useful for initial 

screening tasks. However, they may struggle to 

model the complex spatial and quantum-level 

interactions typical in materials science. 

 

Deep Learning Models, especially graph-based 

ones like SchNet, CGCNN, and MEGNet, currently 

lead the field. These models learn representations 

directly from atomic structures, effectively capturing 

both local chemical environments and long-range 

interactions. They are now widely used to predict 

properties such as formation energy, band gaps, 

elastic moduli, and dielectric behavior with high 

accuracy. 

 

V. CASE STUDIES 
 

Machine learning (ML) models have shown 

remarkable success in predicting various material 

properties, demonstrating their potential for 

accelerating materials discovery and design. 

 

Predicting Band Gaps: The Crystal Graph 

Convolutional Neural Network (CGCNN), trained on 

the Materials Project dataset, has demonstrated 

impressive accuracy in predicting electronic 

properties like band gaps. With a mean absolute 

error (MAE) of about 0.3 eV, CGCNN's performance 

closely aligns with the typical discrepancies seen 

between Density Functional Theory (DFT) 

calculations and experimental measurements. This 

accuracy makes CGCNN a powerful tool for 

electronic material screening, allowing for more 

efficient exploration of candidate materials. 

 

Formation Energy Estimation 

SchNet, a deep learning model utilizing continuous-

filter convolutional layers, was trained on a vast 

dataset comprising over 100,000 compounds. 

SchNet achieved MAEs of less than 0.05 eV/atom, 

enabling precise predictions of formation energy. 

This high level of accuracy supports reliable 

material stability predictions, facilitating the rapid 

identification of promising new compounds for 

various applications. 

 

Thermal Conductivity Prediction 

Graph neural networks (GNNs) trained on phonon-

related data, such as dispersion relations, have 

demonstrated their capability to predict thermal 
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conductivity across a wide range of materials, 

including different polymorphs and crystal 

symmetries. This highlights the versatility of ML in 

modeling complex lattice dynamics and its 

potential in thermal management applications. 

 

VI. CHALLENGES AND FUTURE 

DIRECTIONS 
 

Despite the impressive progress in using machine 

learning (ML) for materials property prediction, 

several challenges remain, and addressing them will 

be key to advancing the field. 

 

Data Quality and Size 

Many available datasets suffer from biases, such as 

the underrepresentation of less stable or unusual 

structures. These biases can affect the 

generalization ability of ML models. Techniques like 

transfer learning and active learning show promise 

in overcoming these limitations. By leveraging 

existing knowledge and selectively acquiring 

additional data, these methods can help create 

more balanced and diverse datasets, improving 

model robustness. 

 

Interpretability 

Understanding how ML models make predictions is 

crucial, especially in materials design, where the 

stakes are high. While models such as deep 

learning can be highly accurate, they often lack 

transparency. Techniques like SHAP (Shapley 

Additive Explanations) and attention mechanisms 

are gaining traction as tools for improving the 

interpretability of these models. These techniques 

can help researchers understand the rationale 

behind predictions, enhancing trust in ML-based 

material discovery. 

 

Physical Constraints 

Enforcing physical constraints—such as 

conservation laws and symmetries—can improve 

model generalization and ensure that predictions 

align with known physical principles. Physics-

informed ML is an emerging area that combines 

domain-specific knowledge with data-driven 

methods, leading to more accurate and reliable 

models. 

Generalization to Novel Materials 

Another ongoing challenge is ensuring that ML 

models can generalize well to new, unseen 

materials. Combining ML with domain knowledge 

will be crucial in tackling this challenge, as it can 

help models adapt to novel materials and complex 

phenomena. 

 

CONCLUSION 
 

Machine learning (ML) is rapidly emerging as a 

powerful tool for predicting the physical properties 

of materials, leveraging only their atomic structure. 

Traditionally, predicting material properties like 

conductivity, strength, or thermal behavior required 

computationally intensive methods such as Density 

Functional Theory (DFT), which, while accurate, are 

slow and resource-heavy. ML, however, offers a 

faster and more scalable alternative, enabling 

predictions with high accuracy and much less 

computational cost. The availability of large, high-

quality datasets—such as those from the Materials 

Project and OQMD—and the development of 

advanced ML models, particularly deep learning 

and graph-based models, have significantly 

accelerated progress in this field. 

 

In this paper, we explore how ML techniques are 

applied to connect atomic configurations with key 

material properties like band gaps, formation 

energy, and thermal conductivity. We also highlight 

how atomic structures are represented for ML, such 

as through descriptors and graph-based 

representations, and review different model 

architectures—ranging from kernel methods to 

more sophisticated deep learning models like graph 

neural networks (GNNs). Real-world examples 

demonstrate the practical success of these models, 

with ML providing results comparable to or even 

outperforming traditional methods. 

 

Despite the rapid advancements, challenges remain. 

These include dealing with biased datasets, the 

complexity of interpreting model decisions, 

ensuring that predictions adhere to fundamental 

physical laws, and adapting models to work with 

entirely new, unseen materials. To address these 

issues, it is crucial to integrate domain knowledge 
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with ML, incorporate physical constraints into 

model design, and develop diverse, high-quality 

datasets. As these challenges are tackled, ML will 

increasingly play a central role in accelerating the 

design of new materials and advancing materials 

science. 
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