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I. INTRODUCTION 
 

Fractional differential equations (FDEs) have 

become instrumental in modeling complex systems 

across various scientific and engineering disciplines, 

capturing phenomena that exhibit memory and 

hereditary properties more effectively than their 

integer-order counterparts [1]. The intricate nature 

of FDEs necessitates robust analytical and numerical 

methods for their solutions. Integral transform  

 

techniques, such as the Laplace and Fourier 

transforms, have been pivotal in this context, 

offering systematic approaches to handle the 

complexities inherent in FDEs [2]. 

 

The convolution theorem plays a central role in 

simplifying the process of solving differential 

equations by transforming convolution operations 

in the time domain into simple multiplications in 

the frequency domain [3]. This theorem has been 
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extended to fractional calculus, leading to the 

development of fractional convolution operations 

that generalize classical convolution, thereby 

broadening the scope of applicable problems [4]. 

Recent advancements have introduced various 

integral transforms tailored for fractional calculus. 

The Elzaki transform, for instance, has been 

effectively combined with the Adomian 

decomposition method to address nonlinear 

fractional differential equations, providing solutions 

in the form of rapidly convergent series [5]. 

Similarly, the Kashuri-Fundo transform has been 

employed to solve fractional ordinary differential 

equations, demonstrating its utility in handling 

fractional integrals and derivatives [6]. 

The fractional Fourier transform (FrFT) has also 

garnered attention due to its ability to generalize 

the classical Fourier transform, offering additional 

degrees of freedom in signal processing 

applications. The convolution and correlation 

theorems associated with the FrFT have been 

explored, revealing that fractional convolution in 

the time domain corresponds to multiplication in 

the FrFT domain, which is particularly advantageous 

in filtering and modulation processes [7]. 

In the realm of numerical methods, meshfree 

pseudospectral techniques have been developed to 

solve both classical and fractional partial differential 

equations. These methods utilize radial basis 

functions to construct approximate solutions, 

providing flexibility and accuracy in handling 

complex geometries and boundary conditions [8]. 

Moreover, data-driven approaches have emerged, 

leveraging machine learning algorithms to solve 

fractional integro-differential equations. These 

methods aim to approximate solutions by training 

on data, offering potential advantages in scenarios 

where traditional analytical methods are 

challenging to apply [9]. 

Despite these advancements, there remains a need 

for a unified framework that consolidates these 

diverse integral transform methods to provide a 

more systematic and efficient approach to solving 

FDEs. This research proposes such a framework, 

introducing the Fractional Spectral Convolution 

Theorem as a cornerstone. This theorem extends 

the classical convolution theorem to the fractional 

domain, facilitating the solution of FDEs by 

transforming them into algebraic equations in the 

spectral domain. The framework also incorporates 

innovative techniques based on frequency 

properties, offering new avenues for analyzing and 

solving FDEs. 

 

II. PRELIMINARIES 
 

2.1 Fractional Calculus 

Fractional derivatives extend integer-order 

differentiation by incorporating memory effects. 

The two most commonly used definitions of 

fractional derivatives are: 

• Riemann–Liouville Fractional Derivative: 

 
• Definition of Caputo Fractional 

Derivative : 

 
Which is widely used in initial value problems due 

to its suitability for real-world applications . 

• 2.2 Integral Transforms : 

Integral transforms play a vital role in solving FDEs 

by simplifying complex operators. The most 

commonluy used transforms include : 
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III. UNIFIED FRAMEWORK AND 

THEOREM 
 

3.1 Generalized Spectral Convolution Transform 

(GSCT) Approach : The GSCT is an advanced 

method for solving FDEs by decomposing fractional 

operators into spectral components and applying 

convolution in the transform domain. The key idea 

is to introduce a spectral function T(s) that acts as a 

bridge between integral transforms and 

convolution operators, leading to simplified 

solutions for FDEs. 

 

Definition (GSCT Transform Operator) 

Let 𝒯 be a modern integral transform (e.g., Laplace, 

Sumudu, or Elzaki). The GSCT of a function f(t)f(t)f(t) 

is defined as: 

𝒯* = T(s) * 𝒯{f(t)} , 

Where * denotes the spectral convolution operation 

and T(s) is a spectral kernel function associated with 

fractional operators. 

 

3.2 Fractional Spectral Convolution Theorem : 

Theorem Statement : 

Let Dα f(t) denote a fractional derivative of order α, 

and let 𝒯 be a modern integral transform (such as 

the Laplace, Sumudu or Elzaki transform). Suppose 

that 

𝒯{ Dα f(t)} = Φ (s) 𝒯 { f(t)} , 

Where Φ (s) is the spectral response function 

associated with the fractional derivative operator. 

Then, the solution of the fractional differential 

equation 

Dα y(t) + λ y(t) = g(t), 

Can be expressed in the integral transform domain 

as 

 
Where T(s) is a modified kernel function obtained 

from the spectral decomposition of the fractional 

operator . 

Proof : 

Applying the integral transform 𝒯 to the entire 

equation : 

𝒯 {Dα y(t)} + λ 𝒯{ y(t)} = 𝒯{g(t)} , 

By the definition of the fractional derivative under 

the integral transform 𝒯, we use the property : 

𝒯{ Dα f(t)} = Φ (s) Y(s), 

Where Φ (s) is the spectral response fuction 

corresponding to the fractional derivative Dα . 

Using this property, we rewrite the transformed 

equation as : 

Φ (s) Y(s) + λ Y(s) = G(s) . 

Factoring out Y(s) from the left-hand side : 

y(𝑠)(Φ(𝑠) + 𝜆) = 𝐺(𝑠). 

Dividing both sides by Φ(𝑠) + 𝜆 : 

 
 

The key innovation here is incorporating spectral 

convolution into the solution. We assume that the 

function G(s) can be modified using a spectral 

kernel function T(s) such that : 

G (s) = 𝒯{g(t)} + T(s) * G(s) . 

Substituting this into the expression for Y(s) : 

 
Thus, we have derived a novel spectral convolution-

based formula for solving fractional differential 

equations. 

 

Corollary : Solution of a Fractional Differential 

Equation with Exponential Forcing Function : 

Statement : If the forcing function g(t) is an 

exponential function of the form 

g(t) = e-βt , 

then the solution of the fractional differential 

equation 

Dα𝑦(𝑡) + 𝜆𝑦(𝑡) = e-βt, 

Can be expressed in the transform domain as 

 
Proof : 

Applying the integral transform to both sides : 

𝒯 {Dα y(t)} + λ 𝒯{ y(t)} = 𝒯{e-βt} . 

By the spectral response function property, 

Φ (s) Y(s) + λ Y(s) = 𝒯{e-βt}. 

Using the known transform of e-βt ∶ 
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𝒯{e-βt} = 1 

s + 𝛽 

Thus, we get : 

 
Factoring out Y(s) 

 
Using the spectral decomposition, we introduce T(s) 

to modify the transform equation as follows : 

 
 

 Substituting into the solution : 

 
This proves the corollary. 

 4.4 Example :Using Spectral Convolution 

Theorem solve the fractional differential 

equation 

D0.75𝑦(𝑡) + 2𝑦(𝑡) = e-3t, y(0) = 1. 

 

Solution : 

Apply the Laplace Transform 

ℒ{ D0.75𝑦(𝑡)} + 2𝑌(𝑠) = ℒe-3t, 

Using the Laplace transform property of the 

fractional derivative : 

ℒ{ Dα𝑦(𝑡)} = sα Y(s) - sα-1 y(0) . 

Since y(0) = 1, we substitute α = 0.75 ∶ 

 

This is the final solution. 

 

IV. FUTURE EXPLORATION 
 

While the proposed framework presents a 

robust method for solving a wide range of 

linear FDEs, several avenues for future research 

can further enhance its applicability and scope: 

 

1. Extension to Nonlinear FDEs 

o One promising direction is extending the 

framework to address nonlinear fractional 

differential equations, which are prevalent in 

various real-world applications, such as fluid 

dynamics, biological systems, and finance. 

Developing a modified spectral convolution 

approach that can handle nonlinearity would 

significantly broaden the framework's utility. 

 

2. Multi-Term and Variable-Order FDEs 

o Future studies could explore the application 

of this method to multi-term FDEs and variable-

order fractional differential equations, where 

the order of the derivative changes over time or 

space. These types of equations model complex 

phenomena like anomalous diffusion and 

viscoelasticity more accurately but pose 

significant challenges for existing solution 

methods. 

 

3. Hybrid Transform Techniques 

The integration of hybrid integral transforms — 

combining properties of multiple transforms 

(e.g., Laplace-Fourier or Sumudu-Hankel) — 

could provide more flexible and efficient 

solutions. Exploring how hybrid transforms can 

be incorporated into the spectral convolution 

framework may lead to new solution pathways, 

particularly for partial differential equations 

involving fractional derivatives. 

 

4. Numerical Implementations and 

Algorithm Development 

Although the framework is primarily analytical, 

developing efficient numerical algorithms 

based on the proposed method would enable 
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its application to more complex systems where 

analytical solutions are difficult or impossible to 

derive. Techniques like spectral methods, 

meshfree approaches, or finite difference 

schemes adapted to the spectral convolution 

framework could be explored. 

 

5. Application to Real-World Problems 

Applying the framework to real-world systems, 

such as control systems, signal processing, or 

bioengineering models, would validate its 

practical effectiveness. Specifically, fractional 

models in viscoelasticity, population dynamics, 

and electrical circuits could benefit from the 

accurate and efficient solutions provided by this 

approach. 

 

6. Data-Driven and Machine Learning 

Integration 

o Integrating the framework with data-driven 

methods and machine learning algorithms 

could offer innovative ways to approximate 

solutions to complex FDEs. By leveraging large 

datasets, machine learning models could be 

trained to recognize patterns in fractional 

systems, enhancing both the accuracy and 

speed of the solution process. 

 

7. Theoretical Generalizations 

From a mathematical perspective, further 

generalization of the Fractional Spectral 

Convolution Theorem could be explored. This 

includes extending the theorem to multi-

dimensional domains, non-Euclidean spaces, or 

systems with stochastic components, opening 

doors to new classes of fractional models. 

 

8. Exploring Fractional Integral Transforms 

in Quantum Mechanics 

Given the increasing interest in fractional 

quantum mechanics, where fractional 

derivatives are used to describe quantum 

phenomena, adapting the unified framework to 

this field could lead to novel insights. 

Investigating how spectral convolution 

methods can be applied to fractional 

Schrödinger equations may uncover new 

quantum behaviors. 

 

9. Fractional Optimal Control Problems 

Another area for future exploration is the 

application of the framework to fractional 

optimal control problems, where the goal is to 

determine control strategies that optimize 

system performance governed by FDEs. The 

spectral convolution approach could simplify 

the derivation of optimality conditions and lead 

to more efficient solution methods. 

 

10. Software Development and 

Computational Tools 

Finally, developing software packages or 

computational toolkits based on the proposed 

framework would facilitate its adoption by the 

wider research community. 

 

Such tools could offer user-friendly interfaces 

for solving FDEs using the spectral convolution 

method, promoting broader application across 

disciplines.. 

 

V. CONCLUSION 
 

This research introduces a unified framework for 

solving Fractional Differential Equations (FDEs) 

using modern integral transform methods, with a 

focus on an innovative technique based on 

frequency properties — the Fractional Spectral 

Convolution Theorem. The framework 

systematically extends classical convolution 

concepts into the fractional domain, enabling the 

transformation of complex fractional differential 

equations into more manageable algebraic forms in 

the spectral domain. This significantly simplifies the 

process of solving FDEs, particularly those involving 

non-integer order derivatives, which are 

traditionally challenging to address using 

conventional methods. 

 

The novel theorem and its corresponding corollary 

developed in this study showcase the power of the 

proposed method. By introducing a spectral 



 Saiganesh R. Yadav.  International Journal of Science, Engineering and Technology, 

 2025, 13:2 

 

6 

 

 

 

convolution function, the framework provides a 

generalized approach that can be adapted to 

various integral transforms, including the Laplace, 

Sumudu, and Elzaki transforms. This versatility 

ensures that the framework can handle a broad 

spectrum of FDEs, including those with different 

boundary conditions and forcing functions. 

 

The detailed problem solution presented in this 

research highlights the framework's practical 

applicability and effectiveness. It demonstrates how 

the proposed method not only simplifies the 

mathematical processes involved but also maintains 

the accuracy and reliability of the solutions. 

Furthermore, by incorporating frequency properties 

directly into the solution technique, this approach 

bridges the gap between the time and frequency 

domains, providing deeper insights into the 

behavior of fractional systems. 

Overall, this unified framework represents a 

significant advancement in the field of fractional 

calculus, offering a powerful toolset for researchers 

and practitioners dealing with complex dynamical 

systems characterized by memory and hereditary 

properties. 
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